| /* Maintain an RxRPC server socket to do AFS communications through |
| * |
| * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved. |
| * Written by David Howells (dhowells@redhat.com) |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/sched/signal.h> |
| |
| #include <net/sock.h> |
| #include <net/af_rxrpc.h> |
| #include "internal.h" |
| #include "afs_cm.h" |
| #include "protocol_yfs.h" |
| |
| struct workqueue_struct *afs_async_calls; |
| |
| static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long); |
| static long afs_wait_for_call_to_complete(struct afs_call *, struct afs_addr_cursor *); |
| static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long); |
| static void afs_delete_async_call(struct work_struct *); |
| static void afs_process_async_call(struct work_struct *); |
| static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long); |
| static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long); |
| static int afs_deliver_cm_op_id(struct afs_call *); |
| |
| /* asynchronous incoming call initial processing */ |
| static const struct afs_call_type afs_RXCMxxxx = { |
| .name = "CB.xxxx", |
| .deliver = afs_deliver_cm_op_id, |
| }; |
| |
| /* |
| * open an RxRPC socket and bind it to be a server for callback notifications |
| * - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT |
| */ |
| int afs_open_socket(struct afs_net *net) |
| { |
| struct sockaddr_rxrpc srx; |
| struct socket *socket; |
| unsigned int min_level; |
| int ret; |
| |
| _enter(""); |
| |
| ret = sock_create_kern(net->net, AF_RXRPC, SOCK_DGRAM, PF_INET6, &socket); |
| if (ret < 0) |
| goto error_1; |
| |
| socket->sk->sk_allocation = GFP_NOFS; |
| |
| /* bind the callback manager's address to make this a server socket */ |
| memset(&srx, 0, sizeof(srx)); |
| srx.srx_family = AF_RXRPC; |
| srx.srx_service = CM_SERVICE; |
| srx.transport_type = SOCK_DGRAM; |
| srx.transport_len = sizeof(srx.transport.sin6); |
| srx.transport.sin6.sin6_family = AF_INET6; |
| srx.transport.sin6.sin6_port = htons(AFS_CM_PORT); |
| |
| min_level = RXRPC_SECURITY_ENCRYPT; |
| ret = kernel_setsockopt(socket, SOL_RXRPC, RXRPC_MIN_SECURITY_LEVEL, |
| (void *)&min_level, sizeof(min_level)); |
| if (ret < 0) |
| goto error_2; |
| |
| ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); |
| if (ret == -EADDRINUSE) { |
| srx.transport.sin6.sin6_port = 0; |
| ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); |
| } |
| if (ret < 0) |
| goto error_2; |
| |
| srx.srx_service = YFS_CM_SERVICE; |
| ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx)); |
| if (ret < 0) |
| goto error_2; |
| |
| /* Ideally, we'd turn on service upgrade here, but we can't because |
| * OpenAFS is buggy and leaks the userStatus field from packet to |
| * packet and between FS packets and CB packets - so if we try to do an |
| * upgrade on an FS packet, OpenAFS will leak that into the CB packet |
| * it sends back to us. |
| */ |
| |
| rxrpc_kernel_new_call_notification(socket, afs_rx_new_call, |
| afs_rx_discard_new_call); |
| |
| ret = kernel_listen(socket, INT_MAX); |
| if (ret < 0) |
| goto error_2; |
| |
| net->socket = socket; |
| afs_charge_preallocation(&net->charge_preallocation_work); |
| _leave(" = 0"); |
| return 0; |
| |
| error_2: |
| sock_release(socket); |
| error_1: |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * close the RxRPC socket AFS was using |
