blob: 6f99437a696203849344de81e381c7839ca4c0ee [file] [log] [blame] [edit]
// SPDX-License-Identifier: GPL-2.0
/* niu.c: Neptune ethernet driver.
*
* Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/netdevice.h>
#include <linux/ethtool.h>
#include <linux/etherdevice.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/bitops.h>
#include <linux/mii.h>
#include <linux/if.h>
#include <linux/if_ether.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/in.h>
#include <linux/ipv6.h>
#include <linux/log2.h>
#include <linux/jiffies.h>
#include <linux/crc32.h>
#include <linux/list.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of_device.h>
#include "niu.h"
#define DRV_MODULE_NAME "niu"
#define DRV_MODULE_VERSION "1.1"
#define DRV_MODULE_RELDATE "Apr 22, 2010"
static char version[] =
DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_DESCRIPTION("NIU ethernet driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
#ifndef readq
static u64 readq(void __iomem *reg)
{
return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
}
static void writeq(u64 val, void __iomem *reg)
{
writel(val & 0xffffffff, reg);
writel(val >> 32, reg + 0x4UL);
}
#endif
static const struct pci_device_id niu_pci_tbl[] = {
{PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
{}
};
MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
#define NIU_TX_TIMEOUT (5 * HZ)
#define nr64(reg) readq(np->regs + (reg))
#define nw64(reg, val) writeq((val), np->regs + (reg))
#define nr64_mac(reg) readq(np->mac_regs + (reg))
#define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
#define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
#define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
#define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
#define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
#define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
#define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
#define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
static int niu_debug;
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "NIU debug level");
#define niu_lock_parent(np, flags) \
spin_lock_irqsave(&np->parent->lock, flags)
#define niu_unlock_parent(np, flags) \
spin_unlock_irqrestore(&np->parent->lock, flags)
static int serdes_init_10g_serdes(struct niu *np);
static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay)
{
while (--limit >= 0) {
u64 val = nr64_mac(reg);
if (!(val & bits))
break;
udelay(delay);
}
if (limit < 0)
return -ENODEV;
return 0;
}
static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay,
const char *reg_name)
{
int err;
nw64_mac(reg, bits);
err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
if (err)
netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
(unsigned long long)bits, reg_name,
(unsigned long long)nr64_mac(reg));
return err;
}
#define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
__niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
})
static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay)
{
while (--limit >= 0) {
u64 val = nr64_ipp(reg);
if (!(val & bits))
break;
udelay(delay);
}
if (limit < 0)
return -ENODEV;
return 0;
}
static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay,
const char *reg_name)
{
int err;
u64 val;
val = nr64_ipp(reg);
val |= bits;
nw64_ipp(reg, val);
err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
if (err)
netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
(unsigned long long)bits, reg_name,
(unsigned long long)nr64_ipp(reg));
return err;
}
#define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
__niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
})
static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay)
{
while (--limit >= 0) {
u64 val = nr64(reg);
if (!(val & bits))
break;
udelay(delay);
}
if (limit < 0)
return -ENODEV;
return 0;
}
#define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
__niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
})
static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
u64 bits, int limit, int delay,
const char *reg_name)
{
int err;
nw64(reg, bits);
err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
if (err)
netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
(unsigned long long)bits, reg_name,
(unsigned long long)nr64(reg));
return err;
}
#define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
__niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
})
static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
