| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _X86_POSTED_INTR_H |
| #define _X86_POSTED_INTR_H |
| |
| #include <asm/cmpxchg.h> |
| #include <asm/rwonce.h> |
| #include <asm/irq_vectors.h> |
| |
| #include <linux/bitmap.h> |
| |
| #define POSTED_INTR_ON 0 |
| #define POSTED_INTR_SN 1 |
| |
| #define PID_TABLE_ENTRY_VALID 1 |
| |
| #define NR_PIR_VECTORS 256 |
| #define NR_PIR_WORDS (NR_PIR_VECTORS / BITS_PER_LONG) |
| |
| /* Posted-Interrupt Descriptor */ |
| struct pi_desc { |
| unsigned long pir[NR_PIR_WORDS]; /* Posted interrupt requested */ |
| union { |
| struct { |
| u16 notifications; /* Suppress and outstanding bits */ |
| u8 nv; |
| u8 rsvd_2; |
| u32 ndst; |
| }; |
| u64 control; |
| }; |
| u32 rsvd[6]; |
| } __aligned(64); |
| |
| /* |
| * De-multiplexing posted interrupts is on the performance path, the code |
| * below is written to optimize the cache performance based on the following |
| * considerations: |
| * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently |
| * accessed by both CPU and IOMMU. |
| * 2.During software processing of posted interrupts, the CPU needs to do |
| * natural width read and xchg for checking and clearing posted interrupt |
| * request (PIR), a 256 bit field within the PID. |
| * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache |
| * line when posting interrupts and setting control bits. |
| * 4.The CPU can access the cache line a magnitude faster than the IOMMU. |
| * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID |
| * cache line. The cache line states after each operation are as follows, |
| * assuming a 64-bit kernel: |
| * CPU IOMMU PID Cache line state |
| * --------------------------------------------------------------- |
| *...read64 exclusive |
| *...lock xchg64 modified |
| *... post/atomic swap invalid |
| *...------------------------------------------------------------- |
| * |
| * To reduce L1 data cache miss, it is important to avoid contention with |
| * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used |
| * when processing posted interrupts in software, e.g. to dispatch interrupt |
| * handlers for posted MSIs, or to move interrupts from the PIR to the vIRR |
| * in KVM. |
| * |
| * In addition, the code is trying to keep the cache line state consistent |
| * as much as possible. e.g. when making a copy and clearing the PIR |
| * (assuming non-zero PIR bits are present in the entire PIR), it does: |
| * read, read, read, read, xchg, xchg, xchg, xchg |
| * instead of: |
| * read, xchg, read, xchg, read, xchg, read, xchg |
| */ |
| static __always_inline bool pi_harvest_pir(unsigned long *pir, |
| unsigned long *pir_vals) |
| { |
| unsigned long pending = 0; |
| int i; |
| |
| for (i = 0; i < NR_PIR_WORDS; i++) { |
| pir_vals[i] = READ_ONCE(pir[i]); |
| pending |= pir_vals[i]; |
| } |
| |
| if (!pending) |
| return false; |
| |
| for (i = 0; i < NR_PIR_WORDS; i++) { |
| if (!pir_vals[i]) |
| continue; |
| |
| pir_vals[i] = arch_xchg(&pir[i], 0); |
| } |
| |
| return true; |
| } |
| |
| static inline bool pi_test_and_set_on(struct pi_desc *pi_desc) |
| { |
| return test_and_set_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc) |
| { |
| return test_and_clear_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline bool pi_test_and_clear_sn(struct pi_desc *pi_desc) |
| { |
| return test_and_clear_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline bool pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) |
| { |
| return test_and_set_bit(vector, pi_desc->pir); |
| } |
| |
| static inline bool pi_is_pir_empty(struct pi_desc *pi_desc) |
| { |
| return bitmap_empty(pi_desc->pir, NR_VECTORS); |
| } |
| |
| static inline void pi_set_sn(struct pi_desc *pi_desc) |
| { |
| set_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline void pi_set_on(struct pi_desc *pi_desc) |
| { |
| set_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline void pi_clear_on(struct pi_desc *pi_desc) |
| { |
| clear_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline void pi_clear_sn(struct pi_desc *pi_desc) |
| { |
| clear_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline bool pi_test_on(struct pi_desc *pi_desc) |
| { |
| return test_bit(POSTED_INTR_ON, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline bool pi_test_sn(struct pi_desc *pi_desc) |
| { |
| return test_bit(POSTED_INTR_SN, (unsigned long *)&pi_desc->control); |
| } |
| |
| static inline bool pi_test_pir(int vector, struct pi_desc *pi_desc) |
| { |
| return test_bit(vector, (unsigned long *)pi_desc->pir); |
| } |
| |
| /* Non-atomic helpers */ |
| static inline void __pi_set_sn(struct pi_desc *pi_desc) |
| { |
| pi_desc->notifications |= BIT(POSTED_INTR_SN); |
| } |
| |
| static inline void __pi_clear_sn(struct pi_desc *pi_desc) |
| { |
| pi_desc->notifications &= ~BIT(POSTED_INTR_SN); |
| } |
| |
| #ifdef CONFIG_X86_POSTED_MSI |
| /* |
| * Not all external vectors are subject to interrupt remapping, e.g. IOMMU's |
| * own interrupts. Here we do not distinguish them since those vector bits in |
| * PIR will always be zero. |
| */ |
| static inline bool pi_pending_this_cpu(unsigned int vector) |
| { |
| struct pi_desc *pid = this_cpu_ptr(&posted_msi_pi_desc); |
| |
| if (WARN_ON_ONCE(vector > NR_VECTORS || vector < FIRST_EXTERNAL_VECTOR)) |
| return false; |
| |
| return test_bit(vector, pid->pir); |
| } |
| |
| extern void intel_posted_msi_init(void); |
| #else |
| static inline bool pi_pending_this_cpu(unsigned int vector) { return false; } |
| |
| static inline void intel_posted_msi_init(void) {}; |
| #endif /* X86_POSTED_MSI */ |
| |
| #endif /* _X86_POSTED_INTR_H */ |