| */ |
| void afs_close_socket(struct afs_net *net) |
| { |
| _enter(""); |
| |
| kernel_listen(net->socket, 0); |
| flush_workqueue(afs_async_calls); |
| |
| if (net->spare_incoming_call) { |
| afs_put_call(net->spare_incoming_call); |
| net->spare_incoming_call = NULL; |
| } |
| |
| _debug("outstanding %u", atomic_read(&net->nr_outstanding_calls)); |
| wait_var_event(&net->nr_outstanding_calls, |
| !atomic_read(&net->nr_outstanding_calls)); |
| _debug("no outstanding calls"); |
| |
| kernel_sock_shutdown(net->socket, SHUT_RDWR); |
| flush_workqueue(afs_async_calls); |
| sock_release(net->socket); |
| |
| _debug("dework"); |
| _leave(""); |
| } |
| |
| /* |
| * Allocate a call. |
| */ |
| static struct afs_call *afs_alloc_call(struct afs_net *net, |
| const struct afs_call_type *type, |
| gfp_t gfp) |
| { |
| struct afs_call *call; |
| int o; |
| |
| call = kzalloc(sizeof(*call), gfp); |
| if (!call) |
| return NULL; |
| |
| call->type = type; |
| call->net = net; |
| call->debug_id = atomic_inc_return(&rxrpc_debug_id); |
| atomic_set(&call->usage, 1); |
| INIT_WORK(&call->async_work, afs_process_async_call); |
| init_waitqueue_head(&call->waitq); |
| spin_lock_init(&call->state_lock); |
| call->_iter = &call->iter; |
| |
| o = atomic_inc_return(&net->nr_outstanding_calls); |
| trace_afs_call(call, afs_call_trace_alloc, 1, o, |
| __builtin_return_address(0)); |
| return call; |
| } |
| |
| /* |
| * Dispose of a reference on a call. |
| */ |
| void afs_put_call(struct afs_call *call) |
| { |
| struct afs_net *net = call->net; |
| int n = atomic_dec_return(&call->usage); |
| int o = atomic_read(&net->nr_outstanding_calls); |
| |
| trace_afs_call(call, afs_call_trace_put, n + 1, o, |
| __builtin_return_address(0)); |
| |
| ASSERTCMP(n, >=, 0); |
| if (n == 0) { |
| ASSERT(!work_pending(&call->async_work)); |
| ASSERT(call->type->name != NULL); |
| |
| if (call->rxcall) { |
| rxrpc_kernel_end_call(net->socket, call->rxcall); |
| call->rxcall = NULL; |
| } |
| if (call->type->destructor) |
| call->type->destructor(call); |
| |
| afs_put_server(call->net, call->cm_server); |
| afs_put_cb_interest(call->net, call->cbi); |
| afs_put_addrlist(call->alist); |
| kfree(call->request); |
| |
| trace_afs_call(call, afs_call_trace_free, 0, o, |
| __builtin_return_address(0)); |
| kfree(call); |
| |
| o = atomic_dec_return(&net->nr_outstanding_calls); |
| if (o == 0) |
| wake_up_var(&net->nr_outstanding_calls); |
| } |
| } |
| |
| static struct afs_call *afs_get_call(struct afs_call *call, |
| enum afs_call_trace why) |
| { |
| int u = atomic_inc_return(&call->usage); |
| |
| trace_afs_call(call, why, u, |
| atomic_read(&call->net->nr_outstanding_calls), |
| __builtin_return_address(0)); |
| return call; |
| } |
| |
| /* |
| * Queue the call for actual work. |
| */ |
| static void afs_queue_call_work(struct afs_call *call) |
| { |
| if (call->type->work) { |
| INIT_WORK(&call->work, call->type->work); |
| |
| afs_get_call(call, afs_call_trace_work); |
| if (!queue_work(afs_wq, &call->work)) |
| afs_put_call(call); |
| } |
| } |
| |
| /* |
| * allocate a call with flat request and reply buffers |
| */ |
| struct afs_call *afs_alloc_flat_call(struct afs_net *net, |
| const struct afs_call_type *type, |
| size_t request_size, size_t reply_max) |
| { |
| struct afs_call *call; |
| |
| call = afs_alloc_call(net, type, GFP_NOFS); |
| if (!call) |
