| /* |
| * Copyright 2015-2017 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include <linux/pci.h> |
| #include <linux/acpi.h> |
| #include "kfd_crat.h" |
| #include "kfd_priv.h" |
| #include "kfd_topology.h" |
| #include "kfd_iommu.h" |
| |
| /* GPU Processor ID base for dGPUs for which VCRAT needs to be created. |
| * GPU processor ID are expressed with Bit[31]=1. |
| * The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs |
| * used in the CRAT. |
| */ |
| static uint32_t gpu_processor_id_low = 0x80001000; |
| |
| /* Return the next available gpu_processor_id and increment it for next GPU |
| * @total_cu_count - Total CUs present in the GPU including ones |
| * masked off |
| */ |
| static inline unsigned int get_and_inc_gpu_processor_id( |
| unsigned int total_cu_count) |
| { |
| int current_id = gpu_processor_id_low; |
| |
| gpu_processor_id_low += total_cu_count; |
| return current_id; |
| } |
| |
| /* Static table to describe GPU Cache information */ |
| struct kfd_gpu_cache_info { |
| uint32_t cache_size; |
| uint32_t cache_level; |
| uint32_t flags; |
| /* Indicates how many Compute Units share this cache |
| * Value = 1 indicates the cache is not shared |
| */ |
| uint32_t num_cu_shared; |
| }; |
| |
| static struct kfd_gpu_cache_info kaveri_cache_info[] = { |
| { |
| /* TCP L1 Cache per CU */ |
| .cache_size = 16, |
| .cache_level = 1, |
| .flags = (CRAT_CACHE_FLAGS_ENABLED | |
| CRAT_CACHE_FLAGS_DATA_CACHE | |
| CRAT_CACHE_FLAGS_SIMD_CACHE), |
| .num_cu_shared = 1, |
| |
| }, |
| { |
| /* Scalar L1 Instruction Cache (in SQC module) per bank */ |
| .cache_size = 16, |
| .cache_level = 1, |
| .flags = (CRAT_CACHE_FLAGS_ENABLED | |
| CRAT_CACHE_FLAGS_INST_CACHE | |
| CRAT_CACHE_FLAGS_SIMD_CACHE), |
| .num_cu_shared = 2, |
| }, |
| { |
| /* Scalar L1 Data Cache (in SQC module) per bank */ |
| .cache_size = 8, |
| .cache_level = 1, |
| .flags = (CRAT_CACHE_FLAGS_ENABLED | |
| CRAT_CACHE_FLAGS_DATA_CACHE | |
| CRAT_CACHE_FLAGS_SIMD_CACHE), |
| .num_cu_shared = 2, |
| }, |
| |
| /* TODO: Add L2 Cache information */ |
| }; |
| |
| |
| static struct kfd_gpu_cache_info carrizo_cache_info[] = { |
| { |
| /* TCP L1 Cache per CU */ |
| .cache_size = 16, |
| .cache_level = 1, |
| .flags = (CRAT_CACHE_FLAGS_ENABLED | |
| CRAT_CACHE_FLAGS_DATA_CACHE | |
| CRAT_CACHE_FLAGS_SIMD_CACHE), |
| .num_cu_shared = 1, |
| }, |
| { |
| /* Scalar L1 Instruction Cache (in SQC module) per bank */ |
| .cache_size = 8, |
| .cache_level = 1, |
| .flags = (CRAT_CACHE_FLAGS_ENABLED | |
| CRAT_CACHE_FLAGS_INST_CACHE | |
| CRAT_CACHE_FLAGS_SIMD_CACHE), |
| .num_cu_shared = 4, |
| }, |
| { |
| /* Scalar L1 Data Cache (in SQC module) per bank. */ |
| .cache_size = 4, |
| .cache_level = 1, |
| .flags = (CRAT_CACHE_FLAGS_ENABLED | |
| CRAT_CACHE_FLAGS_DATA_CACHE | |
| CRAT_CACHE_FLAGS_SIMD_CACHE), |
| .num_cu_shared = 4, |
| }, |
| |
| /* TODO: Add L2 Cache information */ |
| }; |
| |
| /* NOTE: In future if more information is added to struct kfd_gpu_cache_info |
| * the following ASICs may need a separate table. |
| */ |
| #define hawaii_cache_info kaveri_cache_info |
| #define tonga_cache_info carrizo_cache_info |
| #define fiji_cache_info carrizo_cache_info |
| #define polaris10_cache_info carrizo_cache_info |
| #define polaris11_cache_info carrizo_cache_info |
| /* TODO - check & update Vega10 cache details */ |
| #define vega10_cache_info carrizo_cache_info |
| #define raven_cache_info carrizo_cache_info |
| |
| static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev, |
| struct crat_subtype_computeunit *cu) |
| { |
| dev->node_props.cpu_cores_count = cu->num_cpu_cores; |
| dev->node_props.cpu_core_id_base = cu->processor_id_low; |
| if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT) |
| dev->node_props.capability |= HSA_CAP_ATS_PRESENT; |
| |
| pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores, |
| cu->processor_id_low); |
| } |
| |
| static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev, |
| struct crat_subtype_computeunit *cu) |
| { |
| dev->node_props.simd_id_base = cu->processor_id_low; |
| dev->node_props.simd_count = cu->num_simd_cores; |
| dev->node_props.lds_size_in_kb = cu->lds_size_in_kb; |
| dev->node_props.max_waves_per_simd = cu->max_waves_simd; |
| dev->node_props.wave_front_size = cu->wave_front_size; |
| dev->node_props.array_count = cu->array_count; |
| dev->node_props.cu_per_simd_array = cu->num_cu_per_array; |
| dev->node_props.simd_per_cu = cu->num_simd_per_cu; |
| dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu; |
| if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE) |
| dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE; |
| pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low); |
| } |
| |
| /* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct |
| * topology device present in the device_list |
| */ |
| static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu, |
| struct list_head *device_list) |
| { |
| struct kfd_topology_device *dev; |
| |
| pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n", |
| cu->proximity_domain, cu->hsa_capability); |
