blob: 5ce403c6cddba43e00aa123575abf38d79a51a59 [file] [log] [blame]
/*
* Copyright(c) 2016, 2017 Intel Corporation.
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* BSD LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <linux/hash.h>
#include <linux/bitops.h>
#include <linux/lockdep.h>
#include <linux/vmalloc.h>
#include <linux/slab.h>
#include <rdma/ib_verbs.h>
#include <rdma/ib_hdrs.h>
#include <rdma/opa_addr.h>
#include "qp.h"
#include "vt.h"
#include "trace.h"
static void rvt_rc_timeout(struct timer_list *t);
/*
* Convert the AETH RNR timeout code into the number of microseconds.
*/
static const u32 ib_rvt_rnr_table[32] = {
655360, /* 00: 655.36 */
10, /* 01: .01 */
20, /* 02 .02 */
30, /* 03: .03 */
40, /* 04: .04 */
60, /* 05: .06 */
80, /* 06: .08 */
120, /* 07: .12 */
160, /* 08: .16 */
240, /* 09: .24 */
320, /* 0A: .32 */
480, /* 0B: .48 */
640, /* 0C: .64 */
960, /* 0D: .96 */
1280, /* 0E: 1.28 */
1920, /* 0F: 1.92 */
2560, /* 10: 2.56 */
3840, /* 11: 3.84 */
5120, /* 12: 5.12 */
7680, /* 13: 7.68 */
10240, /* 14: 10.24 */
15360, /* 15: 15.36 */
20480, /* 16: 20.48 */
30720, /* 17: 30.72 */
40960, /* 18: 40.96 */
61440, /* 19: 61.44 */
81920, /* 1A: 81.92 */
122880, /* 1B: 122.88 */
163840, /* 1C: 163.84 */
245760, /* 1D: 245.76 */
327680, /* 1E: 327.68 */
491520 /* 1F: 491.52 */
};
/*
* Note that it is OK to post send work requests in the SQE and ERR
* states; rvt_do_send() will process them and generate error
* completions as per IB 1.2 C10-96.
*/
const int ib_rvt_state_ops[IB_QPS_ERR + 1] = {
[IB_QPS_RESET] = 0,
[IB_QPS_INIT] = RVT_POST_RECV_OK,
[IB_QPS_RTR] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK,
[IB_QPS_RTS] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK |
RVT_PROCESS_NEXT_SEND_OK,
[IB_QPS_SQD] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
RVT_POST_SEND_OK | RVT_PROCESS_SEND_OK,
[IB_QPS_SQE] = RVT_POST_RECV_OK | RVT_PROCESS_RECV_OK |
RVT_POST_SEND_OK | RVT_FLUSH_SEND,
[IB_QPS_ERR] = RVT_POST_RECV_OK | RVT_FLUSH_RECV |
RVT_POST_SEND_OK | RVT_FLUSH_SEND,
};
EXPORT_SYMBOL(ib_rvt_state_ops);
static void get_map_page(struct rvt_qpn_table *qpt,
struct rvt_qpn_map *map)
{
unsigned long page = get_zeroed_page(GFP_KERNEL);
/*
* Free the page if someone raced with us installing it.
*/
spin_lock(&qpt->lock);
if (map->page)
free_page(page);
else
map->page = (void *)page;
spin_unlock(&qpt->lock);
}
/**
* init_qpn_table - initialize the QP number table for a device
* @qpt: the QPN table
*/
static int init_qpn_table(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt)
{
u32 offset, i;
struct rvt_qpn_map *map;
int ret = 0;
if (!(rdi->dparms.qpn_res_end >= rdi->dparms.qpn_res_start))
return -EINVAL;
spin_lock_init(&qpt->lock);
qpt->last = rdi->dparms.qpn_start;
qpt->incr = rdi->dparms.qpn_inc << rdi->dparms.qos_shift;
/*
* Drivers may want some QPs beyond what we need for verbs let them use
* our qpn table. No need for two. Lets go ahead and mark the bitmaps
* for those. The reserved range must be *after* the range which verbs
* will pick from.
*/
/* Figure out number of bit maps needed before reserved range */
qpt->nmaps = rdi->dparms.qpn_res_start / RVT_BITS_PER_PAGE;
/* This should always be zero */
offset = rdi->dparms.qpn_res_start & RVT_BITS_PER_PAGE_MASK;
/* Starting with the first reserved bit map */
map = &qpt->map[qpt->nmaps];
rvt_pr_info(rdi, "Reserving QPNs from 0x%x to 0x%x for non-verbs use\n",
rdi->dparms.qpn_res_start, rdi->dparms.qpn_res_end);
for (i = rdi->dparms.qpn_res_start; i <= rdi->dparms.qpn_res_end; i++) {
if (!map->page) {
get_map_page(qpt, map);
if (!map->page) {
ret = -ENOMEM;
break;
}
}
set_bit(offset, map->page);
offset++;
if (offset == RVT_BITS_PER_PAGE) {
/* next page */
qpt->nmaps++;
map++;
offset = 0;
}
}
return ret;
}
/**
* free_qpn_table - free the QP number table for a device
* @qpt: the QPN table
*/
static void free_qpn_table(struct rvt_qpn_table *qpt)
{
int i;
for (i = 0; i < ARRAY_SIZE(qpt->map); i++)
free_page((unsigned long)qpt->map[i].page);
}
/**
* rvt_driver_qp_init - Init driver qp resources
* @rdi: rvt dev strucutre
*
* Return: 0 on success
*/
int rvt_driver_qp_init(struct rvt_dev_info *rdi)
{
int i;
int ret = -ENOMEM;
if (!rdi->dparms.qp_table_size)
return -EINVAL;
/*
* If driver is not doing any QP allocation then make sure it is
* providing the necessary QP functions.
*/
if (!rdi->driver_f.free_all_qps ||
!rdi->driver_f.qp_priv_alloc ||
!rdi->driver_f.qp_priv_free ||
!rdi->driver_f.notify_qp_reset ||
!rdi->driver_f.notify_restart_rc)
return -EINVAL;
/* allocate parent object */
rdi->qp_dev = kzalloc_node(sizeof(*rdi->qp_dev), GFP_KERNEL,
rdi->dparms.node);
if (!rdi->qp_dev)
return -ENOMEM;
/* allocate hash table */
rdi->qp_dev->qp_table_size = rdi->dparms.qp_table_size;
rdi->qp_dev->qp_table_bits = ilog2(rdi->dparms.qp_table_size);
rdi->qp_dev->qp_table =
kmalloc_array_node(rdi->qp_dev->qp_table_size,
sizeof(*rdi->qp_dev->qp_table),
GFP_KERNEL, rdi->dparms.node);
if (!rdi->qp_dev->qp_table)
goto no_qp_table;
for (i = 0; i < rdi->qp_dev->qp_table_size; i++)
RCU_INIT_POINTER(rdi->qp_dev->qp_table[i], NULL);
spin_lock_init(&rdi->qp_dev->qpt_lock);
/* initialize qpn map */
if (init_qpn_table(rdi, &rdi->qp_dev->qpn_table))
goto fail_table;
spin_lock_init(&rdi->n_qps_lock);
return 0;
fail_table:
kfree(rdi->qp_dev->qp_table);
free_qpn_table(&rdi->qp_dev->qpn_table);
no_qp_table:
kfree(rdi->qp_dev);
return ret;
}
/**
* free_all_qps - check for QPs still in use
* @rdi: rvt device info structure
*
* There should not be any QPs still in use.
* Free memory for table.
*/
static unsigned rvt_free_all_qps(struct rvt_dev_info *rdi)
{
unsigned long flags;
struct rvt_qp *qp;
unsigned n, qp_inuse = 0;
spinlock_t *ql; /* work around too long line below */
if (rdi->driver_f.free_all_qps)
qp_inuse = rdi->driver_f.free_all_qps(rdi);
qp_inuse += rvt_mcast_tree_empty(rdi);
if (!rdi->qp_dev)
return qp_inuse;
ql = &rdi->qp_dev->qpt_lock;
spin_lock_irqsave(ql, flags);
for (n = 0; n < rdi->qp_dev->qp_table_size; n++) {
qp = rcu_dereference_protected(rdi->qp_dev->qp_table[n],
lockdep_is_held(ql));
RCU_INIT_POINTER(rdi->qp_dev->qp_table[n], NULL);
for (; qp; qp = rcu_dereference_protected(qp->next,
lockdep_is_held(ql)))
qp_inuse++;
}
spin_unlock_irqrestore(ql, flags);
synchronize_rcu();
return qp_inuse;
}
/**
* rvt_qp_exit - clean up qps on device exit
* @rdi: rvt dev structure
*
* Check for qp leaks and free resources.