| goto nomem_call; |
| |
| if (request_size) { |
| call->request_size = request_size; |
| call->request = kmalloc(request_size, GFP_NOFS); |
| if (!call->request) |
| goto nomem_free; |
| } |
| |
| if (reply_max) { |
| call->reply_max = reply_max; |
| call->buffer = kmalloc(reply_max, GFP_NOFS); |
| if (!call->buffer) |
| goto nomem_free; |
| } |
| |
| afs_extract_to_buf(call, call->reply_max); |
| call->operation_ID = type->op; |
| init_waitqueue_head(&call->waitq); |
| return call; |
| |
| nomem_free: |
| afs_put_call(call); |
| nomem_call: |
| return NULL; |
| } |
| |
| /* |
| * clean up a call with flat buffer |
| */ |
| void afs_flat_call_destructor(struct afs_call *call) |
| { |
| _enter(""); |
| |
| kfree(call->request); |
| call->request = NULL; |
| kfree(call->buffer); |
| call->buffer = NULL; |
| } |
| |
| #define AFS_BVEC_MAX 8 |
| |
| /* |
| * Load the given bvec with the next few pages. |
| */ |
| static void afs_load_bvec(struct afs_call *call, struct msghdr *msg, |
| struct bio_vec *bv, pgoff_t first, pgoff_t last, |
| unsigned offset) |
| { |
| struct page *pages[AFS_BVEC_MAX]; |
| unsigned int nr, n, i, to, bytes = 0; |
| |
| nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX); |
| n = find_get_pages_contig(call->mapping, first, nr, pages); |
| ASSERTCMP(n, ==, nr); |
| |
| msg->msg_flags |= MSG_MORE; |
| for (i = 0; i < nr; i++) { |
| to = PAGE_SIZE; |
| if (first + i >= last) { |
| to = call->last_to; |
| msg->msg_flags &= ~MSG_MORE; |
| } |
| bv[i].bv_page = pages[i]; |
| bv[i].bv_len = to - offset; |
| bv[i].bv_offset = offset; |
| bytes += to - offset; |
| offset = 0; |
| } |
| |
| iov_iter_bvec(&msg->msg_iter, WRITE, bv, nr, bytes); |
| } |
| |
| /* |
| * Advance the AFS call state when the RxRPC call ends the transmit phase. |
| */ |
| static void afs_notify_end_request_tx(struct sock *sock, |
| struct rxrpc_call *rxcall, |
| unsigned long call_user_ID) |
| { |
| struct afs_call *call = (struct afs_call *)call_user_ID; |
| |
| afs_set_call_state(call, AFS_CALL_CL_REQUESTING, AFS_CALL_CL_AWAIT_REPLY); |
| } |
| |
| /* |
| * attach the data from a bunch of pages on an inode to a call |
| */ |
| static int afs_send_pages(struct afs_call *call, struct msghdr *msg) |
| { |
| struct bio_vec bv[AFS_BVEC_MAX]; |
| unsigned int bytes, nr, loop, offset; |
| pgoff_t first = call->first, last = call->last; |
| int ret; |
| |
| offset = call->first_offset; |
| call->first_offset = 0; |
| |
| do { |
| afs_load_bvec(call, msg, bv, first, last, offset); |
| trace_afs_send_pages(call, msg, first, last, offset); |
| |
| offset = 0; |
| bytes = msg->msg_iter.count; |
| nr = msg->msg_iter.nr_segs; |
| |
| ret = rxrpc_kernel_send_data(call->net->socket, call->rxcall, msg, |
| bytes, afs_notify_end_request_tx); |
| for (loop = 0; loop < nr; loop++) |
| put_page(bv[loop].bv_page); |
| if (ret < 0) |
| break; |
| |
| first += nr; |
| } while (first <= last); |
| |
| trace_afs_sent_pages(call, call->first, last, first, ret); |
| return ret; |
| } |
| |
| /* |
| * initiate a call |
| */ |
| long afs_make_call(struct afs_addr_cursor *ac, struct afs_call *call, |
| gfp_t gfp, bool async) |
| { |
| struct sockaddr_rxrpc *srx = &ac->alist->addrs[ac->index]; |
| struct rxrpc_call *rxcall; |
| struct msghdr msg; |
| struct kvec iov[1]; |
| s64 tx_total_len; |
| int ret; |
| |
| _enter(",{%pISp},", &srx->transport); |
| |
| ASSERT(call->type != NULL); |