| list_for_each_entry(dev, device_list, list) { |
| if (cu->proximity_domain == dev->proximity_domain) { |
| if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT) |
| kfd_populated_cu_info_cpu(dev, cu); |
| |
| if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT) |
| kfd_populated_cu_info_gpu(dev, cu); |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct kfd_mem_properties * |
| find_subtype_mem(uint32_t heap_type, uint32_t flags, uint32_t width, |
| struct kfd_topology_device *dev) |
| { |
| struct kfd_mem_properties *props; |
| |
| list_for_each_entry(props, &dev->mem_props, list) { |
| if (props->heap_type == heap_type |
| && props->flags == flags |
| && props->width == width) |
| return props; |
| } |
| |
| return NULL; |
| } |
| /* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct |
| * topology device present in the device_list |
| */ |
| static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem, |
| struct list_head *device_list) |
| { |
| struct kfd_mem_properties *props; |
| struct kfd_topology_device *dev; |
| uint32_t heap_type; |
| uint64_t size_in_bytes; |
| uint32_t flags = 0; |
| uint32_t width; |
| |
| pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n", |
| mem->proximity_domain); |
| list_for_each_entry(dev, device_list, list) { |
| if (mem->proximity_domain == dev->proximity_domain) { |
| /* We're on GPU node */ |
| if (dev->node_props.cpu_cores_count == 0) { |
| /* APU */ |
| if (mem->visibility_type == 0) |
| heap_type = |
| HSA_MEM_HEAP_TYPE_FB_PRIVATE; |
| /* dGPU */ |
| else |
| heap_type = mem->visibility_type; |
| } else |
| heap_type = HSA_MEM_HEAP_TYPE_SYSTEM; |
| |
| if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE) |
| flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE; |
| if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE) |
| flags |= HSA_MEM_FLAGS_NON_VOLATILE; |
| |
| size_in_bytes = |
| ((uint64_t)mem->length_high << 32) + |
| mem->length_low; |
| width = mem->width; |
| |
| /* Multiple banks of the same type are aggregated into |
| * one. User mode doesn't care about multiple physical |
| * memory segments. It's managed as a single virtual |
| * heap for user mode. |
| */ |
| props = find_subtype_mem(heap_type, flags, width, dev); |
| if (props) { |
| props->size_in_bytes += size_in_bytes; |
| break; |
| } |
| |
| props = kfd_alloc_struct(props); |
| if (!props) |
| return -ENOMEM; |
| |
| props->heap_type = heap_type; |
| props->flags = flags; |
| props->size_in_bytes = size_in_bytes; |
| props->width = width; |
| |
| dev->node_props.mem_banks_count++; |
| list_add_tail(&props->list, &dev->mem_props); |
| |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct |
| * topology device present in the device_list |
| */ |
| static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache, |
| struct list_head *device_list) |
| { |
| struct kfd_cache_properties *props; |
| struct kfd_topology_device *dev; |
| uint32_t id; |
| uint32_t total_num_of_cu; |
| |
| id = cache->processor_id_low; |
| |
| pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id); |
| list_for_each_entry(dev, device_list, list) { |
| total_num_of_cu = (dev->node_props.array_count * |
| dev->node_props.cu_per_simd_array); |
| |
| /* Cache infomration in CRAT doesn't have proximity_domain |
| * information as it is associated with a CPU core or GPU |
| * Compute Unit. So map the cache using CPU core Id or SIMD |
| * (GPU) ID. |
| * TODO: This works because currently we can safely assume that |
| * Compute Units are parsed before caches are parsed. In |
| * future, remove this dependency |
| */ |
| if ((id >= dev->node_props.cpu_core_id_base && |
| id <= dev->node_props.cpu_core_id_base + |
| dev->node_props.cpu_cores_count) || |
| (id >= dev->node_props.simd_id_base && |
| id < dev->node_props.simd_id_base + |
| total_num_of_cu)) { |
| props = kfd_alloc_struct(props); |
| if (!props) |
| return -ENOMEM; |
| |
| props->processor_id_low = id; |
| props->cache_level = cache->cache_level; |
| props->cache_size = cache->cache_size; |
| props->cacheline_size = cache->cache_line_size; |
| props->cachelines_per_tag = cache->lines_per_tag; |
| props->cache_assoc = cache->associativity; |
| props->cache_latency = cache->cache_latency; |
| memcpy(props->sibling_map, cache->sibling_map, |
| sizeof(props->sibling_map)); |
| |
| if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE) |
| props->cache_type |= HSA_CACHE_TYPE_DATA; |
| if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE) |
| props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION; |
| if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE) |
| props->cache_type |= HSA_CACHE_TYPE_CPU; |
| if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE) |
| props->cache_type |= HSA_CACHE_TYPE_HSACU; |
| |
| dev->cache_count++; |
| dev->node_props.caches_count++; |
| list_add_tail(&props->list, &dev->cache_props); |
| |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct |
| * topology device present in the device_list |
| */ |
| static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink, |