{
u64 val = (u64) lp->timer;
if (on)
val |= LDG_IMGMT_ARM;
nw64(LDG_IMGMT(lp->ldg_num), val);
}
static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
{
unsigned long mask_reg, bits;
u64 val;
if (ldn < 0 || ldn > LDN_MAX)
return -EINVAL;
if (ldn < 64) {
mask_reg = LD_IM0(ldn);
bits = LD_IM0_MASK;
} else {
mask_reg = LD_IM1(ldn - 64);
bits = LD_IM1_MASK;
}
val = nr64(mask_reg);
if (on)
val &= ~bits;
else
val |= bits;
nw64(mask_reg, val);
return 0;
}
static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
{
struct niu_parent *parent = np->parent;
int i;
for (i = 0; i <= LDN_MAX; i++) {
int err;
if (parent->ldg_map[i] != lp->ldg_num)
continue;
err = niu_ldn_irq_enable(np, i, on);
if (err)
return err;
}
return 0;
}
static int niu_enable_interrupts(struct niu *np, int on)
{
int i;
for (i = 0; i < np->num_ldg; i++) {
struct niu_ldg *lp = &np->ldg[i];
int err;
err = niu_enable_ldn_in_ldg(np, lp, on);
if (err)
return err;
}
for (i = 0; i < np->num_ldg; i++)
niu_ldg_rearm(np, &np->ldg[i], on);
return 0;
}
static u32 phy_encode(u32 type, int port)
{
return type << (port * 2);
}
static u32 phy_decode(u32 val, int port)
{
return (val >> (port * 2)) & PORT_TYPE_MASK;
}
static int mdio_wait(struct niu *np)
{
int limit = 1000;
u64 val;
while (--limit > 0) {
val = nr64(MIF_FRAME_OUTPUT);
if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
return val & MIF_FRAME_OUTPUT_DATA;
udelay(10);
}
return -ENODEV;
}
static int mdio_read(struct niu *np, int port, int dev, int reg)
{
int err;
nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
err = mdio_wait(np);
if (err < 0)
return err;
nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
return mdio_wait(np);
}
static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
{
int err;
nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
err = mdio_wait(np);
if (err < 0)
return err;
nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
err = mdio_wait(np);
if (err < 0)
return err;
return 0;
}
static int mii_read(struct niu *np, int port, int reg)
{
nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
return mdio_wait(np);
}
static int mii_write(struct niu *np, int port, int reg, int data)
{
int err;
nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
err = mdio_wait(np);
if (err < 0)
return err;
return 0;
}
static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
{
int err;
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TX_CFG_L(channel),
val & 0xffff);
if (!err)
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TX_CFG_H(channel),
val >> 16);
return err;
}
static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
{
int err;
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_RX_CFG_L(channel),
val & 0xffff);
if (!err)
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_RX_CFG_H(channel),
val >> 16);
return err;
}
/* Mode is always 10G fiber. */
static int serdes_init_niu_10g_fiber(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u32 tx_cfg, rx_cfg;
unsigned long i;
tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
PLL_RX_CFG_EQ_LP_ADAPTIVE);
if (lp->loopback_mode == LOOPBACK_PHY) {
u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TEST_CFG_L, test_cfg);
tx_cfg |= PLL_TX_CFG_ENTEST;
rx_cfg |= PLL_RX_CFG_ENTEST;
}
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
int err = esr2_set_tx_cfg(np, i, tx_cfg);
if (err)
return err;
}
for (i = 0; i < 4; i++) {
int err = esr2_set_rx_cfg(np, i, rx_cfg);
if (err)
return err;
}
return 0;
}
static int serdes_init_niu_1g_serdes(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u16 pll_cfg, pll_sts;
int max_retry = 100;
u64 uninitialized_var(sig), mask, val;
u32 tx_cfg, rx_cfg;
unsigned long i;
int err;
tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
PLL_TX_CFG_RATE_HALF);
rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
PLL_RX_CFG_RATE_HALF);
if (np->port == 0)
rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
if (lp->loopback_mode == LOOPBACK_PHY) {
u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TEST_CFG_L, test_cfg);
tx_cfg |= PLL_TX_CFG_ENTEST;
rx_cfg |= PLL_RX_CFG_ENTEST;
}
/* Initialize PLL for 1G */
pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_CFG_L, pll_cfg);
if (err) {
netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
np->port, __func__);
return err;
}
pll_sts = PLL_CFG_ENPLL;
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_STS_L, pll_sts);
if (err) {
netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
np->port, __func__);
return err;
}