| ASSERT(call->type->name != NULL); |
| |
| _debug("____MAKE %p{%s,%x} [%d]____", |
| call, call->type->name, key_serial(call->key), |
| atomic_read(&call->net->nr_outstanding_calls)); |
| |
| call->async = async; |
| call->addr_ix = ac->index; |
| call->alist = afs_get_addrlist(ac->alist); |
| |
| /* Work out the length we're going to transmit. This is awkward for |
| * calls such as FS.StoreData where there's an extra injection of data |
| * after the initial fixed part. |
| */ |
| tx_total_len = call->request_size; |
| if (call->send_pages) { |
| if (call->last == call->first) { |
| tx_total_len += call->last_to - call->first_offset; |
| } else { |
| /* It looks mathematically like you should be able to |
| * combine the following lines with the ones above, but |
| * unsigned arithmetic is fun when it wraps... |
| */ |
| tx_total_len += PAGE_SIZE - call->first_offset; |
| tx_total_len += call->last_to; |
| tx_total_len += (call->last - call->first - 1) * PAGE_SIZE; |
| } |
| } |
| |
| /* If the call is going to be asynchronous, we need an extra ref for |
| * the call to hold itself so the caller need not hang on to its ref. |
| */ |
| if (call->async) |
| afs_get_call(call, afs_call_trace_get); |
| |
| /* create a call */ |
| rxcall = rxrpc_kernel_begin_call(call->net->socket, srx, call->key, |
| (unsigned long)call, |
| tx_total_len, gfp, |
| (async ? |
| afs_wake_up_async_call : |
| afs_wake_up_call_waiter), |
| call->upgrade, |
| call->debug_id); |
| if (IS_ERR(rxcall)) { |
| ret = PTR_ERR(rxcall); |
| call->error = ret; |
| goto error_kill_call; |
| } |
| |
| call->rxcall = rxcall; |
| |
| /* send the request */ |
| iov[0].iov_base = call->request; |
| iov[0].iov_len = call->request_size; |
| |
| msg.msg_name = NULL; |
| msg.msg_namelen = 0; |
| iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, call->request_size); |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_flags = MSG_WAITALL | (call->send_pages ? MSG_MORE : 0); |
| |
| ret = rxrpc_kernel_send_data(call->net->socket, rxcall, |
| &msg, call->request_size, |
| afs_notify_end_request_tx); |
| if (ret < 0) |
| goto error_do_abort; |
| |
| if (call->send_pages) { |
| ret = afs_send_pages(call, &msg); |
| if (ret < 0) |
| goto error_do_abort; |
| } |
| |
| /* Note that at this point, we may have received the reply or an abort |
| * - and an asynchronous call may already have completed. |
| */ |
| if (call->async) { |
| afs_put_call(call); |
| return -EINPROGRESS; |
| } |
| |
| return afs_wait_for_call_to_complete(call, ac); |
| |
| error_do_abort: |
| if (ret != -ECONNABORTED) { |
| rxrpc_kernel_abort_call(call->net->socket, rxcall, |
| RX_USER_ABORT, ret, "KSD"); |
| } else { |
| iov_iter_kvec(&msg.msg_iter, READ, NULL, 0, 0); |
| rxrpc_kernel_recv_data(call->net->socket, rxcall, |
| &msg.msg_iter, false, |
| &call->abort_code, &call->service_id); |
| ac->abort_code = call->abort_code; |
| ac->responded = true; |
| } |
| call->error = ret; |
| trace_afs_call_done(call); |
| error_kill_call: |
| if (call->type->done) |
| call->type->done(call); |
| |
| /* We need to dispose of the extra ref we grabbed for an async call. |
| * The call, however, might be queued on afs_async_calls and we need to |
| * make sure we don't get any more notifications that might requeue it. |
| */ |
| if (call->rxcall) { |
| rxrpc_kernel_end_call(call->net->socket, call->rxcall); |