| struct list_head *device_list) |
| { |
| struct kfd_iolink_properties *props = NULL, *props2; |
| struct kfd_topology_device *dev, *cpu_dev; |
| uint32_t id_from; |
| uint32_t id_to; |
| |
| id_from = iolink->proximity_domain_from; |
| id_to = iolink->proximity_domain_to; |
| |
| pr_debug("Found IO link entry in CRAT table with id_from=%d\n", |
| id_from); |
| list_for_each_entry(dev, device_list, list) { |
| if (id_from == dev->proximity_domain) { |
| props = kfd_alloc_struct(props); |
| if (!props) |
| return -ENOMEM; |
| |
| props->node_from = id_from; |
| props->node_to = id_to; |
| props->ver_maj = iolink->version_major; |
| props->ver_min = iolink->version_minor; |
| props->iolink_type = iolink->io_interface_type; |
| |
| if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) |
| props->weight = 20; |
| else |
| props->weight = node_distance(id_from, id_to); |
| |
| props->min_latency = iolink->minimum_latency; |
| props->max_latency = iolink->maximum_latency; |
| props->min_bandwidth = iolink->minimum_bandwidth_mbs; |
| props->max_bandwidth = iolink->maximum_bandwidth_mbs; |
| props->rec_transfer_size = |
| iolink->recommended_transfer_size; |
| |
| dev->io_link_count++; |
| dev->node_props.io_links_count++; |
| list_add_tail(&props->list, &dev->io_link_props); |
| break; |
| } |
| } |
| |
| /* CPU topology is created before GPUs are detected, so CPU->GPU |
| * links are not built at that time. If a PCIe type is discovered, it |
| * means a GPU is detected and we are adding GPU->CPU to the topology. |
| * At this time, also add the corresponded CPU->GPU link. |
| */ |
| if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) { |
| cpu_dev = kfd_topology_device_by_proximity_domain(id_to); |
| if (!cpu_dev) |
| return -ENODEV; |
| /* same everything but the other direction */ |
| props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL); |
| props2->node_from = id_to; |
| props2->node_to = id_from; |
| props2->kobj = NULL; |
| cpu_dev->io_link_count++; |
| cpu_dev->node_props.io_links_count++; |
| list_add_tail(&props2->list, &cpu_dev->io_link_props); |
| } |
| |
| return 0; |
| } |
| |
| /* kfd_parse_subtype - parse subtypes and attach it to correct topology device |
| * present in the device_list |
| * @sub_type_hdr - subtype section of crat_image |
| * @device_list - list of topology devices present in this crat_image |
| */ |
| static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr, |
| struct list_head *device_list) |
| { |
| struct crat_subtype_computeunit *cu; |
| struct crat_subtype_memory *mem; |
| struct crat_subtype_cache *cache; |
| struct crat_subtype_iolink *iolink; |
| int ret = 0; |
| |
| switch (sub_type_hdr->type) { |
| case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY: |
| cu = (struct crat_subtype_computeunit *)sub_type_hdr; |
| ret = kfd_parse_subtype_cu(cu, device_list); |
| break; |
| case CRAT_SUBTYPE_MEMORY_AFFINITY: |
| mem = (struct crat_subtype_memory *)sub_type_hdr; |
| ret = kfd_parse_subtype_mem(mem, device_list); |
| break; |
| case CRAT_SUBTYPE_CACHE_AFFINITY: |
| cache = (struct crat_subtype_cache *)sub_type_hdr; |
| ret = kfd_parse_subtype_cache(cache, device_list); |
| break; |
| case CRAT_SUBTYPE_TLB_AFFINITY: |
| /* |
| * For now, nothing to do here |
| */ |
| pr_debug("Found TLB entry in CRAT table (not processing)\n"); |
| break; |
| case CRAT_SUBTYPE_CCOMPUTE_AFFINITY: |
| /* |
| * For now, nothing to do here |
| */ |
| pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n"); |
| break; |
| case CRAT_SUBTYPE_IOLINK_AFFINITY: |
| iolink = (struct crat_subtype_iolink *)sub_type_hdr; |
| ret = kfd_parse_subtype_iolink(iolink, device_list); |
| break; |
| default: |
| pr_warn("Unknown subtype %d in CRAT\n", |
| sub_type_hdr->type); |
| } |
| |
| return ret; |
| } |
| |
| /* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT |
| * create a kfd_topology_device and add in to device_list. Also parse |
| * CRAT subtypes and attach it to appropriate kfd_topology_device |
| * @crat_image - input image containing CRAT |
| * @device_list - [OUT] list of kfd_topology_device generated after |
| * parsing crat_image |
| * @proximity_domain - Proximity domain of the first device in the table |
| * |
| * Return - 0 if successful else -ve value |
| */ |
| int kfd_parse_crat_table(void *crat_image, struct list_head *device_list, |
| uint32_t proximity_domain) |
| { |
| struct kfd_topology_device *top_dev = NULL; |
| struct crat_subtype_generic *sub_type_hdr; |
| uint16_t node_id; |
| int ret = 0; |
| struct crat_header *crat_table = (struct crat_header *)crat_image; |
| uint16_t num_nodes; |
| uint32_t image_len; |
| |
| if (!crat_image) |
| return -EINVAL; |
| |
| if (!list_empty(device_list)) { |
| pr_warn("Error device list should be empty\n"); |
| return -EINVAL; |
| } |
| |
| num_nodes = crat_table->num_domains; |
| image_len = crat_table->length; |
| |
| pr_info("Parsing CRAT table with %d nodes\n", num_nodes); |
| |
| for (node_id = 0; node_id < num_nodes; node_id++) { |
| top_dev = kfd_create_topology_device(device_list); |
| if (!top_dev) |