udelay(200);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
err = esr2_set_tx_cfg(np, i, tx_cfg);
if (err)
return err;
}
for (i = 0; i < 4; i++) {
err = esr2_set_rx_cfg(np, i, rx_cfg);
if (err)
return err;
}
switch (np->port) {
case 0:
val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
mask = val;
break;
case 1:
val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
mask = val;
break;
default:
return -EINVAL;
}
while (max_retry--) {
sig = nr64(ESR_INT_SIGNALS);
if ((sig & mask) == val)
break;
mdelay(500);
}
if ((sig & mask) != val) {
netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
np->port, (int)(sig & mask), (int)val);
return -ENODEV;
}
return 0;
}
static int serdes_init_niu_10g_serdes(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
int max_retry = 100;
u64 uninitialized_var(sig), mask, val;
unsigned long i;
int err;
tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
PLL_RX_CFG_EQ_LP_ADAPTIVE);
if (lp->loopback_mode == LOOPBACK_PHY) {
u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_TEST_CFG_L, test_cfg);
tx_cfg |= PLL_TX_CFG_ENTEST;
rx_cfg |= PLL_RX_CFG_ENTEST;
}
/* Initialize PLL for 10G */
pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
if (err) {
netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
np->port, __func__);
return err;
}
pll_sts = PLL_CFG_ENPLL;
err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
if (err) {
netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
np->port, __func__);
return err;
}
udelay(200);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
err = esr2_set_tx_cfg(np, i, tx_cfg);
if (err)
return err;
}
for (i = 0; i < 4; i++) {
err = esr2_set_rx_cfg(np, i, rx_cfg);
if (err)
return err;
}
/* check if serdes is ready */
switch (np->port) {
case 0:
mask = ESR_INT_SIGNALS_P0_BITS;
val = (ESR_INT_SRDY0_P0 |
ESR_INT_DET0_P0 |
ESR_INT_XSRDY_P0 |
ESR_INT_XDP_P0_CH3 |
ESR_INT_XDP_P0_CH2 |
ESR_INT_XDP_P0_CH1 |
ESR_INT_XDP_P0_CH0);
break;
case 1:
mask = ESR_INT_SIGNALS_P1_BITS;
val = (ESR_INT_SRDY0_P1 |
ESR_INT_DET0_P1 |
ESR_INT_XSRDY_P1 |
ESR_INT_XDP_P1_CH3 |
ESR_INT_XDP_P1_CH2 |
ESR_INT_XDP_P1_CH1 |
ESR_INT_XDP_P1_CH0);
break;
default:
return -EINVAL;
}
while (max_retry--) {
sig = nr64(ESR_INT_SIGNALS);
if ((sig & mask) == val)
break;
mdelay(500);
}
if ((sig & mask) != val) {
pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
np->port, (int)(sig & mask), (int)val);
/* 10G failed, try initializing at 1G */
err = serdes_init_niu_1g_serdes(np);
if (!err) {
np->flags &= ~NIU_FLAGS_10G;
np->mac_xcvr = MAC_XCVR_PCS;
} else {
netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
np->port);
return -ENODEV;
}
}
return 0;
}
static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
{
int err;
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
if (err >= 0) {
*val = (err & 0xffff);
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_CTRL_H(chan));
if (err >= 0)
*val |= ((err & 0xffff) << 16);
err = 0;
}
return err;
}
static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
{
int err;
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_GLUE_CTRL0_L(chan));
if (err >= 0) {
*val = (err & 0xffff);
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_GLUE_CTRL0_H(chan));
if (err >= 0) {
*val |= ((err & 0xffff) << 16);
err = 0;
}
}
return err;
}
static int esr_read_reset(struct niu *np, u32 *val)
{
int err;
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_L);
if (err >= 0) {
*val = (err & 0xffff);
err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_H);
if (err >= 0) {
*val |= ((err & 0xffff) << 16);
err = 0;
}
}
return err;
}
static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
{
int err;
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_CTRL_L(chan), val & 0xffff);
if (!err)
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_CTRL_H(chan), (val >> 16));
return err;
}
static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
{
int err;
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_GLUE_CTRL0_L(chan), val & 0xffff);
if (!err)
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_GLUE_CTRL0_H(chan), (val >> 16));
return err;
}
static int esr_reset(struct niu *np)
{
u32 uninitialized_var(reset);
int err;
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_L, 0x0000);
if (err)
return err;
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_H, 0xffff);
if (err)
return err;
udelay(200);
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_L, 0xffff);
if (err)
return err;
udelay(200);
err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