| call->rxcall = NULL; |
| } |
| if (call->async) { |
| if (cancel_work_sync(&call->async_work)) |
| afs_put_call(call); |
| afs_put_call(call); |
| } |
| |
| ac->error = ret; |
| call->state = AFS_CALL_COMPLETE; |
| afs_put_call(call); |
| _leave(" = %d", ret); |
| return ret; |
| } |
| |
| /* |
| * deliver messages to a call |
| */ |
| static void afs_deliver_to_call(struct afs_call *call) |
| { |
| enum afs_call_state state; |
| u32 abort_code, remote_abort = 0; |
| int ret; |
| |
| _enter("%s", call->type->name); |
| |
| while (state = READ_ONCE(call->state), |
| state == AFS_CALL_CL_AWAIT_REPLY || |
| state == AFS_CALL_SV_AWAIT_OP_ID || |
| state == AFS_CALL_SV_AWAIT_REQUEST || |
| state == AFS_CALL_SV_AWAIT_ACK |
| ) { |
| if (state == AFS_CALL_SV_AWAIT_ACK) { |
| iov_iter_kvec(&call->iter, READ, NULL, 0, 0); |
| ret = rxrpc_kernel_recv_data(call->net->socket, |
| call->rxcall, &call->iter, |
| false, &remote_abort, |
| &call->service_id); |
| trace_afs_receive_data(call, &call->iter, false, ret); |
| |
| if (ret == -EINPROGRESS || ret == -EAGAIN) |
| return; |
| if (ret < 0 || ret == 1) { |
| if (ret == 1) |
| ret = 0; |
| goto call_complete; |
| } |
| return; |
| } |
| |
| if (call->want_reply_time && |
| rxrpc_kernel_get_reply_time(call->net->socket, |
| call->rxcall, |
| &call->reply_time)) |
| call->want_reply_time = false; |
| |
| ret = call->type->deliver(call); |
| state = READ_ONCE(call->state); |
| switch (ret) { |
| case 0: |
| afs_queue_call_work(call); |
| if (state == AFS_CALL_CL_PROC_REPLY) { |
| if (call->cbi) |
| set_bit(AFS_SERVER_FL_MAY_HAVE_CB, |
| &call->cbi->server->flags); |
| goto call_complete; |
| } |
| ASSERTCMP(state, >, AFS_CALL_CL_PROC_REPLY); |
| goto done; |
| case -EINPROGRESS: |
| case -EAGAIN: |
| goto out; |
| case -ECONNABORTED: |
| ASSERTCMP(state, ==, AFS_CALL_COMPLETE); |
| goto done; |
| case -ENOTSUPP: |
| abort_code = RXGEN_OPCODE; |
| rxrpc_kernel_abort_call(call->net->socket, call->rxcall, |
| abort_code, ret, "KIV"); |
| goto local_abort; |
| case -EIO: |
| pr_err("kAFS: Call %u in bad state %u\n", |
| call->debug_id, state); |
| /* Fall through */ |
| case -ENODATA: |
| case -EBADMSG: |
| case -EMSGSIZE: |
| abort_code = RXGEN_CC_UNMARSHAL; |
| if (state != AFS_CALL_CL_AWAIT_REPLY) |
| abort_code = RXGEN_SS_UNMARSHAL; |
| rxrpc_kernel_abort_call(call->net->socket, call->rxcall, |
| abort_code, ret, "KUM"); |
| goto local_abort; |
| default: |
| abort_code = RX_USER_ABORT; |
| rxrpc_kernel_abort_call(call->net->socket, call->rxcall, |
| abort_code, ret, "KER"); |
| goto local_abort; |
| } |
| } |
| |
| done: |
| if (call->type->done) |
| call->type->done(call); |
| if (state == AFS_CALL_COMPLETE && call->incoming) |
| afs_put_call(call); |
| out: |
| _leave(""); |
| return; |
| |
| local_abort: |
| abort_code = 0; |
| call_complete: |
| afs_set_call_complete(call, ret, remote_abort); |
| state = AFS_CALL_COMPLETE; |
| goto done; |
| } |
| |
| /* |
| * wait synchronously for a call to complete |
| */ |
| static long afs_wait_for_call_to_complete(struct afs_call *call, |
| struct afs_addr_cursor *ac) |
| { |
| signed long rtt2, timeout; |
| long ret; |
| bool stalled = false; |
| u64 rtt; |
| u32 life, last_life; |
| bool rxrpc_complete = false; |
| |
| DECLARE_WAITQUEUE(myself, current); |
| |
| _enter(""); |
| |
| rtt = rxrpc_kernel_get_rtt(call->net->socket, call->rxcall); |