| break; |
| top_dev->proximity_domain = proximity_domain++; |
| } |
| |
| if (!top_dev) { |
| ret = -ENOMEM; |
| goto err; |
| } |
| |
| memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH); |
| memcpy(top_dev->oem_table_id, crat_table->oem_table_id, |
| CRAT_OEMTABLEID_LENGTH); |
| top_dev->oem_revision = crat_table->oem_revision; |
| |
| sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); |
| while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) < |
| ((char *)crat_image) + image_len) { |
| if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) { |
| ret = kfd_parse_subtype(sub_type_hdr, device_list); |
| if (ret) |
| break; |
| } |
| |
| sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + |
| sub_type_hdr->length); |
| } |
| |
| err: |
| if (ret) |
| kfd_release_topology_device_list(device_list); |
| |
| return ret; |
| } |
| |
| /* Helper function. See kfd_fill_gpu_cache_info for parameter description */ |
| static int fill_in_pcache(struct crat_subtype_cache *pcache, |
| struct kfd_gpu_cache_info *pcache_info, |
| struct kfd_cu_info *cu_info, |
| int mem_available, |
| int cu_bitmask, |
| int cache_type, unsigned int cu_processor_id, |
| int cu_block) |
| { |
| unsigned int cu_sibling_map_mask; |
| int first_active_cu; |
| |
| /* First check if enough memory is available */ |
| if (sizeof(struct crat_subtype_cache) > mem_available) |
| return -ENOMEM; |
| |
| cu_sibling_map_mask = cu_bitmask; |
| cu_sibling_map_mask >>= cu_block; |
| cu_sibling_map_mask &= |
| ((1 << pcache_info[cache_type].num_cu_shared) - 1); |
| first_active_cu = ffs(cu_sibling_map_mask); |
| |
| /* CU could be inactive. In case of shared cache find the first active |
| * CU. and incase of non-shared cache check if the CU is inactive. If |
| * inactive active skip it |
| */ |
| if (first_active_cu) { |
| memset(pcache, 0, sizeof(struct crat_subtype_cache)); |
| pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY; |
| pcache->length = sizeof(struct crat_subtype_cache); |
| pcache->flags = pcache_info[cache_type].flags; |
| pcache->processor_id_low = cu_processor_id |
| + (first_active_cu - 1); |
| pcache->cache_level = pcache_info[cache_type].cache_level; |
| pcache->cache_size = pcache_info[cache_type].cache_size; |
| |
| /* Sibling map is w.r.t processor_id_low, so shift out |
| * inactive CU |
| */ |
| cu_sibling_map_mask = |
| cu_sibling_map_mask >> (first_active_cu - 1); |
| |
| pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF); |
| pcache->sibling_map[1] = |
| (uint8_t)((cu_sibling_map_mask >> 8) & 0xFF); |
| pcache->sibling_map[2] = |
| (uint8_t)((cu_sibling_map_mask >> 16) & 0xFF); |
| pcache->sibling_map[3] = |
| (uint8_t)((cu_sibling_map_mask >> 24) & 0xFF); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info |
| * tables |
| * |
| * @kdev - [IN] GPU device |
| * @gpu_processor_id - [IN] GPU processor ID to which these caches |
| * associate |
| * @available_size - [IN] Amount of memory available in pcache |
| * @cu_info - [IN] Compute Unit info obtained from KGD |
| * @pcache - [OUT] memory into which cache data is to be filled in. |
| * @size_filled - [OUT] amount of data used up in pcache. |
| * @num_of_entries - [OUT] number of caches added |
| */ |
| static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev, |
| int gpu_processor_id, |
| int available_size, |
| struct kfd_cu_info *cu_info, |
| struct crat_subtype_cache *pcache, |
| int *size_filled, |
| int *num_of_entries) |
| { |
| struct kfd_gpu_cache_info *pcache_info; |
| int num_of_cache_types = 0; |
| int i, j, k; |
| int ct = 0; |
| int mem_available = available_size; |
| unsigned int cu_processor_id; |
| int ret; |
| |
| switch (kdev->device_info->asic_family) { |
| case CHIP_KAVERI: |
| pcache_info = kaveri_cache_info; |
| num_of_cache_types = ARRAY_SIZE(kaveri_cache_info); |
| break; |
| case CHIP_HAWAII: |
| pcache_info = hawaii_cache_info; |
| num_of_cache_types = ARRAY_SIZE(hawaii_cache_info); |
| break; |
| case CHIP_CARRIZO: |
| pcache_info = carrizo_cache_info; |
| num_of_cache_types = ARRAY_SIZE(carrizo_cache_info); |
| break; |
| case CHIP_TONGA: |
| pcache_info = tonga_cache_info; |
| num_of_cache_types = ARRAY_SIZE(tonga_cache_info); |
| break; |
| case CHIP_FIJI: |
| pcache_info = fiji_cache_info; |
| num_of_cache_types = ARRAY_SIZE(fiji_cache_info); |
| break; |
| case CHIP_POLARIS10: |
| pcache_info = polaris10_cache_info; |
| num_of_cache_types = ARRAY_SIZE(polaris10_cache_info); |
| break; |
| case CHIP_POLARIS11: |
| pcache_info = polaris11_cache_info; |
| num_of_cache_types = ARRAY_SIZE(polaris11_cache_info); |
| break; |
| case CHIP_VEGA10: |
| pcache_info = vega10_cache_info; |
| num_of_cache_types = ARRAY_SIZE(vega10_cache_info); |
| break; |
| case CHIP_RAVEN: |
| pcache_info = raven_cache_info; |
| num_of_cache_types = ARRAY_SIZE(raven_cache_info); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| *size_filled = 0; |
| *num_of_entries = 0; |
| |
| /* For each type of cache listed in the kfd_gpu_cache_info table, |
| * go through all available Compute Units. |
| * The [i,j,k] loop will |