ESR_RXTX_RESET_CTRL_H, 0x0000);
if (err)
return err;
udelay(200);
err = esr_read_reset(np, &reset);
if (err)
return err;
if (reset != 0) {
netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
np->port, reset);
return -ENODEV;
}
return 0;
}
static int serdes_init_10g(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
unsigned long ctrl_reg, test_cfg_reg, i;
u64 ctrl_val, test_cfg_val, sig, mask, val;
int err;
switch (np->port) {
case 0:
ctrl_reg = ENET_SERDES_0_CTRL_CFG;
test_cfg_reg = ENET_SERDES_0_TEST_CFG;
break;
case 1:
ctrl_reg = ENET_SERDES_1_CTRL_CFG;
test_cfg_reg = ENET_SERDES_1_TEST_CFG;
break;
default:
return -EINVAL;
}
ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
ENET_SERDES_CTRL_SDET_1 |
ENET_SERDES_CTRL_SDET_2 |
ENET_SERDES_CTRL_SDET_3 |
(0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
test_cfg_val = 0;
if (lp->loopback_mode == LOOPBACK_PHY) {
test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_0_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_1_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_2_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_3_SHIFT));
}
nw64(ctrl_reg, ctrl_val);
nw64(test_cfg_reg, test_cfg_val);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
u32 rxtx_ctrl, glue0;
err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
if (err)
return err;
err = esr_read_glue0(np, i, &glue0);
if (err)
return err;
rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
(2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
ESR_GLUE_CTRL0_THCNT |
ESR_GLUE_CTRL0_BLTIME);
glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
(0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
(0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
(BLTIME_300_CYCLES <<
ESR_GLUE_CTRL0_BLTIME_SHIFT));
err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
if (err)
return err;
err = esr_write_glue0(np, i, glue0);
if (err)
return err;
}
err = esr_reset(np);
if (err)
return err;
sig = nr64(ESR_INT_SIGNALS);
switch (np->port) {
case 0:
mask = ESR_INT_SIGNALS_P0_BITS;
val = (ESR_INT_SRDY0_P0 |
ESR_INT_DET0_P0 |
ESR_INT_XSRDY_P0 |
ESR_INT_XDP_P0_CH3 |
ESR_INT_XDP_P0_CH2 |
ESR_INT_XDP_P0_CH1 |
ESR_INT_XDP_P0_CH0);
break;
case 1:
mask = ESR_INT_SIGNALS_P1_BITS;
val = (ESR_INT_SRDY0_P1 |
ESR_INT_DET0_P1 |
ESR_INT_XSRDY_P1 |
ESR_INT_XDP_P1_CH3 |
ESR_INT_XDP_P1_CH2 |
ESR_INT_XDP_P1_CH1 |
ESR_INT_XDP_P1_CH0);
break;
default:
return -EINVAL;
}
if ((sig & mask) != val) {
if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
return 0;
}
netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
np->port, (int)(sig & mask), (int)val);
return -ENODEV;
}
if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
return 0;
}
static int serdes_init_1g(struct niu *np)
{
u64 val;
val = nr64(ENET_SERDES_1_PLL_CFG);
val &= ~ENET_SERDES_PLL_FBDIV2;
switch (np->port) {
case 0:
val |= ENET_SERDES_PLL_HRATE0;
break;
case 1:
val |= ENET_SERDES_PLL_HRATE1;
break;
case 2:
val |= ENET_SERDES_PLL_HRATE2;
break;
case 3:
val |= ENET_SERDES_PLL_HRATE3;
break;
default:
return -EINVAL;
}
nw64(ENET_SERDES_1_PLL_CFG, val);
return 0;
}
static int serdes_init_1g_serdes(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
u64 ctrl_val, test_cfg_val, sig, mask, val;
int err;
u64 reset_val, val_rd;
val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
ENET_SERDES_PLL_FBDIV0;
switch (np->port) {
case 0:
reset_val = ENET_SERDES_RESET_0;
ctrl_reg = ENET_SERDES_0_CTRL_CFG;
test_cfg_reg = ENET_SERDES_0_TEST_CFG;
pll_cfg = ENET_SERDES_0_PLL_CFG;
break;
case 1:
reset_val = ENET_SERDES_RESET_1;
ctrl_reg = ENET_SERDES_1_CTRL_CFG;
test_cfg_reg = ENET_SERDES_1_TEST_CFG;
pll_cfg = ENET_SERDES_1_PLL_CFG;
break;
default:
return -EINVAL;
}
ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
ENET_SERDES_CTRL_SDET_1 |
ENET_SERDES_CTRL_SDET_2 |
ENET_SERDES_CTRL_SDET_3 |
(0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
test_cfg_val = 0;
if (lp->loopback_mode == LOOPBACK_PHY) {
test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_0_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_1_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_2_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_3_SHIFT));
}
nw64(ENET_SERDES_RESET, reset_val);
mdelay(20);
val_rd = nr64(ENET_SERDES_RESET);
val_rd &= ~reset_val;
nw64(pll_cfg, val);
nw64(ctrl_reg, ctrl_val);
nw64(test_cfg_reg, test_cfg_val);
nw64(ENET_SERDES_RESET, val_rd);
mdelay(2000);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