| rtt2 = nsecs_to_jiffies64(rtt) * 2; |
| if (rtt2 < 2) |
| rtt2 = 2; |
| |
| timeout = rtt2; |
| rxrpc_kernel_check_life(call->net->socket, call->rxcall, &last_life); |
| |
| add_wait_queue(&call->waitq, &myself); |
| for (;;) { |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| |
| /* deliver any messages that are in the queue */ |
| if (!afs_check_call_state(call, AFS_CALL_COMPLETE) && |
| call->need_attention) { |
| call->need_attention = false; |
| __set_current_state(TASK_RUNNING); |
| afs_deliver_to_call(call); |
| continue; |
| } |
| |
| if (afs_check_call_state(call, AFS_CALL_COMPLETE)) |
| break; |
| |
| if (!rxrpc_kernel_check_life(call->net->socket, call->rxcall, &life)) { |
| /* rxrpc terminated the call. */ |
| rxrpc_complete = true; |
| break; |
| } |
| |
| if (timeout == 0 && |
| life == last_life && signal_pending(current)) { |
| if (stalled) |
| break; |
| __set_current_state(TASK_RUNNING); |
| rxrpc_kernel_probe_life(call->net->socket, call->rxcall); |
| timeout = rtt2; |
| stalled = true; |
| continue; |
| } |
| |
| if (life != last_life) { |
| timeout = rtt2; |
| last_life = life; |
| stalled = false; |
| } |
| |
| timeout = schedule_timeout(timeout); |
| } |
| |
| remove_wait_queue(&call->waitq, &myself); |
| __set_current_state(TASK_RUNNING); |
| |
| if (!afs_check_call_state(call, AFS_CALL_COMPLETE)) { |
| if (rxrpc_complete) { |
| afs_set_call_complete(call, call->error, call->abort_code); |
| } else { |
| /* Kill off the call if it's still live. */ |
| _debug("call interrupted"); |
| if (rxrpc_kernel_abort_call(call->net->socket, call->rxcall, |
| RX_USER_ABORT, -EINTR, "KWI")) |
| afs_set_call_complete(call, -EINTR, 0); |
| } |
| } |
| |
| spin_lock_bh(&call->state_lock); |
| ac->abort_code = call->abort_code; |
| ac->error = call->error; |
| spin_unlock_bh(&call->state_lock); |
| |
| ret = ac->error; |
| switch (ret) { |
| case 0: |
| if (call->ret_reply0) { |
| ret = (long)call->reply[0]; |
| call->reply[0] = NULL; |
| } |
| /* Fall through */ |
| case -ECONNABORTED: |
| ac->responded = true; |
| break; |
| } |
| |
| _debug("call complete"); |
| afs_put_call(call); |
| _leave(" = %p", (void *)ret); |
| return ret; |
| } |
| |
| /* |
| * wake up a waiting call |
| */ |
| static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall, |
| unsigned long call_user_ID) |
| { |
| struct afs_call *call = (struct afs_call *)call_user_ID; |
| |
| call->need_attention = true; |
| wake_up(&call->waitq); |
| } |
| |
| /* |
| * wake up an asynchronous call |
| */ |
| static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall, |
| unsigned long call_user_ID) |
| { |
| struct afs_call *call = (struct afs_call *)call_user_ID; |
| int u; |
| |
| trace_afs_notify_call(rxcall, call); |
| call->need_attention = true; |
| |
| u = atomic_fetch_add_unless(&call->usage, 1, 0); |
| if (u != 0) { |
| trace_afs_call(call, afs_call_trace_wake, u, |
| atomic_read(&call->net->nr_outstanding_calls), |
| __builtin_return_address(0)); |
| |
| if (!queue_work(afs_async_calls, &call->async_work)) |
| afs_put_call(call); |
| } |
| } |
| |
| /* |
| * Delete an asynchronous call. The work item carries a ref to the call struct |
| * that we need to release. |
| */ |
| static void afs_delete_async_call(struct work_struct *work) |
| { |
| struct afs_call *call = container_of(work, struct afs_call, async_work); |
| |
| _enter(""); |
| |
| afs_put_call(call); |