| * if kfd_gpu_cache_info.num_cu_shared = 1 |
| * will parse through all available CU |
| * If (kfd_gpu_cache_info.num_cu_shared != 1) |
| * then it will consider only one CU from |
| * the shared unit |
| */ |
| |
| for (ct = 0; ct < num_of_cache_types; ct++) { |
| cu_processor_id = gpu_processor_id; |
| for (i = 0; i < cu_info->num_shader_engines; i++) { |
| for (j = 0; j < cu_info->num_shader_arrays_per_engine; |
| j++) { |
| for (k = 0; k < cu_info->num_cu_per_sh; |
| k += pcache_info[ct].num_cu_shared) { |
| |
| ret = fill_in_pcache(pcache, |
| pcache_info, |
| cu_info, |
| mem_available, |
| cu_info->cu_bitmap[i][j], |
| ct, |
| cu_processor_id, |
| k); |
| |
| if (ret < 0) |
| break; |
| |
| if (!ret) { |
| pcache++; |
| (*num_of_entries)++; |
| mem_available -= |
| sizeof(*pcache); |
| (*size_filled) += |
| sizeof(*pcache); |
| } |
| |
| /* Move to next CU block */ |
| cu_processor_id += |
| pcache_info[ct].num_cu_shared; |
| } |
| } |
| } |
| } |
| |
| pr_debug("Added [%d] GPU cache entries\n", *num_of_entries); |
| |
| return 0; |
| } |
| |
| /* |
| * kfd_create_crat_image_acpi - Allocates memory for CRAT image and |
| * copies CRAT from ACPI (if available). |
| * NOTE: Call kfd_destroy_crat_image to free CRAT image memory |
| * |
| * @crat_image: CRAT read from ACPI. If no CRAT in ACPI then |
| * crat_image will be NULL |
| * @size: [OUT] size of crat_image |
| * |
| * Return 0 if successful else return error code |
| */ |
| int kfd_create_crat_image_acpi(void **crat_image, size_t *size) |
| { |
| struct acpi_table_header *crat_table; |
| acpi_status status; |
| void *pcrat_image; |
| |
| if (!crat_image) |
| return -EINVAL; |
| |
| *crat_image = NULL; |
| |
| /* Fetch the CRAT table from ACPI */ |
| status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table); |
| if (status == AE_NOT_FOUND) { |
| pr_warn("CRAT table not found\n"); |
| return -ENODATA; |
| } else if (ACPI_FAILURE(status)) { |
| const char *err = acpi_format_exception(status); |
| |
| pr_err("CRAT table error: %s\n", err); |
| return -EINVAL; |
| } |
| |
| if (ignore_crat) { |
| pr_info("CRAT table disabled by module option\n"); |
| return -ENODATA; |
| } |
| |
| pcrat_image = kmalloc(crat_table->length, GFP_KERNEL); |
| if (!pcrat_image) |
| return -ENOMEM; |
| |
| memcpy(pcrat_image, crat_table, crat_table->length); |
| |
| *crat_image = pcrat_image; |
| *size = crat_table->length; |
| |
| return 0; |
| } |
| |
| /* Memory required to create Virtual CRAT. |
| * Since there is no easy way to predict the amount of memory required, the |
| * following amount are allocated for CPU and GPU Virtual CRAT. This is |
| * expected to cover all known conditions. But to be safe additional check |
| * is put in the code to ensure we don't overwrite. |
| */ |
| #define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE) |
| #define VCRAT_SIZE_FOR_GPU (3 * PAGE_SIZE) |
| |
| /* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node |
| * |
| * @numa_node_id: CPU NUMA node id |
| * @avail_size: Available size in the memory |
| * @sub_type_hdr: Memory into which compute info will be filled in |
| * |
| * Return 0 if successful else return -ve value |
| */ |
| static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size, |
| int proximity_domain, |
| struct crat_subtype_computeunit *sub_type_hdr) |
| { |
| const struct cpumask *cpumask; |
| |
| *avail_size -= sizeof(struct crat_subtype_computeunit); |
| if (*avail_size < 0) |
| return -ENOMEM; |
| |
| memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); |
| |
| /* Fill in subtype header data */ |
| sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; |
| sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); |
| sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; |
| |
| cpumask = cpumask_of_node(numa_node_id); |
| |
| /* Fill in CU data */ |
| sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT; |
| sub_type_hdr->proximity_domain = proximity_domain; |
| sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id); |
| if (sub_type_hdr->processor_id_low == -1) |
| return -EINVAL; |
| |
| sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask); |
| |
| return 0; |
| } |
| |
| /* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node |
| * |
| * @numa_node_id: CPU NUMA node id |
| * @avail_size: Available size in the memory |
| * @sub_type_hdr: Memory into which compute info will be filled in |
| * |
| * Return 0 if successful else return -ve value |
| */ |
| static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size, |
| int proximity_domain, |
| struct crat_subtype_memory *sub_type_hdr) |
| { |
| uint64_t mem_in_bytes = 0; |
| pg_data_t *pgdat; |
| int zone_type; |
| |
| *avail_size -= sizeof(struct crat_subtype_memory); |
| if (*avail_size < 0) |
| return -ENOMEM; |
| |
| memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); |
| |
| /* Fill in subtype header data */ |
| sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; |
| sub_type_hdr->length = sizeof(struct crat_subtype_memory); |
| sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; |
| |