*/
void rvt_qp_exit(struct rvt_dev_info *rdi)
{
u32 qps_inuse = rvt_free_all_qps(rdi);
if (qps_inuse)
rvt_pr_err(rdi, "QP memory leak! %u still in use\n",
qps_inuse);
if (!rdi->qp_dev)
return;
kfree(rdi->qp_dev->qp_table);
free_qpn_table(&rdi->qp_dev->qpn_table);
kfree(rdi->qp_dev);
}
static inline unsigned mk_qpn(struct rvt_qpn_table *qpt,
struct rvt_qpn_map *map, unsigned off)
{
return (map - qpt->map) * RVT_BITS_PER_PAGE + off;
}
/**
* alloc_qpn - Allocate the next available qpn or zero/one for QP type
* IB_QPT_SMI/IB_QPT_GSI
* @rdi: rvt device info structure
* @qpt: queue pair number table pointer
* @port_num: IB port number, 1 based, comes from core
*
* Return: The queue pair number
*/
static int alloc_qpn(struct rvt_dev_info *rdi, struct rvt_qpn_table *qpt,
enum ib_qp_type type, u8 port_num)
{
u32 i, offset, max_scan, qpn;
struct rvt_qpn_map *map;
u32 ret;
if (rdi->driver_f.alloc_qpn)
return rdi->driver_f.alloc_qpn(rdi, qpt, type, port_num);
if (type == IB_QPT_SMI || type == IB_QPT_GSI) {
unsigned n;
ret = type == IB_QPT_GSI;
n = 1 << (ret + 2 * (port_num - 1));
spin_lock(&qpt->lock);
if (qpt->flags & n)
ret = -EINVAL;
else
qpt->flags |= n;
spin_unlock(&qpt->lock);
goto bail;
}
qpn = qpt->last + qpt->incr;
if (qpn >= RVT_QPN_MAX)
qpn = qpt->incr | ((qpt->last & 1) ^ 1);
/* offset carries bit 0 */
offset = qpn & RVT_BITS_PER_PAGE_MASK;
map = &qpt->map[qpn / RVT_BITS_PER_PAGE];
max_scan = qpt->nmaps - !offset;
for (i = 0;;) {
if (unlikely(!map->page)) {
get_map_page(qpt, map);
if (unlikely(!map->page))
break;
}
do {
if (!test_and_set_bit(offset, map->page)) {
qpt->last = qpn;
ret = qpn;
goto bail;
}
offset += qpt->incr;
/*
* This qpn might be bogus if offset >= BITS_PER_PAGE.
* That is OK. It gets re-assigned below
*/
qpn = mk_qpn(qpt, map, offset);
} while (offset < RVT_BITS_PER_PAGE && qpn < RVT_QPN_MAX);
/*
* In order to keep the number of pages allocated to a
* minimum, we scan the all existing pages before increasing
* the size of the bitmap table.
*/
if (++i > max_scan) {
if (qpt->nmaps == RVT_QPNMAP_ENTRIES)
break;
map = &qpt->map[qpt->nmaps++];
/* start at incr with current bit 0 */
offset = qpt->incr | (offset & 1);
} else if (map < &qpt->map[qpt->nmaps]) {
++map;
/* start at incr with current bit 0 */
offset = qpt->incr | (offset & 1);
} else {
map = &qpt->map[0];
/* wrap to first map page, invert bit 0 */
offset = qpt->incr | ((offset & 1) ^ 1);
}
/* there can be no set bits in low-order QoS bits */
WARN_ON(offset & (BIT(rdi->dparms.qos_shift) - 1));
qpn = mk_qpn(qpt, map, offset);
}
ret = -ENOMEM;
bail:
return ret;
}
/**
* rvt_clear_mr_refs - Drop help mr refs
* @qp: rvt qp data structure
* @clr_sends: If shoudl clear send side or not
*/
static void rvt_clear_mr_refs(struct rvt_qp *qp, int clr_sends)
{
unsigned n;
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
if (test_and_clear_bit(RVT_R_REWIND_SGE, &qp->r_aflags))
rvt_put_ss(&qp->s_rdma_read_sge);
rvt_put_ss(&qp->r_sge);
if (clr_sends) {
while (qp->s_last != qp->s_head) {
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_last);
rvt_put_swqe(wqe);
if (qp->ibqp.qp_type == IB_QPT_UD ||
qp->ibqp.qp_type == IB_QPT_SMI ||
qp->ibqp.qp_type == IB_QPT_GSI)
atomic_dec(&ibah_to_rvtah(
wqe->ud_wr.ah)->refcount);
if (++qp->s_last >= qp->s_size)
qp->s_last = 0;
smp_wmb(); /* see qp_set_savail */
}
if (qp->s_rdma_mr) {
rvt_put_mr(qp->s_rdma_mr);
qp->s_rdma_mr = NULL;
}
}
for (n = 0; qp->s_ack_queue && n < rvt_max_atomic(rdi); n++) {
struct rvt_ack_entry *e = &qp->s_ack_queue[n];
if (e->rdma_sge.mr) {
rvt_put_mr(e->rdma_sge.mr);
e->rdma_sge.mr = NULL;
}
}
}
/**
* rvt_swqe_has_lkey - return true if lkey is used by swqe
* @wqe - the send wqe
* @lkey - the lkey
*
* Test the swqe for using lkey
*/
static bool rvt_swqe_has_lkey(struct rvt_swqe *wqe, u32 lkey)
{
int i;
for (i = 0; i < wqe->wr.num_sge; i++) {
struct rvt_sge *sge = &wqe->sg_list[i];
if (rvt_mr_has_lkey(sge->mr, lkey))
return true;
}
return false;
}
/**
* rvt_qp_sends_has_lkey - return true is qp sends use lkey
* @qp - the rvt_qp
* @lkey - the lkey
*/
static bool rvt_qp_sends_has_lkey(struct rvt_qp *qp, u32 lkey)
{
u32 s_last = qp->s_last;
while (s_last != qp->s_head) {
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, s_last);
if (rvt_swqe_has_lkey(wqe, lkey))
return true;
if (++s_last >= qp->s_size)
s_last = 0;
}
if (qp->s_rdma_mr)
if (rvt_mr_has_lkey(qp->s_rdma_mr, lkey))
return true;
return false;
}
/**
* rvt_qp_acks_has_lkey - return true if acks have lkey
* @qp - the qp
* @lkey - the lkey
*/
static bool rvt_qp_acks_has_lkey(struct rvt_qp *qp, u32 lkey)
{
int i;
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
for (i = 0; qp->s_ack_queue && i < rvt_max_atomic(rdi); i++) {
struct rvt_ack_entry *e = &qp->s_ack_queue[i];
if (rvt_mr_has_lkey(e->rdma_sge.mr, lkey))
return true;
}
return false;
}
/*
* rvt_qp_mr_clean - clean up remote ops for lkey
* @qp - the qp
* @lkey - the lkey that is being de-registered
*
* This routine checks if the lkey is being used by
* the qp.
*
* If so, the qp is put into an error state to elminate
* any references from the qp.
*/
void rvt_qp_mr_clean(struct rvt_qp *qp, u32 lkey)
{
bool lastwqe = false;
if (qp->ibqp.qp_type == IB_QPT_SMI ||
qp->ibqp.qp_type == IB_QPT_GSI)
/* avoid special QPs */
return;
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_hlock);
spin_lock(&qp->s_lock);
if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
goto check_lwqe;
if (rvt_ss_has_lkey(&qp->r_sge, lkey) ||
rvt_qp_sends_has_lkey(qp, lkey) ||
rvt_qp_acks_has_lkey(qp, lkey))
lastwqe = rvt_error_qp(qp, IB_WC_LOC_PROT_ERR);
check_lwqe:
spin_unlock(&qp->s_lock);
spin_unlock(&qp->s_hlock);
spin_unlock_irq(&qp->r_lock);
if (lastwqe) {
struct ib_event ev;
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
}
/**
* rvt_remove_qp - remove qp form table
* @rdi: rvt dev struct
* @qp: qp to remove
*
* Remove the QP from the table so it can't be found asynchronously by
* the receive routine.
*/
static void rvt_remove_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
unsigned long flags;
int removed = 1;
spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
if (rcu_dereference_protected(rvp->qp[0],
lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
RCU_INIT_POINTER(rvp->qp[0], NULL);
} else if (rcu_dereference_protected(rvp->qp[1],
lockdep_is_held(&rdi->qp_dev->qpt_lock)) == qp) {
RCU_INIT_POINTER(rvp->qp[1], NULL);
} else {
struct rvt_qp *q;
struct rvt_qp __rcu **qpp;
removed = 0;
qpp = &rdi->qp_dev->qp_table[n];
for (; (q = rcu_dereference_protected(*qpp,
lockdep_is_held(&rdi->qp_dev->qpt_lock))) != NULL;
qpp = &q->next) {
if (q == qp) {
RCU_INIT_POINTER(*qpp,
rcu_dereference_protected(qp->next,
lockdep_is_held(&rdi->qp_dev->qpt_lock)));
removed = 1;
trace_rvt_qpremove(qp, n);
break;
}
}
}
spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
if (removed) {
synchronize_rcu();
rvt_put_qp(qp);
}
}
/**
* rvt_init_qp - initialize the QP state to the reset state
* @qp: the QP to init or reinit
* @type: the QP type
*
* This function is called from both rvt_create_qp() and
* rvt_reset_qp(). The difference is that the reset
* patch the necessary locks to protect against concurent
* access.