u32 rxtx_ctrl, glue0;
err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
if (err)
return err;
err = esr_read_glue0(np, i, &glue0);
if (err)
return err;
rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
(2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
ESR_GLUE_CTRL0_THCNT |
ESR_GLUE_CTRL0_BLTIME);
glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
(0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
(0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
(BLTIME_300_CYCLES <<
ESR_GLUE_CTRL0_BLTIME_SHIFT));
err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
if (err)
return err;
err = esr_write_glue0(np, i, glue0);
if (err)
return err;
}
sig = nr64(ESR_INT_SIGNALS);
switch (np->port) {
case 0:
val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
mask = val;
break;
case 1:
val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
mask = val;
break;
default:
return -EINVAL;
}
if ((sig & mask) != val) {
netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
np->port, (int)(sig & mask), (int)val);
return -ENODEV;
}
return 0;
}
static int link_status_1g_serdes(struct niu *np, int *link_up_p)
{
struct niu_link_config *lp = &np->link_config;
int link_up;
u64 val;
u16 current_speed;
unsigned long flags;
u8 current_duplex;
link_up = 0;
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
spin_lock_irqsave(&np->lock, flags);
val = nr64_pcs(PCS_MII_STAT);
if (val & PCS_MII_STAT_LINK_STATUS) {
link_up = 1;
current_speed = SPEED_1000;
current_duplex = DUPLEX_FULL;
}
lp->active_speed = current_speed;
lp->active_duplex = current_duplex;
spin_unlock_irqrestore(&np->lock, flags);
*link_up_p = link_up;
return 0;
}
static int link_status_10g_serdes(struct niu *np, int *link_up_p)
{
unsigned long flags;
struct niu_link_config *lp = &np->link_config;
int link_up = 0;
int link_ok = 1;
u64 val, val2;
u16 current_speed;
u8 current_duplex;
if (!(np->flags & NIU_FLAGS_10G))
return link_status_1g_serdes(np, link_up_p);
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
spin_lock_irqsave(&np->lock, flags);
val = nr64_xpcs(XPCS_STATUS(0));
val2 = nr64_mac(XMAC_INTER2);
if (val2 & 0x01000000)
link_ok = 0;
if ((val & 0x1000ULL) && link_ok) {
link_up = 1;
current_speed = SPEED_10000;
current_duplex = DUPLEX_FULL;
}
lp->active_speed = current_speed;
lp->active_duplex = current_duplex;
spin_unlock_irqrestore(&np->lock, flags);
*link_up_p = link_up;
return 0;
}
static int link_status_mii(struct niu *np, int *link_up_p)
{
struct niu_link_config *lp = &np->link_config;
int err;
int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
int supported, advertising, active_speed, active_duplex;
err = mii_read(np, np->phy_addr, MII_BMCR);
if (unlikely(err < 0))
return err;
bmcr = err;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (unlikely(err < 0))
return err;
bmsr = err;
err = mii_read(np, np->phy_addr, MII_ADVERTISE);
if (unlikely(err < 0))
return err;
advert = err;
err = mii_read(np, np->phy_addr, MII_LPA);
if (unlikely(err < 0))
return err;
lpa = err;
if (likely(bmsr & BMSR_ESTATEN)) {
err = mii_read(np, np->phy_addr, MII_ESTATUS);
if (unlikely(err < 0))
return err;
estatus = err;
err = mii_read(np, np->phy_addr, MII_CTRL1000);
if (unlikely(err < 0))
return err;
ctrl1000 = err;
err = mii_read(np, np->phy_addr, MII_STAT1000);
if (unlikely(err < 0))
return err;
stat1000 = err;
} else
estatus = ctrl1000 = stat1000 = 0;
supported = 0;
if (bmsr & BMSR_ANEGCAPABLE)
supported |= SUPPORTED_Autoneg;
if (bmsr & BMSR_10HALF)
supported |= SUPPORTED_10baseT_Half;
if (bmsr & BMSR_10FULL)
supported |= SUPPORTED_10baseT_Full;
if (bmsr & BMSR_100HALF)
supported |= SUPPORTED_100baseT_Half;
if (bmsr & BMSR_100FULL)
supported |= SUPPORTED_100baseT_Full;
if (estatus & ESTATUS_1000_THALF)
supported |= SUPPORTED_1000baseT_Half;
if (estatus & ESTATUS_1000_TFULL)
supported |= SUPPORTED_1000baseT_Full;
lp->supported = supported;
advertising = mii_adv_to_ethtool_adv_t(advert);
advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000);
if (bmcr & BMCR_ANENABLE) {
int neg, neg1000;
lp->active_autoneg = 1;
advertising |= ADVERTISED_Autoneg;
neg = advert & lpa;
neg1000 = (ctrl1000 << 2) & stat1000;
if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
active_speed = SPEED_1000;
else if (neg & LPA_100)
active_speed = SPEED_100;
else if (neg & (LPA_10HALF | LPA_10FULL))
active_speed = SPEED_10;
else
active_speed = SPEED_INVALID;
if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
active_duplex = DUPLEX_FULL;
else if (active_speed != SPEED_INVALID)