| /* Fill in Memory Subunit data */ |
| |
| /* Unlike si_meminfo, si_meminfo_node is not exported. So |
| * the following lines are duplicated from si_meminfo_node |
| * function |
| */ |
| pgdat = NODE_DATA(numa_node_id); |
| for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
| mem_in_bytes += pgdat->node_zones[zone_type].managed_pages; |
| mem_in_bytes <<= PAGE_SHIFT; |
| |
| sub_type_hdr->length_low = lower_32_bits(mem_in_bytes); |
| sub_type_hdr->length_high = upper_32_bits(mem_in_bytes); |
| sub_type_hdr->proximity_domain = proximity_domain; |
| |
| return 0; |
| } |
| |
| static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size, |
| uint32_t *num_entries, |
| struct crat_subtype_iolink *sub_type_hdr) |
| { |
| int nid; |
| struct cpuinfo_x86 *c = &cpu_data(0); |
| uint8_t link_type; |
| |
| if (c->x86_vendor == X86_VENDOR_AMD) |
| link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT; |
| else |
| link_type = CRAT_IOLINK_TYPE_QPI_1_1; |
| |
| *num_entries = 0; |
| |
| /* Create IO links from this node to other CPU nodes */ |
| for_each_online_node(nid) { |
| if (nid == numa_node_id) /* node itself */ |
| continue; |
| |
| *avail_size -= sizeof(struct crat_subtype_iolink); |
| if (*avail_size < 0) |
| return -ENOMEM; |
| |
| memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); |
| |
| /* Fill in subtype header data */ |
| sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; |
| sub_type_hdr->length = sizeof(struct crat_subtype_iolink); |
| sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; |
| |
| /* Fill in IO link data */ |
| sub_type_hdr->proximity_domain_from = numa_node_id; |
| sub_type_hdr->proximity_domain_to = nid; |
| sub_type_hdr->io_interface_type = link_type; |
| |
| (*num_entries)++; |
| sub_type_hdr++; |
| } |
| |
| return 0; |
| } |
| |
| /* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU |
| * |
| * @pcrat_image: Fill in VCRAT for CPU |
| * @size: [IN] allocated size of crat_image. |
| * [OUT] actual size of data filled in crat_image |
| */ |
| static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size) |
| { |
| struct crat_header *crat_table = (struct crat_header *)pcrat_image; |
| struct acpi_table_header *acpi_table; |
| acpi_status status; |
| struct crat_subtype_generic *sub_type_hdr; |
| int avail_size = *size; |
| int numa_node_id; |
| uint32_t entries = 0; |
| int ret = 0; |
| |
| if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU) |
| return -EINVAL; |
| |
| /* Fill in CRAT Header. |
| * Modify length and total_entries as subunits are added. |
| */ |
| avail_size -= sizeof(struct crat_header); |
| if (avail_size < 0) |
| return -ENOMEM; |
| |
| memset(crat_table, 0, sizeof(struct crat_header)); |
| memcpy(&crat_table->signature, CRAT_SIGNATURE, |
| sizeof(crat_table->signature)); |
| crat_table->length = sizeof(struct crat_header); |
| |
| status = acpi_get_table("DSDT", 0, &acpi_table); |
| if (status != AE_OK) |
| pr_warn("DSDT table not found for OEM information\n"); |
| else { |
| crat_table->oem_revision = acpi_table->revision; |
| memcpy(crat_table->oem_id, acpi_table->oem_id, |
| CRAT_OEMID_LENGTH); |
| memcpy(crat_table->oem_table_id, acpi_table->oem_table_id, |
| CRAT_OEMTABLEID_LENGTH); |
| } |
| crat_table->total_entries = 0; |
| crat_table->num_domains = 0; |
| |
| sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1); |
| |
| for_each_online_node(numa_node_id) { |
| if (kfd_numa_node_to_apic_id(numa_node_id) == -1) |
| continue; |
| |
| /* Fill in Subtype: Compute Unit */ |
| ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size, |
| crat_table->num_domains, |
| (struct crat_subtype_computeunit *)sub_type_hdr); |
| if (ret < 0) |
| return ret; |
| crat_table->length += sub_type_hdr->length; |
| crat_table->total_entries++; |
| |
| sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + |
| sub_type_hdr->length); |
| |
| /* Fill in Subtype: Memory */ |
| ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size, |
| crat_table->num_domains, |
| (struct crat_subtype_memory *)sub_type_hdr); |
| if (ret < 0) |
| return ret; |
| crat_table->length += sub_type_hdr->length; |
| crat_table->total_entries++; |
| |
| sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + |
| sub_type_hdr->length); |
| |
| /* Fill in Subtype: IO Link */ |
| ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size, |
| &entries, |
| (struct crat_subtype_iolink *)sub_type_hdr); |
| if (ret < 0) |
| return ret; |
| crat_table->length += (sub_type_hdr->length * entries); |
| crat_table->total_entries += entries; |
| |
| sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + |
| sub_type_hdr->length * entries); |
| |
| crat_table->num_domains++; |
| } |
| |
| /* TODO: Add cache Subtype for CPU. |
| * Currently, CPU cache information is available in function |
| * detect_cache_attributes(cpu) defined in the file |
| * ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not |
| * exported and to get the same information the code needs to be |
| * duplicated. |
| */ |
| |
| *size = crat_table->length; |
| pr_info("Virtual CRAT table created for CPU\n"); |