*/
static void rvt_init_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
enum ib_qp_type type)
{
qp->remote_qpn = 0;
qp->qkey = 0;
qp->qp_access_flags = 0;
qp->s_flags &= RVT_S_SIGNAL_REQ_WR;
qp->s_hdrwords = 0;
qp->s_wqe = NULL;
qp->s_draining = 0;
qp->s_next_psn = 0;
qp->s_last_psn = 0;
qp->s_sending_psn = 0;
qp->s_sending_hpsn = 0;
qp->s_psn = 0;
qp->r_psn = 0;
qp->r_msn = 0;
if (type == IB_QPT_RC) {
qp->s_state = IB_OPCODE_RC_SEND_LAST;
qp->r_state = IB_OPCODE_RC_SEND_LAST;
} else {
qp->s_state = IB_OPCODE_UC_SEND_LAST;
qp->r_state = IB_OPCODE_UC_SEND_LAST;
}
qp->s_ack_state = IB_OPCODE_RC_ACKNOWLEDGE;
qp->r_nak_state = 0;
qp->r_aflags = 0;
qp->r_flags = 0;
qp->s_head = 0;
qp->s_tail = 0;
qp->s_cur = 0;
qp->s_acked = 0;
qp->s_last = 0;
qp->s_ssn = 1;
qp->s_lsn = 0;
qp->s_mig_state = IB_MIG_MIGRATED;
qp->r_head_ack_queue = 0;
qp->s_tail_ack_queue = 0;
qp->s_num_rd_atomic = 0;
if (qp->r_rq.wq) {
qp->r_rq.wq->head = 0;
qp->r_rq.wq->tail = 0;
}
qp->r_sge.num_sge = 0;
atomic_set(&qp->s_reserved_used, 0);
}
/**
* rvt_reset_qp - initialize the QP state to the reset state
* @qp: the QP to reset
* @type: the QP type
*
* r_lock, s_hlock, and s_lock are required to be held by the caller
*/
static void rvt_reset_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp,
enum ib_qp_type type)
__must_hold(&qp->s_lock)
__must_hold(&qp->s_hlock)
__must_hold(&qp->r_lock)
{
lockdep_assert_held(&qp->r_lock);
lockdep_assert_held(&qp->s_hlock);
lockdep_assert_held(&qp->s_lock);
if (qp->state != IB_QPS_RESET) {
qp->state = IB_QPS_RESET;
/* Let drivers flush their waitlist */
rdi->driver_f.flush_qp_waiters(qp);
rvt_stop_rc_timers(qp);
qp->s_flags &= ~(RVT_S_TIMER | RVT_S_ANY_WAIT);
spin_unlock(&qp->s_lock);
spin_unlock(&qp->s_hlock);
spin_unlock_irq(&qp->r_lock);
/* Stop the send queue and the retry timer */
rdi->driver_f.stop_send_queue(qp);
rvt_del_timers_sync(qp);
/* Wait for things to stop */
rdi->driver_f.quiesce_qp(qp);
/* take qp out the hash and wait for it to be unused */
rvt_remove_qp(rdi, qp);
/* grab the lock b/c it was locked at call time */
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_hlock);
spin_lock(&qp->s_lock);
rvt_clear_mr_refs(qp, 1);
/*
* Let the driver do any tear down or re-init it needs to for
* a qp that has been reset
*/
rdi->driver_f.notify_qp_reset(qp);
}
rvt_init_qp(rdi, qp, type);
lockdep_assert_held(&qp->r_lock);
lockdep_assert_held(&qp->s_hlock);
lockdep_assert_held(&qp->s_lock);
}
/** rvt_free_qpn - Free a qpn from the bit map
* @qpt: QP table
* @qpn: queue pair number to free
*/
static void rvt_free_qpn(struct rvt_qpn_table *qpt, u32 qpn)
{
struct rvt_qpn_map *map;
map = qpt->map + (qpn & RVT_QPN_MASK) / RVT_BITS_PER_PAGE;
if (map->page)
clear_bit(qpn & RVT_BITS_PER_PAGE_MASK, map->page);
}
/**
* rvt_create_qp - create a queue pair for a device
* @ibpd: the protection domain who's device we create the queue pair for
* @init_attr: the attributes of the queue pair
* @udata: user data for libibverbs.so
*
* Queue pair creation is mostly an rvt issue. However, drivers have their own
* unique idea of what queue pair numbers mean. For instance there is a reserved
* range for PSM.
*
* Return: the queue pair on success, otherwise returns an errno.
*
* Called by the ib_create_qp() core verbs function.
*/
struct ib_qp *rvt_create_qp(struct ib_pd *ibpd,
struct ib_qp_init_attr *init_attr,
struct ib_udata *udata)
{
struct rvt_qp *qp;
int err;
struct rvt_swqe *swq = NULL;
size_t sz;
size_t sg_list_sz;
struct ib_qp *ret = ERR_PTR(-ENOMEM);
struct rvt_dev_info *rdi = ib_to_rvt(ibpd->device);
void *priv = NULL;
size_t sqsize;
if (!rdi)
return ERR_PTR(-EINVAL);
if (init_attr->cap.max_send_sge > rdi->dparms.props.max_send_sge ||
init_attr->cap.max_send_wr > rdi->dparms.props.max_qp_wr ||
init_attr->create_flags)
return ERR_PTR(-EINVAL);
/* Check receive queue parameters if no SRQ is specified. */
if (!init_attr->srq) {
if (init_attr->cap.max_recv_sge >
rdi->dparms.props.max_recv_sge ||
init_attr->cap.max_recv_wr > rdi->dparms.props.max_qp_wr)
return ERR_PTR(-EINVAL);
if (init_attr->cap.max_send_sge +
init_attr->cap.max_send_wr +
init_attr->cap.max_recv_sge +
init_attr->cap.max_recv_wr == 0)
return ERR_PTR(-EINVAL);
}
sqsize =
init_attr->cap.max_send_wr + 1 +
rdi->dparms.reserved_operations;
switch (init_attr->qp_type) {
case IB_QPT_SMI:
case IB_QPT_GSI:
if (init_attr->port_num == 0 ||
init_attr->port_num > ibpd->device->phys_port_cnt)
return ERR_PTR(-EINVAL);
/* fall through */
case IB_QPT_UC:
case IB_QPT_RC:
case IB_QPT_UD:
sz = sizeof(struct rvt_sge) *
init_attr->cap.max_send_sge +
sizeof(struct rvt_swqe);
swq = vzalloc_node(array_size(sz, sqsize), rdi->dparms.node);
if (!swq)
return ERR_PTR(-ENOMEM);
sz = sizeof(*qp);
sg_list_sz = 0;
if (init_attr->srq) {
struct rvt_srq *srq = ibsrq_to_rvtsrq(init_attr->srq);
if (srq->rq.max_sge > 1)
sg_list_sz = sizeof(*qp->r_sg_list) *
(srq->rq.max_sge - 1);
} else if (init_attr->cap.max_recv_sge > 1)
sg_list_sz = sizeof(*qp->r_sg_list) *
(init_attr->cap.max_recv_sge - 1);
qp = kzalloc_node(sz + sg_list_sz, GFP_KERNEL,
rdi->dparms.node);
if (!qp)
goto bail_swq;
RCU_INIT_POINTER(qp->next, NULL);
if (init_attr->qp_type == IB_QPT_RC) {
qp->s_ack_queue =
kcalloc_node(rvt_max_atomic(rdi),
sizeof(*qp->s_ack_queue),
GFP_KERNEL,
rdi->dparms.node);
if (!qp->s_ack_queue)
goto bail_qp;
}
/* initialize timers needed for rc qp */
timer_setup(&qp->s_timer, rvt_rc_timeout, 0);
hrtimer_init(&qp->s_rnr_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
qp->s_rnr_timer.function = rvt_rc_rnr_retry;
/*
* Driver needs to set up it's private QP structure and do any
* initialization that is needed.
*/
priv = rdi->driver_f.qp_priv_alloc(rdi, qp);
if (IS_ERR(priv)) {
ret = priv;
goto bail_qp;
}
qp->priv = priv;
qp->timeout_jiffies =
usecs_to_jiffies((4096UL * (1UL << qp->timeout)) /
1000UL);
if (init_attr->srq) {
sz = 0;
} else {
qp->r_rq.size = init_attr->cap.max_recv_wr + 1;
qp->r_rq.max_sge = init_attr->cap.max_recv_sge;
sz = (sizeof(struct ib_sge) * qp->r_rq.max_sge) +
sizeof(struct rvt_rwqe);
if (udata)
qp->r_rq.wq = vmalloc_user(
sizeof(struct rvt_rwq) +
qp->r_rq.size * sz);
else
qp->r_rq.wq = vzalloc_node(
sizeof(struct rvt_rwq) +
qp->r_rq.size * sz,
rdi->dparms.node);
if (!qp->r_rq.wq)
goto bail_driver_priv;
}
/*
* ib_create_qp() will initialize qp->ibqp
* except for qp->ibqp.qp_num.
*/
spin_lock_init(&qp->r_lock);
spin_lock_init(&qp->s_hlock);
spin_lock_init(&qp->s_lock);
spin_lock_init(&qp->r_rq.lock);
atomic_set(&qp->refcount, 0);
atomic_set(&qp->local_ops_pending, 0);
init_waitqueue_head(&qp->wait);
INIT_LIST_HEAD(&qp->rspwait);
qp->state = IB_QPS_RESET;
qp->s_wq = swq;
qp->s_size = sqsize;
qp->s_avail = init_attr->cap.max_send_wr;
qp->s_max_sge = init_attr->cap.max_send_sge;
if (init_attr->sq_sig_type == IB_SIGNAL_REQ_WR)
qp->s_flags = RVT_S_SIGNAL_REQ_WR;
err = alloc_qpn(rdi, &rdi->qp_dev->qpn_table,
init_attr->qp_type,
init_attr->port_num);
if (err < 0) {
ret = ERR_PTR(err);
goto bail_rq_wq;
}
qp->ibqp.qp_num = err;
qp->port_num = init_attr->port_num;
rvt_init_qp(rdi, qp, init_attr->qp_type);
break;
default:
/* Don't support raw QPs */
return ERR_PTR(-EINVAL);
}
init_attr->cap.max_inline_data = 0;
/*
* Return the address of the RWQ as the offset to mmap.
* See rvt_mmap() for details.