| |
| _leave(""); |
| } |
| |
| /* |
| * Perform I/O processing on an asynchronous call. The work item carries a ref |
| * to the call struct that we either need to release or to pass on. |
| */ |
| static void afs_process_async_call(struct work_struct *work) |
| { |
| struct afs_call *call = container_of(work, struct afs_call, async_work); |
| |
| _enter(""); |
| |
| if (call->state < AFS_CALL_COMPLETE && call->need_attention) { |
| call->need_attention = false; |
| afs_deliver_to_call(call); |
| } |
| |
| if (call->state == AFS_CALL_COMPLETE) { |
| /* We have two refs to release - one from the alloc and one |
| * queued with the work item - and we can't just deallocate the |
| * call because the work item may be queued again. |
| */ |
| call->async_work.func = afs_delete_async_call; |
| if (!queue_work(afs_async_calls, &call->async_work)) |
| afs_put_call(call); |
| } |
| |
| afs_put_call(call); |
| _leave(""); |
| } |
| |
| static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID) |
| { |
| struct afs_call *call = (struct afs_call *)user_call_ID; |
| |
| call->rxcall = rxcall; |
| } |
| |
| /* |
| * Charge the incoming call preallocation. |
| */ |
| void afs_charge_preallocation(struct work_struct *work) |
| { |
| struct afs_net *net = |
| container_of(work, struct afs_net, charge_preallocation_work); |
| struct afs_call *call = net->spare_incoming_call; |
| |
| for (;;) { |
| if (!call) { |
| call = afs_alloc_call(net, &afs_RXCMxxxx, GFP_KERNEL); |
| if (!call) |
| break; |
| |
| call->async = true; |
| call->state = AFS_CALL_SV_AWAIT_OP_ID; |
| init_waitqueue_head(&call->waitq); |
| afs_extract_to_tmp(call); |
| } |
| |
| if (rxrpc_kernel_charge_accept(net->socket, |
| afs_wake_up_async_call, |
| afs_rx_attach, |
| (unsigned long)call, |
| GFP_KERNEL, |
| call->debug_id) < 0) |
| break; |
| call = NULL; |
| } |
| net->spare_incoming_call = call; |
| } |
| |
| /* |
| * Discard a preallocated call when a socket is shut down. |
| */ |
| static void afs_rx_discard_new_call(struct rxrpc_call *rxcall, |
| unsigned long user_call_ID) |
| { |
| struct afs_call *call = (struct afs_call *)user_call_ID; |
| |
| call->rxcall = NULL; |
| afs_put_call(call); |
| } |
| |
| /* |
| * Notification of an incoming call. |
| */ |
| static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall, |
| unsigned long user_call_ID) |
| { |
| struct afs_net *net = afs_sock2net(sk); |
| |
| queue_work(afs_wq, &net->charge_preallocation_work); |
| } |
| |
| /* |
| * Grab the operation ID from an incoming cache manager call. The socket |
| * buffer is discarded on error or if we don't yet have sufficient data. |
| */ |
| static int afs_deliver_cm_op_id(struct afs_call *call) |
| { |
| int ret; |
| |
| _enter("{%zu}", iov_iter_count(call->_iter)); |
| |
| /* the operation ID forms the first four bytes of the request data */ |
| ret = afs_extract_data(call, true); |
| if (ret < 0) |
| return ret; |
| |
| call->operation_ID = ntohl(call->tmp); |
| afs_set_call_state(call, AFS_CALL_SV_AWAIT_OP_ID, AFS_CALL_SV_AWAIT_REQUEST); |
| |
| /* ask the cache manager to route the call (it'll change the call type |
| * if successful) */ |
| if (!afs_cm_incoming_call(call)) |
| return -ENOTSUPP; |
| |
| trace_afs_cb_call(call); |
| |
| /* pass responsibility for the remainer of this message off to the |
| * cache manager op */ |
| return call->type->deliver(call); |
| } |
| |
