| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright 2019 ARM Ltd. |
| * |
| * Generic implementation of update_vsyscall and update_vsyscall_tz. |
| * |
| * Based on the x86 specific implementation. |
| */ |
| |
| #include <linux/hrtimer.h> |
| #include <linux/timekeeper_internal.h> |
| #include <vdso/datapage.h> |
| #include <vdso/helpers.h> |
| #include <vdso/vsyscall.h> |
| |
| #include "timekeeping_internal.h" |
| |
| static inline void update_vdso_data(struct vdso_data *vdata, |
| struct timekeeper *tk) |
| { |
| struct vdso_timestamp *vdso_ts; |
| u64 nsec, sec; |
| |
| vdata[CS_HRES_COARSE].cycle_last = tk->tkr_mono.cycle_last; |
| #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT |
| vdata[CS_HRES_COARSE].max_cycles = tk->tkr_mono.clock->max_cycles; |
| #endif |
| vdata[CS_HRES_COARSE].mask = tk->tkr_mono.mask; |
| vdata[CS_HRES_COARSE].mult = tk->tkr_mono.mult; |
| vdata[CS_HRES_COARSE].shift = tk->tkr_mono.shift; |
| vdata[CS_RAW].cycle_last = tk->tkr_raw.cycle_last; |
| #ifdef CONFIG_GENERIC_VDSO_OVERFLOW_PROTECT |
| vdata[CS_RAW].max_cycles = tk->tkr_raw.clock->max_cycles; |
| #endif |
| vdata[CS_RAW].mask = tk->tkr_raw.mask; |
| vdata[CS_RAW].mult = tk->tkr_raw.mult; |
| vdata[CS_RAW].shift = tk->tkr_raw.shift; |
| |
| /* CLOCK_MONOTONIC */ |
| vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC]; |
| vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; |
| |
| nsec = tk->tkr_mono.xtime_nsec; |
| nsec += ((u64)tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift); |
| while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { |
| nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift); |
| vdso_ts->sec++; |
| } |
| vdso_ts->nsec = nsec; |
| |
| /* Copy MONOTONIC time for BOOTTIME */ |
| sec = vdso_ts->sec; |
| /* Add the boot offset */ |
| sec += tk->monotonic_to_boot.tv_sec; |
| nsec += (u64)tk->monotonic_to_boot.tv_nsec << tk->tkr_mono.shift; |
| |
| /* CLOCK_BOOTTIME */ |
| vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_BOOTTIME]; |
| vdso_ts->sec = sec; |
| |
| while (nsec >= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) { |
| nsec -= (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift); |
| vdso_ts->sec++; |
| } |
| vdso_ts->nsec = nsec; |
| |
| /* CLOCK_MONOTONIC_RAW */ |
| vdso_ts = &vdata[CS_RAW].basetime[CLOCK_MONOTONIC_RAW]; |
| vdso_ts->sec = tk->raw_sec; |
| vdso_ts->nsec = tk->tkr_raw.xtime_nsec; |
| |
| /* CLOCK_TAI */ |
| vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_TAI]; |
| vdso_ts->sec = tk->xtime_sec + (s64)tk->tai_offset; |
| vdso_ts->nsec = tk->tkr_mono.xtime_nsec; |
| } |
| |
| void update_vsyscall(struct timekeeper *tk) |
| { |
| struct vdso_data *vdata = __arch_get_k_vdso_data(); |
| struct vdso_timestamp *vdso_ts; |
| s32 clock_mode; |
| u64 nsec; |
| |
| /* copy vsyscall data */ |
| vdso_write_begin(vdata); |
| |
| clock_mode = tk->tkr_mono.clock->vdso_clock_mode; |
| vdata[CS_HRES_COARSE].clock_mode = clock_mode; |
| vdata[CS_RAW].clock_mode = clock_mode; |
| |
| /* CLOCK_REALTIME also required for time() */ |
| vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME]; |
| vdso_ts->sec = tk->xtime_sec; |
| vdso_ts->nsec = tk->tkr_mono.xtime_nsec; |
| |
| /* CLOCK_REALTIME_COARSE */ |
| vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_REALTIME_COARSE]; |
| vdso_ts->sec = tk->xtime_sec; |
| vdso_ts->nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; |
| |
| /* CLOCK_MONOTONIC_COARSE */ |
| vdso_ts = &vdata[CS_HRES_COARSE].basetime[CLOCK_MONOTONIC_COARSE]; |
| vdso_ts->sec = tk->xtime_sec + tk->wall_to_monotonic.tv_sec; |
| nsec = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; |
| nsec = nsec + tk->wall_to_monotonic.tv_nsec; |
| vdso_ts->sec += __iter_div_u64_rem(nsec, NSEC_PER_SEC, &vdso_ts->nsec); |
| |
| /* |
| * Read without the seqlock held by clock_getres(). |
| * Note: No need to have a second copy. |
| */ |
| WRITE_ONCE(vdata[CS_HRES_COARSE].hrtimer_res, hrtimer_resolution); |
| |
| /* |
| * If the current clocksource is not VDSO capable, then spare the |
| * update of the high resolution parts. |
| */ |
| if (clock_mode != VDSO_CLOCKMODE_NONE) |
| update_vdso_data(vdata, tk); |
| |
| __arch_update_vsyscall(vdata, tk); |
| |
| vdso_write_end(vdata); |
| |
| __arch_sync_vdso_data(vdata); |
| } |
| |
| void update_vsyscall_tz(void) |
| { |
| struct vdso_data *vdata = __arch_get_k_vdso_data(); |
| |
| vdata[CS_HRES_COARSE].tz_minuteswest = sys_tz.tz_minuteswest; |
| vdata[CS_HRES_COARSE].tz_dsttime = sys_tz.tz_dsttime; |
| |
| __arch_sync_vdso_data(vdata); |
| } |
| |
| /** |
| * vdso_update_begin - Start of a VDSO update section |
| * |
| * Allows architecture code to safely update the architecture specific VDSO |
| * data. Disables interrupts, acquires timekeeper lock to serialize against |
| * concurrent updates from timekeeping and invalidates the VDSO data |
| * sequence counter to prevent concurrent readers from accessing |
| * inconsistent data. |
| * |
| * Returns: Saved interrupt flags which need to be handed in to |
| * vdso_update_end(). |
| */ |
| unsigned long vdso_update_begin(void) |
| { |
| struct vdso_data *vdata = __arch_get_k_vdso_data(); |
| unsigned long flags; |
| |
| raw_spin_lock_irqsave(&timekeeper_lock, flags); |
| vdso_write_begin(vdata); |
| return flags; |
| } |
| |
| /** |
| * vdso_update_end - End of a VDSO update section |
| * @flags: Interrupt flags as returned from vdso_update_begin() |
| * |
| * Pairs with vdso_update_begin(). Marks vdso data consistent, invokes data |
| * synchronization if the architecture requires it, drops timekeeper lock |
| * and restores interrupt flags. |
| */ |
| void vdso_update_end(unsigned long flags) |
| { |
| struct vdso_data *vdata = __arch_get_k_vdso_data(); |
| |
| vdso_write_end(vdata); |
| __arch_sync_vdso_data(vdata); |
| raw_spin_unlock_irqrestore(&timekeeper_lock, flags); |
| } |