*/
if (udata && udata->outlen >= sizeof(__u64)) {
if (!qp->r_rq.wq) {
__u64 offset = 0;
err = ib_copy_to_udata(udata, &offset,
sizeof(offset));
if (err) {
ret = ERR_PTR(err);
goto bail_qpn;
}
} else {
u32 s = sizeof(struct rvt_rwq) + qp->r_rq.size * sz;
qp->ip = rvt_create_mmap_info(rdi, s,
ibpd->uobject->context,
qp->r_rq.wq);
if (!qp->ip) {
ret = ERR_PTR(-ENOMEM);
goto bail_qpn;
}
err = ib_copy_to_udata(udata, &qp->ip->offset,
sizeof(qp->ip->offset));
if (err) {
ret = ERR_PTR(err);
goto bail_ip;
}
}
qp->pid = current->pid;
}
spin_lock(&rdi->n_qps_lock);
if (rdi->n_qps_allocated == rdi->dparms.props.max_qp) {
spin_unlock(&rdi->n_qps_lock);
ret = ERR_PTR(-ENOMEM);
goto bail_ip;
}
rdi->n_qps_allocated++;
/*
* Maintain a busy_jiffies variable that will be added to the timeout
* period in mod_retry_timer and add_retry_timer. This busy jiffies
* is scaled by the number of rc qps created for the device to reduce
* the number of timeouts occurring when there is a large number of
* qps. busy_jiffies is incremented every rc qp scaling interval.
* The scaling interval is selected based on extensive performance
* evaluation of targeted workloads.
*/
if (init_attr->qp_type == IB_QPT_RC) {
rdi->n_rc_qps++;
rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
}
spin_unlock(&rdi->n_qps_lock);
if (qp->ip) {
spin_lock_irq(&rdi->pending_lock);
list_add(&qp->ip->pending_mmaps, &rdi->pending_mmaps);
spin_unlock_irq(&rdi->pending_lock);
}
ret = &qp->ibqp;
/*
* We have our QP and its good, now keep track of what types of opcodes
* can be processed on this QP. We do this by keeping track of what the
* 3 high order bits of the opcode are.
*/
switch (init_attr->qp_type) {
case IB_QPT_SMI:
case IB_QPT_GSI:
case IB_QPT_UD:
qp->allowed_ops = IB_OPCODE_UD;
break;
case IB_QPT_RC:
qp->allowed_ops = IB_OPCODE_RC;
break;
case IB_QPT_UC:
qp->allowed_ops = IB_OPCODE_UC;
break;
default:
ret = ERR_PTR(-EINVAL);
goto bail_ip;
}
return ret;
bail_ip:
if (qp->ip)
kref_put(&qp->ip->ref, rvt_release_mmap_info);
bail_qpn:
rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
bail_rq_wq:
if (!qp->ip)
vfree(qp->r_rq.wq);
bail_driver_priv:
rdi->driver_f.qp_priv_free(rdi, qp);
bail_qp:
kfree(qp->s_ack_queue);
kfree(qp);
bail_swq:
vfree(swq);
return ret;
}
/**
* rvt_error_qp - put a QP into the error state
* @qp: the QP to put into the error state
* @err: the receive completion error to signal if a RWQE is active
*
* Flushes both send and receive work queues.
*
* Return: true if last WQE event should be generated.
* The QP r_lock and s_lock should be held and interrupts disabled.
* If we are already in error state, just return.
*/
int rvt_error_qp(struct rvt_qp *qp, enum ib_wc_status err)
{
struct ib_wc wc;
int ret = 0;
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
lockdep_assert_held(&qp->r_lock);
lockdep_assert_held(&qp->s_lock);
if (qp->state == IB_QPS_ERR || qp->state == IB_QPS_RESET)
goto bail;
qp->state = IB_QPS_ERR;
if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
del_timer(&qp->s_timer);
}
if (qp->s_flags & RVT_S_ANY_WAIT_SEND)
qp->s_flags &= ~RVT_S_ANY_WAIT_SEND;
rdi->driver_f.notify_error_qp(qp);
/* Schedule the sending tasklet to drain the send work queue. */
if (READ_ONCE(qp->s_last) != qp->s_head)
rdi->driver_f.schedule_send(qp);
rvt_clear_mr_refs(qp, 0);
memset(&wc, 0, sizeof(wc));
wc.qp = &qp->ibqp;
wc.opcode = IB_WC_RECV;
if (test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) {
wc.wr_id = qp->r_wr_id;
wc.status = err;
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
}
wc.status = IB_WC_WR_FLUSH_ERR;
if (qp->r_rq.wq) {
struct rvt_rwq *wq;
u32 head;
u32 tail;
spin_lock(&qp->r_rq.lock);
/* sanity check pointers before trusting them */
wq = qp->r_rq.wq;
head = wq->head;
if (head >= qp->r_rq.size)
head = 0;
tail = wq->tail;
if (tail >= qp->r_rq.size)
tail = 0;
while (tail != head) {
wc.wr_id = rvt_get_rwqe_ptr(&qp->r_rq, tail)->wr_id;
if (++tail >= qp->r_rq.size)
tail = 0;
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
}
wq->tail = tail;
spin_unlock(&qp->r_rq.lock);
} else if (qp->ibqp.event_handler) {
ret = 1;
}
bail:
return ret;
}
EXPORT_SYMBOL(rvt_error_qp);
/*
* Put the QP into the hash table.
* The hash table holds a reference to the QP.
*/
static void rvt_insert_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
unsigned long flags;
rvt_get_qp(qp);
spin_lock_irqsave(&rdi->qp_dev->qpt_lock, flags);
if (qp->ibqp.qp_num <= 1) {
rcu_assign_pointer(rvp->qp[qp->ibqp.qp_num], qp);
} else {
u32 n = hash_32(qp->ibqp.qp_num, rdi->qp_dev->qp_table_bits);
qp->next = rdi->qp_dev->qp_table[n];
rcu_assign_pointer(rdi->qp_dev->qp_table[n], qp);
trace_rvt_qpinsert(qp, n);
}
spin_unlock_irqrestore(&rdi->qp_dev->qpt_lock, flags);
}
/**
* rvt_modify_qp - modify the attributes of a queue pair
* @ibqp: the queue pair who's attributes we're modifying
* @attr: the new attributes
* @attr_mask: the mask of attributes to modify
* @udata: user data for libibverbs.so
*
* Return: 0 on success, otherwise returns an errno.
*/
int rvt_modify_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_udata *udata)
{
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
enum ib_qp_state cur_state, new_state;
struct ib_event ev;
int lastwqe = 0;
int mig = 0;
int pmtu = 0; /* for gcc warning only */
enum rdma_link_layer link;
int opa_ah;
link = rdma_port_get_link_layer(ibqp->device, qp->port_num);
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_hlock);
spin_lock(&qp->s_lock);
cur_state = attr_mask & IB_QP_CUR_STATE ?
attr->cur_qp_state : qp->state;
new_state = attr_mask & IB_QP_STATE ? attr->qp_state : cur_state;
opa_ah = rdma_cap_opa_ah(ibqp->device, qp->port_num);
if (!ib_modify_qp_is_ok(cur_state, new_state, ibqp->qp_type,
attr_mask, link))
goto inval;
if (rdi->driver_f.check_modify_qp &&
rdi->driver_f.check_modify_qp(qp, attr, attr_mask, udata))
goto inval;
if (attr_mask & IB_QP_AV) {
if (opa_ah) {
if (rdma_ah_get_dlid(&attr->ah_attr) >=
opa_get_mcast_base(OPA_MCAST_NR))
goto inval;
} else {
if (rdma_ah_get_dlid(&attr->ah_attr) >=
be16_to_cpu(IB_MULTICAST_LID_BASE))
goto inval;
}
if (rvt_check_ah(qp->ibqp.device, &attr->ah_attr))
goto inval;
}
if (attr_mask & IB_QP_ALT_PATH) {
if (opa_ah) {
if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
opa_get_mcast_base(OPA_MCAST_NR))
goto inval;
} else {
if (rdma_ah_get_dlid(&attr->alt_ah_attr) >=
be16_to_cpu(IB_MULTICAST_LID_BASE))
goto inval;
}
if (rvt_check_ah(qp->ibqp.device, &attr->alt_ah_attr))
goto inval;
if (attr->alt_pkey_index >= rvt_get_npkeys(rdi))
goto inval;
}
if (attr_mask & IB_QP_PKEY_INDEX)
if (attr->pkey_index >= rvt_get_npkeys(rdi))
goto inval;
if (attr_mask & IB_QP_MIN_RNR_TIMER)
if (attr->min_rnr_timer > 31)
goto inval;
if (attr_mask & IB_QP_PORT)
if (qp->ibqp.qp_type == IB_QPT_SMI ||
qp->ibqp.qp_type == IB_QPT_GSI ||
attr->port_num == 0 ||
attr->port_num > ibqp->device->phys_port_cnt)
goto inval;
if (attr_mask & IB_QP_DEST_QPN)
if (attr->dest_qp_num > RVT_QPN_MASK)
goto inval;
if (attr_mask & IB_QP_RETRY_CNT)
if (attr->retry_cnt > 7)
goto inval;
if (attr_mask & IB_QP_RNR_RETRY)
if (attr->rnr_retry > 7)
goto inval;
/*
* Don't allow invalid path_mtu values. OK to set greater
* than the active mtu (or even the max_cap, if we have tuned
* that to a small mtu. We'll set qp->path_mtu
* to the lesser of requested attribute mtu and active,
* for packetizing messages.
* Note that the QP port has to be set in INIT and MTU in RTR.