active_duplex = DUPLEX_HALF;
else
active_duplex = DUPLEX_INVALID;
} else {
lp->active_autoneg = 0;
if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
active_speed = SPEED_1000;
else if (bmcr & BMCR_SPEED100)
active_speed = SPEED_100;
else
active_speed = SPEED_10;
if (bmcr & BMCR_FULLDPLX)
active_duplex = DUPLEX_FULL;
else
active_duplex = DUPLEX_HALF;
}
lp->active_advertising = advertising;
lp->active_speed = active_speed;
lp->active_duplex = active_duplex;
*link_up_p = !!(bmsr & BMSR_LSTATUS);
return 0;
}
static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
{
struct niu_link_config *lp = &np->link_config;
u16 current_speed, bmsr;
unsigned long flags;
u8 current_duplex;
int err, link_up;
link_up = 0;
current_speed = SPEED_INVALID;
current_duplex = DUPLEX_INVALID;
spin_lock_irqsave(&np->lock, flags);
err = -EINVAL;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
goto out;
bmsr = err;
if (bmsr & BMSR_LSTATUS) {
link_up = 1;
current_speed = SPEED_1000;
current_duplex = DUPLEX_FULL;
}
lp->active_speed = current_speed;
lp->active_duplex = current_duplex;
err = 0;
out:
spin_unlock_irqrestore(&np->lock, flags);
*link_up_p = link_up;
return err;
}
static int link_status_1g(struct niu *np, int *link_up_p)
{
struct niu_link_config *lp = &np->link_config;
unsigned long flags;
int err;
spin_lock_irqsave(&np->lock, flags);
err = link_status_mii(np, link_up_p);
lp->supported |= SUPPORTED_TP;
lp->active_advertising |= ADVERTISED_TP;
spin_unlock_irqrestore(&np->lock, flags);
return err;
}
static int bcm8704_reset(struct niu *np)
{
int err, limit;
err = mdio_read(np, np->phy_addr,
BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
if (err < 0 || err == 0xffff)
return err;
err |= BMCR_RESET;
err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
MII_BMCR, err);
if (err)
return err;
limit = 1000;
while (--limit >= 0) {
err = mdio_read(np, np->phy_addr,
BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
if (err < 0)
return err;
if (!(err & BMCR_RESET))
break;
}
if (limit < 0) {
netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
np->port, (err & 0xffff));
return -ENODEV;
}
return 0;
}
/* When written, certain PHY registers need to be read back twice
* in order for the bits to settle properly.
*/
static int bcm8704_user_dev3_readback(struct niu *np, int reg)
{
int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
if (err < 0)
return err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
if (err < 0)
return err;
return 0;
}
static int bcm8706_init_user_dev3(struct niu *np)
{
int err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_OPT_DIGITAL_CTRL);
if (err < 0)
return err;
err &= ~USER_ODIG_CTRL_GPIOS;
err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
err |= USER_ODIG_CTRL_RESV2;
err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_OPT_DIGITAL_CTRL, err);
if (err)
return err;
mdelay(1000);
return 0;
}
static int bcm8704_init_user_dev3(struct niu *np)
{
int err;
err = mdio_write(np, np->phy_addr,
BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
(USER_CONTROL_OPTXRST_LVL |
USER_CONTROL_OPBIASFLT_LVL |
USER_CONTROL_OBTMPFLT_LVL |
USER_CONTROL_OPPRFLT_LVL |
USER_CONTROL_OPTXFLT_LVL |
USER_CONTROL_OPRXLOS_LVL |
USER_CONTROL_OPRXFLT_LVL |
USER_CONTROL_OPTXON_LVL |
(0x3f << USER_CONTROL_RES1_SHIFT)));
if (err)
return err;
err = mdio_write(np, np->phy_addr,
BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
(USER_PMD_TX_CTL_XFP_CLKEN |
(1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
(2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
USER_PMD_TX_CTL_TSCK_LPWREN));
if (err)
return err;
err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
if (err)
return err;
err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
if (err)
return err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_OPT_DIGITAL_CTRL);
if (err < 0)
return err;
err &= ~USER_ODIG_CTRL_GPIOS;
err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_OPT_DIGITAL_CTRL, err);
if (err)
return err;
mdelay(1000);
return 0;
}
static int mrvl88x2011_act_led(struct niu *np, int val)
{
int err;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
MRVL88X2011_LED_8_TO_11_CTL);
if (err < 0)
return err;
err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
MRVL88X2011_LED_8_TO_11_CTL, err);
}
static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
{
int err;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
MRVL88X2011_LED_BLINK_CTL);
if (err >= 0) {
err &= ~MRVL88X2011_LED_BLKRATE_MASK;
err |= (rate << 4);