| |
| return 0; |
| } |
| |
| static int kfd_fill_gpu_memory_affinity(int *avail_size, |
| struct kfd_dev *kdev, uint8_t type, uint64_t size, |
| struct crat_subtype_memory *sub_type_hdr, |
| uint32_t proximity_domain, |
| const struct kfd_local_mem_info *local_mem_info) |
| { |
| *avail_size -= sizeof(struct crat_subtype_memory); |
| if (*avail_size < 0) |
| return -ENOMEM; |
| |
| memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory)); |
| sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY; |
| sub_type_hdr->length = sizeof(struct crat_subtype_memory); |
| sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; |
| |
| sub_type_hdr->proximity_domain = proximity_domain; |
| |
| pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n", |
| type, size); |
| |
| sub_type_hdr->length_low = lower_32_bits(size); |
| sub_type_hdr->length_high = upper_32_bits(size); |
| |
| sub_type_hdr->width = local_mem_info->vram_width; |
| sub_type_hdr->visibility_type = type; |
| |
| return 0; |
| } |
| |
| /* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU |
| * to its NUMA node |
| * @avail_size: Available size in the memory |
| * @kdev - [IN] GPU device |
| * @sub_type_hdr: Memory into which io link info will be filled in |
| * @proximity_domain - proximity domain of the GPU node |
| * |
| * Return 0 if successful else return -ve value |
| */ |
| static int kfd_fill_gpu_direct_io_link(int *avail_size, |
| struct kfd_dev *kdev, |
| struct crat_subtype_iolink *sub_type_hdr, |
| uint32_t proximity_domain) |
| { |
| *avail_size -= sizeof(struct crat_subtype_iolink); |
| if (*avail_size < 0) |
| return -ENOMEM; |
| |
| memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink)); |
| |
| /* Fill in subtype header data */ |
| sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY; |
| sub_type_hdr->length = sizeof(struct crat_subtype_iolink); |
| sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED; |
| |
| /* Fill in IOLINK subtype. |
| * TODO: Fill-in other fields of iolink subtype |
| */ |
| sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS; |
| sub_type_hdr->proximity_domain_from = proximity_domain; |
| #ifdef CONFIG_NUMA |
| if (kdev->pdev->dev.numa_node == NUMA_NO_NODE) |
| sub_type_hdr->proximity_domain_to = 0; |
| else |
| sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node; |
| #else |
| sub_type_hdr->proximity_domain_to = 0; |
| #endif |
| return 0; |
| } |
| |
| /* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU |
| * |
| * @pcrat_image: Fill in VCRAT for GPU |
| * @size: [IN] allocated size of crat_image. |
| * [OUT] actual size of data filled in crat_image |
| */ |
| static int kfd_create_vcrat_image_gpu(void *pcrat_image, |
| size_t *size, struct kfd_dev *kdev, |
| uint32_t proximity_domain) |
| { |
| struct crat_header *crat_table = (struct crat_header *)pcrat_image; |
| struct crat_subtype_generic *sub_type_hdr; |
| struct crat_subtype_computeunit *cu; |
| struct kfd_cu_info cu_info; |
| int avail_size = *size; |
| uint32_t total_num_of_cu; |
| int num_of_cache_entries = 0; |
| int cache_mem_filled = 0; |
| int ret = 0; |
| struct kfd_local_mem_info local_mem_info; |
| |
| if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU) |
| return -EINVAL; |
| |
| /* Fill the CRAT Header. |
| * Modify length and total_entries as subunits are added. |
| */ |
| avail_size -= sizeof(struct crat_header); |
| if (avail_size < 0) |
| return -ENOMEM; |
| |
| memset(crat_table, 0, sizeof(struct crat_header)); |
| |
| memcpy(&crat_table->signature, CRAT_SIGNATURE, |
| sizeof(crat_table->signature)); |
| /* Change length as we add more subtypes*/ |
| crat_table->length = sizeof(struct crat_header); |
| crat_table->num_domains = 1; |
| crat_table->total_entries = 0; |
| |
| /* Fill in Subtype: Compute Unit |
| * First fill in the sub type header and then sub type data |
| */ |
| avail_size -= sizeof(struct crat_subtype_computeunit); |
| if (avail_size < 0) |
| return -ENOMEM; |
| |
| sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1); |
| memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit)); |
| |
| sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY; |
| sub_type_hdr->length = sizeof(struct crat_subtype_computeunit); |
| sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED; |
| |
| /* Fill CU subtype data */ |
| cu = (struct crat_subtype_computeunit *)sub_type_hdr; |
| cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT; |
| cu->proximity_domain = proximity_domain; |
| |
| kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info); |
| cu->num_simd_per_cu = cu_info.simd_per_cu; |
| cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number; |
| cu->max_waves_simd = cu_info.max_waves_per_simd; |
| |
| cu->wave_front_size = cu_info.wave_front_size; |
| cu->array_count = cu_info.num_shader_arrays_per_engine * |
| cu_info.num_shader_engines; |
| total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh); |
| cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu); |
| cu->num_cu_per_array = cu_info.num_cu_per_sh; |
| cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu; |