*/
if (attr_mask & IB_QP_PATH_MTU) {
pmtu = rdi->driver_f.get_pmtu_from_attr(rdi, qp, attr);
if (pmtu < 0)
goto inval;
}
if (attr_mask & IB_QP_PATH_MIG_STATE) {
if (attr->path_mig_state == IB_MIG_REARM) {
if (qp->s_mig_state == IB_MIG_ARMED)
goto inval;
if (new_state != IB_QPS_RTS)
goto inval;
} else if (attr->path_mig_state == IB_MIG_MIGRATED) {
if (qp->s_mig_state == IB_MIG_REARM)
goto inval;
if (new_state != IB_QPS_RTS && new_state != IB_QPS_SQD)
goto inval;
if (qp->s_mig_state == IB_MIG_ARMED)
mig = 1;
} else {
goto inval;
}
}
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
if (attr->max_dest_rd_atomic > rdi->dparms.max_rdma_atomic)
goto inval;
switch (new_state) {
case IB_QPS_RESET:
if (qp->state != IB_QPS_RESET)
rvt_reset_qp(rdi, qp, ibqp->qp_type);
break;
case IB_QPS_RTR:
/* Allow event to re-trigger if QP set to RTR more than once */
qp->r_flags &= ~RVT_R_COMM_EST;
qp->state = new_state;
break;
case IB_QPS_SQD:
qp->s_draining = qp->s_last != qp->s_cur;
qp->state = new_state;
break;
case IB_QPS_SQE:
if (qp->ibqp.qp_type == IB_QPT_RC)
goto inval;
qp->state = new_state;
break;
case IB_QPS_ERR:
lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
break;
default:
qp->state = new_state;
break;
}
if (attr_mask & IB_QP_PKEY_INDEX)
qp->s_pkey_index = attr->pkey_index;
if (attr_mask & IB_QP_PORT)
qp->port_num = attr->port_num;
if (attr_mask & IB_QP_DEST_QPN)
qp->remote_qpn = attr->dest_qp_num;
if (attr_mask & IB_QP_SQ_PSN) {
qp->s_next_psn = attr->sq_psn & rdi->dparms.psn_modify_mask;
qp->s_psn = qp->s_next_psn;
qp->s_sending_psn = qp->s_next_psn;
qp->s_last_psn = qp->s_next_psn - 1;
qp->s_sending_hpsn = qp->s_last_psn;
}
if (attr_mask & IB_QP_RQ_PSN)
qp->r_psn = attr->rq_psn & rdi->dparms.psn_modify_mask;
if (attr_mask & IB_QP_ACCESS_FLAGS)
qp->qp_access_flags = attr->qp_access_flags;
if (attr_mask & IB_QP_AV) {
rdma_replace_ah_attr(&qp->remote_ah_attr, &attr->ah_attr);
qp->s_srate = rdma_ah_get_static_rate(&attr->ah_attr);
qp->srate_mbps = ib_rate_to_mbps(qp->s_srate);
}
if (attr_mask & IB_QP_ALT_PATH) {
rdma_replace_ah_attr(&qp->alt_ah_attr, &attr->alt_ah_attr);
qp->s_alt_pkey_index = attr->alt_pkey_index;
}
if (attr_mask & IB_QP_PATH_MIG_STATE) {
qp->s_mig_state = attr->path_mig_state;
if (mig) {
qp->remote_ah_attr = qp->alt_ah_attr;
qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
qp->s_pkey_index = qp->s_alt_pkey_index;
}
}
if (attr_mask & IB_QP_PATH_MTU) {
qp->pmtu = rdi->driver_f.mtu_from_qp(rdi, qp, pmtu);
qp->log_pmtu = ilog2(qp->pmtu);
}
if (attr_mask & IB_QP_RETRY_CNT) {
qp->s_retry_cnt = attr->retry_cnt;
qp->s_retry = attr->retry_cnt;
}
if (attr_mask & IB_QP_RNR_RETRY) {
qp->s_rnr_retry_cnt = attr->rnr_retry;
qp->s_rnr_retry = attr->rnr_retry;
}
if (attr_mask & IB_QP_MIN_RNR_TIMER)
qp->r_min_rnr_timer = attr->min_rnr_timer;
if (attr_mask & IB_QP_TIMEOUT) {
qp->timeout = attr->timeout;
qp->timeout_jiffies = rvt_timeout_to_jiffies(qp->timeout);
}
if (attr_mask & IB_QP_QKEY)
qp->qkey = attr->qkey;
if (attr_mask & IB_QP_MAX_DEST_RD_ATOMIC)
qp->r_max_rd_atomic = attr->max_dest_rd_atomic;
if (attr_mask & IB_QP_MAX_QP_RD_ATOMIC)
qp->s_max_rd_atomic = attr->max_rd_atomic;
if (rdi->driver_f.modify_qp)
rdi->driver_f.modify_qp(qp, attr, attr_mask, udata);
spin_unlock(&qp->s_lock);
spin_unlock(&qp->s_hlock);
spin_unlock_irq(&qp->r_lock);
if (cur_state == IB_QPS_RESET && new_state == IB_QPS_INIT)
rvt_insert_qp(rdi, qp);
if (lastwqe) {
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
if (mig) {
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_PATH_MIG;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
return 0;
inval:
spin_unlock(&qp->s_lock);
spin_unlock(&qp->s_hlock);
spin_unlock_irq(&qp->r_lock);
return -EINVAL;
}
/**
* rvt_destroy_qp - destroy a queue pair
* @ibqp: the queue pair to destroy
*
* Note that this can be called while the QP is actively sending or
* receiving!
*
* Return: 0 on success.
*/
int rvt_destroy_qp(struct ib_qp *ibqp)
{
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
spin_lock_irq(&qp->r_lock);
spin_lock(&qp->s_hlock);
spin_lock(&qp->s_lock);
rvt_reset_qp(rdi, qp, ibqp->qp_type);
spin_unlock(&qp->s_lock);
spin_unlock(&qp->s_hlock);
spin_unlock_irq(&qp->r_lock);
wait_event(qp->wait, !atomic_read(&qp->refcount));
/* qpn is now available for use again */
rvt_free_qpn(&rdi->qp_dev->qpn_table, qp->ibqp.qp_num);
spin_lock(&rdi->n_qps_lock);
rdi->n_qps_allocated--;
if (qp->ibqp.qp_type == IB_QPT_RC) {
rdi->n_rc_qps--;
rdi->busy_jiffies = rdi->n_rc_qps / RC_QP_SCALING_INTERVAL;
}
spin_unlock(&rdi->n_qps_lock);
if (qp->ip)
kref_put(&qp->ip->ref, rvt_release_mmap_info);
else
vfree(qp->r_rq.wq);
vfree(qp->s_wq);
rdi->driver_f.qp_priv_free(rdi, qp);
kfree(qp->s_ack_queue);
rdma_destroy_ah_attr(&qp->remote_ah_attr);
rdma_destroy_ah_attr(&qp->alt_ah_attr);
kfree(qp);
return 0;
}
/**
* rvt_query_qp - query an ipbq
* @ibqp: IB qp to query
* @attr: attr struct to fill in
* @attr_mask: attr mask ignored
* @init_attr: struct to fill in
*
* Return: always 0
*/
int rvt_query_qp(struct ib_qp *ibqp, struct ib_qp_attr *attr,
int attr_mask, struct ib_qp_init_attr *init_attr)
{
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
attr->qp_state = qp->state;
attr->cur_qp_state = attr->qp_state;
attr->path_mtu = rdi->driver_f.mtu_to_path_mtu(qp->pmtu);
attr->path_mig_state = qp->s_mig_state;
attr->qkey = qp->qkey;
attr->rq_psn = qp->r_psn & rdi->dparms.psn_mask;
attr->sq_psn = qp->s_next_psn & rdi->dparms.psn_mask;
attr->dest_qp_num = qp->remote_qpn;
attr->qp_access_flags = qp->qp_access_flags;
attr->cap.max_send_wr = qp->s_size - 1 -
rdi->dparms.reserved_operations;
attr->cap.max_recv_wr = qp->ibqp.srq ? 0 : qp->r_rq.size - 1;
attr->cap.max_send_sge = qp->s_max_sge;
attr->cap.max_recv_sge = qp->r_rq.max_sge;
attr->cap.max_inline_data = 0;
attr->ah_attr = qp->remote_ah_attr;
attr->alt_ah_attr = qp->alt_ah_attr;
attr->pkey_index = qp->s_pkey_index;
attr->alt_pkey_index = qp->s_alt_pkey_index;
attr->en_sqd_async_notify = 0;
attr->sq_draining = qp->s_draining;
attr->max_rd_atomic = qp->s_max_rd_atomic;
attr->max_dest_rd_atomic = qp->r_max_rd_atomic;
attr->min_rnr_timer = qp->r_min_rnr_timer;
attr->port_num = qp->port_num;
attr->timeout = qp->timeout;
attr->retry_cnt = qp->s_retry_cnt;
attr->rnr_retry = qp->s_rnr_retry_cnt;
attr->alt_port_num =
rdma_ah_get_port_num(&qp->alt_ah_attr);
attr->alt_timeout = qp->alt_timeout;
init_attr->event_handler = qp->ibqp.event_handler;
init_attr->qp_context = qp->ibqp.qp_context;
init_attr->send_cq = qp->ibqp.send_cq;
init_attr->recv_cq = qp->ibqp.recv_cq;
init_attr->srq = qp->ibqp.srq;
init_attr->cap = attr->cap;
if (qp->s_flags & RVT_S_SIGNAL_REQ_WR)
init_attr->sq_sig_type = IB_SIGNAL_REQ_WR;
else
init_attr->sq_sig_type = IB_SIGNAL_ALL_WR;
init_attr->qp_type = qp->ibqp.qp_type;
init_attr->port_num = qp->port_num;
return 0;
}
/**
* rvt_post_receive - post a receive on a QP
* @ibqp: the QP to post the receive on
* @wr: the WR to post
* @bad_wr: the first bad WR is put here
*
* This may be called from interrupt context.