err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
MRVL88X2011_LED_BLINK_CTL, err);
}
return err;
}
static int xcvr_init_10g_mrvl88x2011(struct niu *np)
{
int err;
/* Set LED functions */
err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
if (err)
return err;
/* led activity */
err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
if (err)
return err;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
MRVL88X2011_GENERAL_CTL);
if (err < 0)
return err;
err |= MRVL88X2011_ENA_XFPREFCLK;
err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
MRVL88X2011_GENERAL_CTL, err);
if (err < 0)
return err;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_PMA_PMD_CTL_1);
if (err < 0)
return err;
if (np->link_config.loopback_mode == LOOPBACK_MAC)
err |= MRVL88X2011_LOOPBACK;
else
err &= ~MRVL88X2011_LOOPBACK;
err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_PMA_PMD_CTL_1, err);
if (err < 0)
return err;
/* Enable PMD */
return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
}
static int xcvr_diag_bcm870x(struct niu *np)
{
u16 analog_stat0, tx_alarm_status;
int err = 0;
#if 1
err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
MII_STAT1000);
if (err < 0)
return err;
pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
if (err < 0)
return err;
pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
MII_NWAYTEST);
if (err < 0)
return err;
pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
#endif
/* XXX dig this out it might not be so useful XXX */
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_ANALOG_STATUS0);
if (err < 0)
return err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_ANALOG_STATUS0);
if (err < 0)
return err;
analog_stat0 = err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_TX_ALARM_STATUS);
if (err < 0)
return err;
err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
BCM8704_USER_TX_ALARM_STATUS);
if (err < 0)
return err;
tx_alarm_status = err;
if (analog_stat0 != 0x03fc) {
if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
pr_info("Port %u cable not connected or bad cable\n",
np->port);
} else if (analog_stat0 == 0x639c) {
pr_info("Port %u optical module is bad or missing\n",
np->port);
}
}
return 0;
}
static int xcvr_10g_set_lb_bcm870x(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
int err;
err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
MII_BMCR);
if (err < 0)
return err;
err &= ~BMCR_LOOPBACK;
if (lp->loopback_mode == LOOPBACK_MAC)
err |= BMCR_LOOPBACK;
err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
MII_BMCR, err);
if (err)
return err;
return 0;
}
static int xcvr_init_10g_bcm8706(struct niu *np)
{
int err = 0;
u64 val;
if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
(np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
return err;
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_LED_POLARITY;
val |= XMAC_CONFIG_FORCE_LED_ON;
nw64_mac(XMAC_CONFIG, val);
val = nr64(MIF_CONFIG);
val |= MIF_CONFIG_INDIRECT_MODE;
nw64(MIF_CONFIG, val);
err = bcm8704_reset(np);
if (err)
return err;
err = xcvr_10g_set_lb_bcm870x(np);
if (err)
return err;
err = bcm8706_init_user_dev3(np);
if (err)
return err;
err = xcvr_diag_bcm870x(np);
if (err)
return err;
return 0;
}
static int xcvr_init_10g_bcm8704(struct niu *np)
{
int err;
err = bcm8704_reset(np);
if (err)
return err;
err = bcm8704_init_user_dev3(np);
if (err)
return err;
err = xcvr_10g_set_lb_bcm870x(np);
if (err)
return err;
err = xcvr_diag_bcm870x(np);
if (err)
return err;
return 0;
}
static int xcvr_init_10g(struct niu *np)
{
int phy_id, err;
u64 val;
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_LED_POLARITY;
val |= XMAC_CONFIG_FORCE_LED_ON;
nw64_mac(XMAC_CONFIG, val);
/* XXX shared resource, lock parent XXX */
val = nr64(MIF_CONFIG);
val |= MIF_CONFIG_INDIRECT_MODE;
nw64(MIF_CONFIG, val);
phy_id = phy_decode(np->parent->port_phy, np->port);
phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
/* handle different phy types */
switch (phy_id & NIU_PHY_ID_MASK) {
case NIU_PHY_ID_MRVL88X2011:
err = xcvr_init_10g_mrvl88x2011(np);
break;
default: /* bcom 8704 */
err = xcvr_init_10g_bcm8704(np);
break;
}
return err;
}
static int mii_reset(struct niu *np)
{
int limit, err;
err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
if (err)
return err;
limit = 1000;
while (--limit >= 0) {
udelay(500);
err = mii_read(np, np->phy_addr, MII_BMCR);
if (err < 0)
return err;
if (!(err & BMCR_RESET))
break;
}
if (limit < 0) {
netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