| cu->num_banks = cu_info.num_shader_engines; |
| cu->lds_size_in_kb = cu_info.lds_size; |
| |
| cu->hsa_capability = 0; |
| |
| /* Check if this node supports IOMMU. During parsing this flag will |
| * translate to HSA_CAP_ATS_PRESENT |
| */ |
| if (!kfd_iommu_check_device(kdev)) |
| cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT; |
| |
| crat_table->length += sub_type_hdr->length; |
| crat_table->total_entries++; |
| |
| /* Fill in Subtype: Memory. Only on systems with large BAR (no |
| * private FB), report memory as public. On other systems |
| * report the total FB size (public+private) as a single |
| * private heap. |
| */ |
| kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info); |
| sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + |
| sub_type_hdr->length); |
| |
| if (debug_largebar) |
| local_mem_info.local_mem_size_private = 0; |
| |
| if (local_mem_info.local_mem_size_private == 0) |
| ret = kfd_fill_gpu_memory_affinity(&avail_size, |
| kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC, |
| local_mem_info.local_mem_size_public, |
| (struct crat_subtype_memory *)sub_type_hdr, |
| proximity_domain, |
| &local_mem_info); |
| else |
| ret = kfd_fill_gpu_memory_affinity(&avail_size, |
| kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE, |
| local_mem_info.local_mem_size_public + |
| local_mem_info.local_mem_size_private, |
| (struct crat_subtype_memory *)sub_type_hdr, |
| proximity_domain, |
| &local_mem_info); |
| if (ret < 0) |
| return ret; |
| |
| crat_table->length += sizeof(struct crat_subtype_memory); |
| crat_table->total_entries++; |
| |
| /* TODO: Fill in cache information. This information is NOT readily |
| * available in KGD |
| */ |
| sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + |
| sub_type_hdr->length); |
| ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low, |
| avail_size, |
| &cu_info, |
| (struct crat_subtype_cache *)sub_type_hdr, |
| &cache_mem_filled, |
| &num_of_cache_entries); |
| |
| if (ret < 0) |
| return ret; |
| |
| crat_table->length += cache_mem_filled; |
| crat_table->total_entries += num_of_cache_entries; |
| avail_size -= cache_mem_filled; |
| |
| /* Fill in Subtype: IO_LINKS |
| * Only direct links are added here which is Link from GPU to |
| * to its NUMA node. Indirect links are added by userspace. |
| */ |
| sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr + |
| cache_mem_filled); |
| ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev, |
| (struct crat_subtype_iolink *)sub_type_hdr, proximity_domain); |
| |
| if (ret < 0) |
| return ret; |
| |
| crat_table->length += sub_type_hdr->length; |
| crat_table->total_entries++; |
| |
| *size = crat_table->length; |
| pr_info("Virtual CRAT table created for GPU\n"); |
| |
| return ret; |
| } |
| |
| /* kfd_create_crat_image_virtual - Allocates memory for CRAT image and |
| * creates a Virtual CRAT (VCRAT) image |
| * |
| * NOTE: Call kfd_destroy_crat_image to free CRAT image memory |
| * |
| * @crat_image: VCRAT image created because ACPI does not have a |
| * CRAT for this device |
| * @size: [OUT] size of virtual crat_image |
| * @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device |
| * COMPUTE_UNIT_GPU - Create VCRAT for GPU |
| * (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU |
| * -- this option is not currently implemented. |
| * The assumption is that all AMD APUs will have CRAT |
| * @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU |
| * |
| * Return 0 if successful else return -ve value |
| */ |
| int kfd_create_crat_image_virtual(void **crat_image, size_t *size, |
| int flags, struct kfd_dev *kdev, |
| uint32_t proximity_domain) |
| { |
| void *pcrat_image = NULL; |
| int ret = 0; |
| |
| if (!crat_image) |
| return -EINVAL; |
| |
| *crat_image = NULL; |
| |
| /* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and |
| * VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover |
| * all the current conditions. A check is put not to overwrite beyond |
| * allocated size |
| */ |
| switch (flags) { |
| case COMPUTE_UNIT_CPU: |
| pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL); |
| if (!pcrat_image) |
| return -ENOMEM; |
| *size = VCRAT_SIZE_FOR_CPU; |
| ret = kfd_create_vcrat_image_cpu(pcrat_image, size); |
| break; |
| case COMPUTE_UNIT_GPU: |
| if (!kdev) |
| return -EINVAL; |
| pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL); |
| if (!pcrat_image) |
| return -ENOMEM; |
| *size = VCRAT_SIZE_FOR_GPU; |
| ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev, |
| proximity_domain); |
| break; |
| case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU): |
| /* TODO: */ |
| ret = -EINVAL; |
| pr_err("VCRAT not implemented for APU\n"); |
| break; |
| default: |
| ret = -EINVAL; |
| } |
| |
| if (!ret) |
| *crat_image = pcrat_image; |
| else |
| kfree(pcrat_image); |
| |
| return ret; |
| } |
| |
| |
| /* kfd_destroy_crat_image |
| * |
| * @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..) |
| * |
| */ |
| void kfd_destroy_crat_image(void *crat_image) |
| { |
| kfree(crat_image); |
| } |