*
* Return: 0 on success otherwise errno
*/
int rvt_post_recv(struct ib_qp *ibqp, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
struct rvt_rwq *wq = qp->r_rq.wq;
unsigned long flags;
int qp_err_flush = (ib_rvt_state_ops[qp->state] & RVT_FLUSH_RECV) &&
!qp->ibqp.srq;
/* Check that state is OK to post receive. */
if (!(ib_rvt_state_ops[qp->state] & RVT_POST_RECV_OK) || !wq) {
*bad_wr = wr;
return -EINVAL;
}
for (; wr; wr = wr->next) {
struct rvt_rwqe *wqe;
u32 next;
int i;
if ((unsigned)wr->num_sge > qp->r_rq.max_sge) {
*bad_wr = wr;
return -EINVAL;
}
spin_lock_irqsave(&qp->r_rq.lock, flags);
next = wq->head + 1;
if (next >= qp->r_rq.size)
next = 0;
if (next == wq->tail) {
spin_unlock_irqrestore(&qp->r_rq.lock, flags);
*bad_wr = wr;
return -ENOMEM;
}
if (unlikely(qp_err_flush)) {
struct ib_wc wc;
memset(&wc, 0, sizeof(wc));
wc.qp = &qp->ibqp;
wc.opcode = IB_WC_RECV;
wc.wr_id = wr->wr_id;
wc.status = IB_WC_WR_FLUSH_ERR;
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
} else {
wqe = rvt_get_rwqe_ptr(&qp->r_rq, wq->head);
wqe->wr_id = wr->wr_id;
wqe->num_sge = wr->num_sge;
for (i = 0; i < wr->num_sge; i++)
wqe->sg_list[i] = wr->sg_list[i];
/*
* Make sure queue entry is written
* before the head index.
*/
smp_wmb();
wq->head = next;
}
spin_unlock_irqrestore(&qp->r_rq.lock, flags);
}
return 0;
}
/**
* rvt_qp_valid_operation - validate post send wr request
* @qp - the qp
* @post-parms - the post send table for the driver
* @wr - the work request
*
* The routine validates the operation based on the
* validation table an returns the length of the operation
* which can extend beyond the ib_send_bw. Operation
* dependent flags key atomic operation validation.
*
* There is an exception for UD qps that validates the pd and
* overrides the length to include the additional UD specific
* length.
*
* Returns a negative error or the length of the work request
* for building the swqe.
*/
static inline int rvt_qp_valid_operation(
struct rvt_qp *qp,
const struct rvt_operation_params *post_parms,
const struct ib_send_wr *wr)
{
int len;
if (wr->opcode >= RVT_OPERATION_MAX || !post_parms[wr->opcode].length)
return -EINVAL;
if (!(post_parms[wr->opcode].qpt_support & BIT(qp->ibqp.qp_type)))
return -EINVAL;
if ((post_parms[wr->opcode].flags & RVT_OPERATION_PRIV) &&
ibpd_to_rvtpd(qp->ibqp.pd)->user)
return -EINVAL;
if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC_SGE &&
(wr->num_sge == 0 ||
wr->sg_list[0].length < sizeof(u64) ||
wr->sg_list[0].addr & (sizeof(u64) - 1)))
return -EINVAL;
if (post_parms[wr->opcode].flags & RVT_OPERATION_ATOMIC &&
!qp->s_max_rd_atomic)
return -EINVAL;
len = post_parms[wr->opcode].length;
/* UD specific */
if (qp->ibqp.qp_type != IB_QPT_UC &&
qp->ibqp.qp_type != IB_QPT_RC) {
if (qp->ibqp.pd != ud_wr(wr)->ah->pd)
return -EINVAL;
len = sizeof(struct ib_ud_wr);
}
return len;
}
/**
* rvt_qp_is_avail - determine queue capacity
* @qp: the qp
* @rdi: the rdmavt device
* @reserved_op: is reserved operation
*
* This assumes the s_hlock is held but the s_last
* qp variable is uncontrolled.
*
* For non reserved operations, the qp->s_avail
* may be changed.
*
* The return value is zero or a -ENOMEM.
*/
static inline int rvt_qp_is_avail(
struct rvt_qp *qp,
struct rvt_dev_info *rdi,
bool reserved_op)
{
u32 slast;
u32 avail;
u32 reserved_used;
/* see rvt_qp_wqe_unreserve() */
smp_mb__before_atomic();
reserved_used = atomic_read(&qp->s_reserved_used);
if (unlikely(reserved_op)) {
/* see rvt_qp_wqe_unreserve() */
smp_mb__before_atomic();
if (reserved_used >= rdi->dparms.reserved_operations)
return -ENOMEM;
return 0;
}
/* non-reserved operations */
if (likely(qp->s_avail))
return 0;
slast = READ_ONCE(qp->s_last);
if (qp->s_head >= slast)
avail = qp->s_size - (qp->s_head - slast);
else
avail = slast - qp->s_head;
/* see rvt_qp_wqe_unreserve() */
smp_mb__before_atomic();
reserved_used = atomic_read(&qp->s_reserved_used);
avail = avail - 1 -
(rdi->dparms.reserved_operations - reserved_used);
/* insure we don't assign a negative s_avail */
if ((s32)avail <= 0)
return -ENOMEM;
qp->s_avail = avail;
if (WARN_ON(qp->s_avail >
(qp->s_size - 1 - rdi->dparms.reserved_operations)))
rvt_pr_err(rdi,
"More avail entries than QP RB size.\nQP: %u, size: %u, avail: %u\nhead: %u, tail: %u, cur: %u, acked: %u, last: %u",
qp->ibqp.qp_num, qp->s_size, qp->s_avail,
qp->s_head, qp->s_tail, qp->s_cur,
qp->s_acked, qp->s_last);
return 0;
}
/**
* rvt_post_one_wr - post one RC, UC, or UD send work request
* @qp: the QP to post on
* @wr: the work request to send
*/
static int rvt_post_one_wr(struct rvt_qp *qp,
const struct ib_send_wr *wr,
int *call_send)
{
struct rvt_swqe *wqe;
u32 next;
int i;
int j;
int acc;
struct rvt_lkey_table *rkt;
struct rvt_pd *pd;
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
u8 log_pmtu;
int ret;
size_t cplen;
bool reserved_op;
int local_ops_delayed = 0;
BUILD_BUG_ON(IB_QPT_MAX >= (sizeof(u32) * BITS_PER_BYTE));
/* IB spec says that num_sge == 0 is OK. */
if (unlikely(wr->num_sge > qp->s_max_sge))
return -EINVAL;
ret = rvt_qp_valid_operation(qp, rdi->post_parms, wr);
if (ret < 0)
return ret;
cplen = ret;
/*
* Local operations include fast register and local invalidate.
* Fast register needs to be processed immediately because the
* registered lkey may be used by following work requests and the
* lkey needs to be valid at the time those requests are posted.
* Local invalidate can be processed immediately if fencing is
* not required and no previous local invalidate ops are pending.
* Signaled local operations that have been processed immediately
* need to have requests with "completion only" flags set posted
* to the send queue in order to generate completions.
*/
if ((rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL)) {
switch (wr->opcode) {
case IB_WR_REG_MR:
ret = rvt_fast_reg_mr(qp,
reg_wr(wr)->mr,
reg_wr(wr)->key,
reg_wr(wr)->access);
if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
return ret;
break;
case IB_WR_LOCAL_INV:
if ((wr->send_flags & IB_SEND_FENCE) ||
atomic_read(&qp->local_ops_pending)) {
local_ops_delayed = 1;
} else {
ret = rvt_invalidate_rkey(
qp, wr->ex.invalidate_rkey);
if (ret || !(wr->send_flags & IB_SEND_SIGNALED))
return ret;
}
break;
default:
return -EINVAL;
}
}
reserved_op = rdi->post_parms[wr->opcode].flags &
RVT_OPERATION_USE_RESERVE;
/* check for avail */
ret = rvt_qp_is_avail(qp, rdi, reserved_op);
if (ret)
return ret;
next = qp->s_head + 1;
if (next >= qp->s_size)
next = 0;
rkt = &rdi->lkey_table;
pd = ibpd_to_rvtpd(qp->ibqp.pd);
wqe = rvt_get_swqe_ptr(qp, qp->s_head);
/* cplen has length from above */
memcpy(&wqe->wr, wr, cplen);
wqe->length = 0;
j = 0;
if (wr->num_sge) {
struct rvt_sge *last_sge = NULL;
acc = wr->opcode >= IB_WR_RDMA_READ ?