| /* |
| * Advance the AFS call state when an RxRPC service call ends the transmit |
| * phase. |
| */ |
| static void afs_notify_end_reply_tx(struct sock *sock, |
| struct rxrpc_call *rxcall, |
| unsigned long call_user_ID) |
| { |
| struct afs_call *call = (struct afs_call *)call_user_ID; |
| |
| afs_set_call_state(call, AFS_CALL_SV_REPLYING, AFS_CALL_SV_AWAIT_ACK); |
| } |
| |
| /* |
| * send an empty reply |
| */ |
| void afs_send_empty_reply(struct afs_call *call) |
| { |
| struct afs_net *net = call->net; |
| struct msghdr msg; |
| |
| _enter(""); |
| |
| rxrpc_kernel_set_tx_length(net->socket, call->rxcall, 0); |
| |
| msg.msg_name = NULL; |
| msg.msg_namelen = 0; |
| iov_iter_kvec(&msg.msg_iter, WRITE, NULL, 0, 0); |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_flags = 0; |
| |
| switch (rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, 0, |
| afs_notify_end_reply_tx)) { |
| case 0: |
| _leave(" [replied]"); |
| return; |
| |
| case -ENOMEM: |
| _debug("oom"); |
| rxrpc_kernel_abort_call(net->socket, call->rxcall, |
| RX_USER_ABORT, -ENOMEM, "KOO"); |
| default: |
| _leave(" [error]"); |
| return; |
| } |
| } |
| |
| /* |
| * send a simple reply |
| */ |
| void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len) |
| { |
| struct afs_net *net = call->net; |
| struct msghdr msg; |
| struct kvec iov[1]; |
| int n; |
| |
| _enter(""); |
| |
| rxrpc_kernel_set_tx_length(net->socket, call->rxcall, len); |
| |
| iov[0].iov_base = (void *) buf; |
| iov[0].iov_len = len; |
| msg.msg_name = NULL; |
| msg.msg_namelen = 0; |
| iov_iter_kvec(&msg.msg_iter, WRITE, iov, 1, len); |
| msg.msg_control = NULL; |
| msg.msg_controllen = 0; |
| msg.msg_flags = 0; |
| |
| n = rxrpc_kernel_send_data(net->socket, call->rxcall, &msg, len, |
| afs_notify_end_reply_tx); |
| if (n >= 0) { |
| /* Success */ |
| _leave(" [replied]"); |
| return; |
| } |
| |
| if (n == -ENOMEM) { |
| _debug("oom"); |
| rxrpc_kernel_abort_call(net->socket, call->rxcall, |
| RX_USER_ABORT, -ENOMEM, "KOO"); |
| } |
| _leave(" [error]"); |
| } |
| |
| /* |
| * Extract a piece of data from the received data socket buffers. |
| */ |
| int afs_extract_data(struct afs_call *call, bool want_more) |
| { |
| struct afs_net *net = call->net; |
| struct iov_iter *iter = call->_iter; |
| enum afs_call_state state; |
| u32 remote_abort = 0; |
| int ret; |
| |
| _enter("{%s,%zu},%d", call->type->name, iov_iter_count(iter), want_more); |
| |
| ret = rxrpc_kernel_recv_data(net->socket, call->rxcall, iter, |
| want_more, &remote_abort, |
| &call->service_id); |
| if (ret == 0 || ret == -EAGAIN) |
| return ret; |
| |
| state = READ_ONCE(call->state); |
| if (ret == 1) { |
| switch (state) { |
| case AFS_CALL_CL_AWAIT_REPLY: |
| afs_set_call_state(call, state, AFS_CALL_CL_PROC_REPLY); |
| break; |
| case AFS_CALL_SV_AWAIT_REQUEST: |
| afs_set_call_state(call, state, AFS_CALL_SV_REPLYING); |
| break; |
| case AFS_CALL_COMPLETE: |
| kdebug("prem complete %d", call->error); |
| return afs_io_error(call, afs_io_error_extract); |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| afs_set_call_complete(call, ret, remote_abort); |
| return ret; |
| } |
| |
| /* |
| * Log protocol error production. |
| */ |
| noinline int afs_protocol_error(struct afs_call *call, int error, |
| enum afs_eproto_cause cause) |
| { |
| trace_afs_protocol_error(call, error, cause); |
| return error; |
| } |