IB_ACCESS_LOCAL_WRITE : 0;
for (i = 0; i < wr->num_sge; i++) {
u32 length = wr->sg_list[i].length;
if (length == 0)
continue;
ret = rvt_lkey_ok(rkt, pd, &wqe->sg_list[j], last_sge,
&wr->sg_list[i], acc);
if (unlikely(ret < 0))
goto bail_inval_free;
wqe->length += length;
if (ret)
last_sge = &wqe->sg_list[j];
j += ret;
}
wqe->wr.num_sge = j;
}
/* general part of wqe valid - allow for driver checks */
if (rdi->driver_f.check_send_wqe) {
ret = rdi->driver_f.check_send_wqe(qp, wqe);
if (ret < 0)
goto bail_inval_free;
if (ret)
*call_send = ret;
}
log_pmtu = qp->log_pmtu;
if (qp->ibqp.qp_type != IB_QPT_UC &&
qp->ibqp.qp_type != IB_QPT_RC) {
struct rvt_ah *ah = ibah_to_rvtah(wqe->ud_wr.ah);
log_pmtu = ah->log_pmtu;
atomic_inc(&ibah_to_rvtah(ud_wr(wr)->ah)->refcount);
}
if (rdi->post_parms[wr->opcode].flags & RVT_OPERATION_LOCAL) {
if (local_ops_delayed)
atomic_inc(&qp->local_ops_pending);
else
wqe->wr.send_flags |= RVT_SEND_COMPLETION_ONLY;
wqe->ssn = 0;
wqe->psn = 0;
wqe->lpsn = 0;
} else {
wqe->ssn = qp->s_ssn++;
wqe->psn = qp->s_next_psn;
wqe->lpsn = wqe->psn +
(wqe->length ?
((wqe->length - 1) >> log_pmtu) :
0);
qp->s_next_psn = wqe->lpsn + 1;
}
if (unlikely(reserved_op)) {
wqe->wr.send_flags |= RVT_SEND_RESERVE_USED;
rvt_qp_wqe_reserve(qp, wqe);
} else {
wqe->wr.send_flags &= ~RVT_SEND_RESERVE_USED;
qp->s_avail--;
}
trace_rvt_post_one_wr(qp, wqe, wr->num_sge);
smp_wmb(); /* see request builders */
qp->s_head = next;
return 0;
bail_inval_free:
/* release mr holds */
while (j) {
struct rvt_sge *sge = &wqe->sg_list[--j];
rvt_put_mr(sge->mr);
}
return ret;
}
/**
* rvt_post_send - post a send on a QP
* @ibqp: the QP to post the send on
* @wr: the list of work requests to post
* @bad_wr: the first bad WR is put here
*
* This may be called from interrupt context.
*
* Return: 0 on success else errno
*/
int rvt_post_send(struct ib_qp *ibqp, const struct ib_send_wr *wr,
const struct ib_send_wr **bad_wr)
{
struct rvt_qp *qp = ibqp_to_rvtqp(ibqp);
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
unsigned long flags = 0;
int call_send;
unsigned nreq = 0;
int err = 0;
spin_lock_irqsave(&qp->s_hlock, flags);
/*
* Ensure QP state is such that we can send. If not bail out early,
* there is no need to do this every time we post a send.
*/
if (unlikely(!(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))) {
spin_unlock_irqrestore(&qp->s_hlock, flags);
return -EINVAL;
}
/*
* If the send queue is empty, and we only have a single WR then just go
* ahead and kick the send engine into gear. Otherwise we will always
* just schedule the send to happen later.
*/
call_send = qp->s_head == READ_ONCE(qp->s_last) && !wr->next;
for (; wr; wr = wr->next) {
err = rvt_post_one_wr(qp, wr, &call_send);
if (unlikely(err)) {
*bad_wr = wr;
goto bail;
}
nreq++;
}
bail:
spin_unlock_irqrestore(&qp->s_hlock, flags);
if (nreq) {
if (call_send)
rdi->driver_f.do_send(qp);
else
rdi->driver_f.schedule_send_no_lock(qp);
}
return err;
}
/**
* rvt_post_srq_receive - post a receive on a shared receive queue
* @ibsrq: the SRQ to post the receive on
* @wr: the list of work requests to post
* @bad_wr: A pointer to the first WR to cause a problem is put here
*
* This may be called from interrupt context.
*
* Return: 0 on success else errno
*/
int rvt_post_srq_recv(struct ib_srq *ibsrq, const struct ib_recv_wr *wr,
const struct ib_recv_wr **bad_wr)
{
struct rvt_srq *srq = ibsrq_to_rvtsrq(ibsrq);
struct rvt_rwq *wq;
unsigned long flags;
for (; wr; wr = wr->next) {
struct rvt_rwqe *wqe;
u32 next;
int i;
if ((unsigned)wr->num_sge > srq->rq.max_sge) {
*bad_wr = wr;
return -EINVAL;
}
spin_lock_irqsave(&srq->rq.lock, flags);
wq = srq->rq.wq;
next = wq->head + 1;
if (next >= srq->rq.size)
next = 0;
if (next == wq->tail) {
spin_unlock_irqrestore(&srq->rq.lock, flags);
*bad_wr = wr;
return -ENOMEM;
}
wqe = rvt_get_rwqe_ptr(&srq->rq, wq->head);
wqe->wr_id = wr->wr_id;
wqe->num_sge = wr->num_sge;
for (i = 0; i < wr->num_sge; i++)
wqe->sg_list[i] = wr->sg_list[i];
/* Make sure queue entry is written before the head index. */
smp_wmb();
wq->head = next;
spin_unlock_irqrestore(&srq->rq.lock, flags);
}
return 0;
}
/*
* Validate a RWQE and fill in the SGE state.
* Return 1 if OK.
*/
static int init_sge(struct rvt_qp *qp, struct rvt_rwqe *wqe)
{
int i, j, ret;
struct ib_wc wc;
struct rvt_lkey_table *rkt;
struct rvt_pd *pd;
struct rvt_sge_state *ss;
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
rkt = &rdi->lkey_table;
pd = ibpd_to_rvtpd(qp->ibqp.srq ? qp->ibqp.srq->pd : qp->ibqp.pd);
ss = &qp->r_sge;
ss->sg_list = qp->r_sg_list;
qp->r_len = 0;
for (i = j = 0; i < wqe->num_sge; i++) {
if (wqe->sg_list[i].length == 0)
continue;
/* Check LKEY */
ret = rvt_lkey_ok(rkt, pd, j ? &ss->sg_list[j - 1] : &ss->sge,
NULL, &wqe->sg_list[i],
IB_ACCESS_LOCAL_WRITE);
if (unlikely(ret <= 0))
goto bad_lkey;
qp->r_len += wqe->sg_list[i].length;
j++;
}
ss->num_sge = j;
ss->total_len = qp->r_len;
return 1;
bad_lkey:
while (j) {
struct rvt_sge *sge = --j ? &ss->sg_list[j - 1] : &ss->sge;
rvt_put_mr(sge->mr);
}
ss->num_sge = 0;
memset(&wc, 0, sizeof(wc));
wc.wr_id = wqe->wr_id;
wc.status = IB_WC_LOC_PROT_ERR;
wc.opcode = IB_WC_RECV;
wc.qp = &qp->ibqp;
/* Signal solicited completion event. */
rvt_cq_enter(ibcq_to_rvtcq(qp->ibqp.recv_cq), &wc, 1);
return 0;
}
/**
* rvt_get_rwqe - copy the next RWQE into the QP's RWQE
* @qp: the QP
* @wr_id_only: update qp->r_wr_id only, not qp->r_sge
*
* Return -1 if there is a local error, 0 if no RWQE is available,
* otherwise return 1.
*
* Can be called from interrupt level.
*/
int rvt_get_rwqe(struct rvt_qp *qp, bool wr_id_only)
{
unsigned long flags;
struct rvt_rq *rq;
struct rvt_rwq *wq;
struct rvt_srq *srq;
struct rvt_rwqe *wqe;
void (*handler)(struct ib_event *, void *);
u32 tail;
int ret;
if (qp->ibqp.srq) {
srq = ibsrq_to_rvtsrq(qp->ibqp.srq);
handler = srq->ibsrq.event_handler;
rq = &srq->rq;
} else {
srq = NULL;
handler = NULL;
rq = &qp->r_rq;
}
spin_lock_irqsave(&rq->lock, flags);
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
ret = 0;
goto unlock;
}
wq = rq->wq;
tail = wq->tail;
/* Validate tail before using it since it is user writable. */
if (tail >= rq->size)
tail = 0;
if (unlikely(tail == wq->head)) {
ret = 0;
goto unlock;
}
/* Make sure entry is read after head index is read. */
smp_rmb();
wqe = rvt_get_rwqe_ptr(rq, tail);
/*
* Even though we update the tail index in memory, the verbs
* consumer is not supposed to post more entries until a
* completion is generated.
*/
if (++tail >= rq->size)
tail = 0;
wq->tail = tail;
if (!wr_id_only && !init_sge(qp, wqe)) {
ret = -1;
goto unlock;
}
qp->r_wr_id = wqe->wr_id;
ret = 1;
set_bit(RVT_R_WRID_VALID, &qp->r_aflags);
if (handler) {
u32 n;
/*
* Validate head pointer value and compute
* the number of remaining WQEs.
*/
n = wq->head;
if (n >= rq->size)
n = 0;
if (n < tail)
n += rq->size - tail;
else
n -= tail;
if (n < srq->limit) {
struct ib_event ev;
srq->limit = 0;
spin_unlock_irqrestore(&rq->lock, flags);
ev.device = qp->ibqp.device;
ev.element.srq = qp->ibqp.srq;
ev.event = IB_EVENT_SRQ_LIMIT_REACHED;
handler(&ev, srq->ibsrq.srq_context);
goto bail;
}
}
unlock:
spin_unlock_irqrestore(&rq->lock, flags);
bail:
return ret;
}
EXPORT_SYMBOL(rvt_get_rwqe);
/**
* qp_comm_est - handle trap with QP established
* @qp: the QP
*/
void rvt_comm_est(struct rvt_qp *qp)
{
qp->r_flags |= RVT_R_COMM_EST;
if (qp->ibqp.event_handler) {
struct ib_event ev;
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_COMM_EST;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
}
EXPORT_SYMBOL(rvt_comm_est);
void rvt_rc_error(struct rvt_qp *qp, enum ib_wc_status err)
{
unsigned long flags;
int lastwqe;
spin_lock_irqsave(&qp->s_lock, flags);
lastwqe = rvt_error_qp(qp, err);
spin_unlock_irqrestore(&qp->s_lock, flags);
if (lastwqe) {
struct ib_event ev;
ev.device = qp->ibqp.device;
ev.element.qp = &qp->ibqp;
ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
}
}
EXPORT_SYMBOL(rvt_rc_error);
/*
* rvt_rnr_tbl_to_usec - return index into ib_rvt_rnr_table
* @index - the index
* return usec from an index into ib_rvt_rnr_table
*/
unsigned long rvt_rnr_tbl_to_usec(u32 index)
{
return ib_rvt_rnr_table[(index & IB_AETH_CREDIT_MASK)];
}
EXPORT_SYMBOL(rvt_rnr_tbl_to_usec);
static inline unsigned long rvt_aeth_to_usec(u32 aeth)
{
return ib_rvt_rnr_table[(aeth >> IB_AETH_CREDIT_SHIFT) &
IB_AETH_CREDIT_MASK];
}
/*
* rvt_add_retry_timer - add/start a retry timer
* @qp - the QP
* add a retry timer on the QP
*/
void rvt_add_retry_timer(struct rvt_qp *qp)
{
struct ib_qp *ibqp = &qp->ibqp;
struct rvt_dev_info *rdi = ib_to_rvt(ibqp->device);
lockdep_assert_held(&qp->s_lock);
qp->s_flags |= RVT_S_TIMER;
/* 4.096 usec. * (1 << qp->timeout) */
qp->s_timer.expires = jiffies + qp->timeout_jiffies +
rdi->busy_jiffies;
add_timer(&qp->s_timer);
}
EXPORT_SYMBOL(rvt_add_retry_timer);
/**
* rvt_add_rnr_timer - add/start an rnr timer
* @qp - the QP
* @aeth - aeth of RNR timeout, simulated aeth for loopback
* add an rnr timer on the QP
*/
void rvt_add_rnr_timer(struct rvt_qp *qp, u32 aeth)
{
u32 to;
lockdep_assert_held(&qp->s_lock);
qp->s_flags |= RVT_S_WAIT_RNR;
to = rvt_aeth_to_usec(aeth);
trace_rvt_rnrnak_add(qp, to);
hrtimer_start(&qp->s_rnr_timer,
ns_to_ktime(1000 * to), HRTIMER_MODE_REL_PINNED);
}
EXPORT_SYMBOL(rvt_add_rnr_timer);
/**
* rvt_stop_rc_timers - stop all timers
* @qp - the QP
* stop any pending timers
*/
void rvt_stop_rc_timers(struct rvt_qp *qp)
{
lockdep_assert_held(&qp->s_lock);
/* Remove QP from all timers */
if (qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR)) {
qp->s_flags &= ~(RVT_S_TIMER | RVT_S_WAIT_RNR);
del_timer(&qp->s_timer);
hrtimer_try_to_cancel(&qp->s_rnr_timer);
}
}
EXPORT_SYMBOL(rvt_stop_rc_timers);
/**
* rvt_stop_rnr_timer - stop an rnr timer
* @qp - the QP
*
* stop an rnr timer and return if the timer
* had been pending.
*/
static void rvt_stop_rnr_timer(struct rvt_qp *qp)
{
lockdep_assert_held(&qp->s_lock);
/* Remove QP from rnr timer */
if (qp->s_flags & RVT_S_WAIT_RNR) {
qp->s_flags &= ~RVT_S_WAIT_RNR;
trace_rvt_rnrnak_stop(qp, 0);
}
}
/**
* rvt_del_timers_sync - wait for any timeout routines to exit
* @qp - the QP
*/
void rvt_del_timers_sync(struct rvt_qp *qp)
{
del_timer_sync(&qp->s_timer);
hrtimer_cancel(&qp->s_rnr_timer);
}
EXPORT_SYMBOL(rvt_del_timers_sync);
/**
* This is called from s_timer for missing responses.
*/
static void rvt_rc_timeout(struct timer_list *t)
{
struct rvt_qp *qp = from_timer(qp, t, s_timer);
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
unsigned long flags;
spin_lock_irqsave(&qp->r_lock, flags);
spin_lock(&qp->s_lock);
if (qp->s_flags & RVT_S_TIMER) {
struct rvt_ibport *rvp = rdi->ports[qp->port_num - 1];
qp->s_flags &= ~RVT_S_TIMER;
rvp->n_rc_timeouts++;
del_timer(&qp->s_timer);
trace_rvt_rc_timeout(qp, qp->s_last_psn + 1);
if (rdi->driver_f.notify_restart_rc)
rdi->driver_f.notify_restart_rc(qp,
qp->s_last_psn + 1,
1);
rdi->driver_f.schedule_send(qp);
}
spin_unlock(&qp->s_lock);
spin_unlock_irqrestore(&qp->r_lock, flags);
}
/*
* This is called from s_timer for RNR timeouts.
*/
enum hrtimer_restart rvt_rc_rnr_retry(struct hrtimer *t)
{
struct rvt_qp *qp = container_of(t, struct rvt_qp, s_rnr_timer);
struct rvt_dev_info *rdi = ib_to_rvt(qp->ibqp.device);
unsigned long flags;
spin_lock_irqsave(&qp->s_lock, flags);
rvt_stop_rnr_timer(qp);
trace_rvt_rnrnak_timeout(qp, 0);
rdi->driver_f.schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
return HRTIMER_NORESTART;
}
EXPORT_SYMBOL(rvt_rc_rnr_retry);
/**
* rvt_qp_iter_init - initial for QP iteration
* @rdi: rvt devinfo
* @v: u64 value
*
* This returns an iterator suitable for iterating QPs
* in the system.
*
* The @cb is a user defined callback and @v is a 64
* bit value passed to and relevant for processing in the
* @cb. An example use case would be to alter QP processing
* based on criteria not part of the rvt_qp.
*
* Use cases that require memory allocation to succeed
* must preallocate appropriately.
*
* Return: a pointer to an rvt_qp_iter or NULL
*/
struct rvt_qp_iter *rvt_qp_iter_init(struct rvt_dev_info *rdi,
u64 v,
void (*cb)(struct rvt_qp *qp, u64 v))
{
struct rvt_qp_iter *i;
i = kzalloc(sizeof(*i), GFP_KERNEL);
if (!i)
return NULL;
i->rdi = rdi;
/* number of special QPs (SMI/GSI) for device */
i->specials = rdi->ibdev.phys_port_cnt * 2;
i->v = v;
i->cb = cb;
return i;
}
EXPORT_SYMBOL(rvt_qp_iter_init);
/**
* rvt_qp_iter_next - return the next QP in iter
* @iter - the iterator
*
* Fine grained QP iterator suitable for use
* with debugfs seq_file mechanisms.
*
* Updates iter->qp with the current QP when the return
* value is 0.
*
* Return: 0 - iter->qp is valid 1 - no more QPs
*/
int rvt_qp_iter_next(struct rvt_qp_iter *iter)
__must_hold(RCU)
{
int n = iter->n;
int ret = 1;
struct rvt_qp *pqp = iter->qp;
struct rvt_qp *qp;
struct rvt_dev_info *rdi = iter->rdi;
/*
* The approach is to consider the special qps
* as additional table entries before the
* real hash table. Since the qp code sets
* the qp->next hash link to NULL, this works just fine.
*
* iter->specials is 2 * # ports
*
* n = 0..iter->specials is the special qp indices
*
* n = iter->specials..rdi->qp_dev->qp_table_size+iter->specials are
* the potential hash bucket entries
*
*/
for (; n < rdi->qp_dev->qp_table_size + iter->specials; n++) {
if (pqp) {
qp = rcu_dereference(pqp->next);
} else {
if (n < iter->specials) {
struct rvt_ibport *rvp;
int pidx;
pidx = n % rdi->ibdev.phys_port_cnt;
rvp = rdi->ports[pidx];
qp = rcu_dereference(rvp->qp[n & 1]);
} else {
qp = rcu_dereference(
rdi->qp_dev->qp_table[
(n - iter->specials)]);
}
}
pqp = qp;
if (qp) {
iter->qp = qp;
iter->n = n;
return 0;
}
}
return ret;
}
EXPORT_SYMBOL(rvt_qp_iter_next);
/**
* rvt_qp_iter - iterate all QPs
* @rdi - rvt devinfo
* @v - a 64 bit value
* @cb - a callback
*
* This provides a way for iterating all QPs.
*
* The @cb is a user defined callback and @v is a 64
* bit value passed to and relevant for processing in the
* cb. An example use case would be to alter QP processing
* based on criteria not part of the rvt_qp.
*
* The code has an internal iterator to simplify
* non seq_file use cases.
*/
void rvt_qp_iter(struct rvt_dev_info *rdi,
u64 v,
void (*cb)(struct rvt_qp *qp, u64 v))
{
int ret;
struct rvt_qp_iter i = {
.rdi = rdi,
.specials = rdi->ibdev.phys_port_cnt * 2,
.v = v,
.cb = cb
};
rcu_read_lock();
do {
ret = rvt_qp_iter_next(&i);
if (!ret) {
rvt_get_qp(i.qp);
rcu_read_unlock();
i.cb(i.qp, i.v);
rcu_read_lock();
rvt_put_qp(i.qp);
}
} while (!ret);
rcu_read_unlock();
}
EXPORT_SYMBOL(rvt_qp_iter);