np->port, err);
return -ENODEV;
}
return 0;
}
static int xcvr_init_1g_rgmii(struct niu *np)
{
int err;
u64 val;
u16 bmcr, bmsr, estat;
val = nr64(MIF_CONFIG);
val &= ~MIF_CONFIG_INDIRECT_MODE;
nw64(MIF_CONFIG, val);
err = mii_reset(np);
if (err)
return err;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
return err;
bmsr = err;
estat = 0;
if (bmsr & BMSR_ESTATEN) {
err = mii_read(np, np->phy_addr, MII_ESTATUS);
if (err < 0)
return err;
estat = err;
}
bmcr = 0;
err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
if (err)
return err;
if (bmsr & BMSR_ESTATEN) {
u16 ctrl1000 = 0;
if (estat & ESTATUS_1000_TFULL)
ctrl1000 |= ADVERTISE_1000FULL;
err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
if (err)
return err;
}
bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
if (err)
return err;
err = mii_read(np, np->phy_addr, MII_BMCR);
if (err < 0)
return err;
bmcr = mii_read(np, np->phy_addr, MII_BMCR);
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
return err;
return 0;
}
static int mii_init_common(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u16 bmcr, bmsr, adv, estat;
int err;
err = mii_reset(np);
if (err)
return err;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
return err;
bmsr = err;
estat = 0;
if (bmsr & BMSR_ESTATEN) {
err = mii_read(np, np->phy_addr, MII_ESTATUS);
if (err < 0)
return err;
estat = err;
}
bmcr = 0;
err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
if (err)
return err;
if (lp->loopback_mode == LOOPBACK_MAC) {
bmcr |= BMCR_LOOPBACK;
if (lp->active_speed == SPEED_1000)
bmcr |= BMCR_SPEED1000;
if (lp->active_duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
}
if (lp->loopback_mode == LOOPBACK_PHY) {
u16 aux;
aux = (BCM5464R_AUX_CTL_EXT_LB |
BCM5464R_AUX_CTL_WRITE_1);
err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
if (err)
return err;
}
if (lp->autoneg) {
u16 ctrl1000;
adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
if ((bmsr & BMSR_10HALF) &&
(lp->advertising & ADVERTISED_10baseT_Half))
adv |= ADVERTISE_10HALF;
if ((bmsr & BMSR_10FULL) &&
(lp->advertising & ADVERTISED_10baseT_Full))
adv |= ADVERTISE_10FULL;
if ((bmsr & BMSR_100HALF) &&
(lp->advertising & ADVERTISED_100baseT_Half))
adv |= ADVERTISE_100HALF;
if ((bmsr & BMSR_100FULL) &&
(lp->advertising & ADVERTISED_100baseT_Full))
adv |= ADVERTISE_100FULL;
err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
if (err)
return err;
if (likely(bmsr & BMSR_ESTATEN)) {
ctrl1000 = 0;
if ((estat & ESTATUS_1000_THALF) &&
(lp->advertising & ADVERTISED_1000baseT_Half))
ctrl1000 |= ADVERTISE_1000HALF;
if ((estat & ESTATUS_1000_TFULL) &&
(lp->advertising & ADVERTISED_1000baseT_Full))
ctrl1000 |= ADVERTISE_1000FULL;
err = mii_write(np, np->phy_addr,
MII_CTRL1000, ctrl1000);
if (err)
return err;
}
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
} else {
/* !lp->autoneg */
int fulldpx;
if (lp->duplex == DUPLEX_FULL) {
bmcr |= BMCR_FULLDPLX;
fulldpx = 1;
} else if (lp->duplex == DUPLEX_HALF)
fulldpx = 0;
else
return -EINVAL;
if (lp->speed == SPEED_1000) {
/* if X-full requested while not supported, or
X-half requested while not supported... */
if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
(!fulldpx && !(estat & ESTATUS_1000_THALF)))
return -EINVAL;
bmcr |= BMCR_SPEED1000;
} else if (lp->speed == SPEED_100) {
if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
(!fulldpx && !(bmsr & BMSR_100HALF)))
return -EINVAL;
bmcr |= BMCR_SPEED100;
} else if (lp->speed == SPEED_10) {
if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
(!fulldpx && !(bmsr & BMSR_10HALF)))
return -EINVAL;
} else
return -EINVAL;
}
err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
if (err)
return err;
#if 0
err = mii_read(np, np->phy_addr, MII_BMCR);
if (err < 0)
return err;
bmcr = err;
err = mii_read(np, np->phy_addr, MII_BMSR);
if (err < 0)
return err;
bmsr = err;
pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
np->port, bmcr, bmsr);
#endif
return 0;
}
static int xcvr_init_1g(struct niu *np)
{
u64 val;
/* XXX shared resource, lock parent XXX */
val = nr64(MIF_CONFIG);
val &= ~MIF_CONFIG_INDIRECT_MODE;
nw64(MIF_CONFIG, val);
return mii_init_common(np);
}
static int niu_xcvr_init(struct niu *np)
{
const struct niu_phy_ops *ops = np->phy_ops;
int err;
err = 0;
if (ops->xcvr_init)
err = ops->xcvr_init(np);
return err;
}
static int niu_serdes_init(struct niu *np)
{
const struct niu_phy_ops *ops = np->phy_ops;
int err;
err = 0;
if (ops->serdes_init)
err = ops->serdes_init(np);
return err;
}
static void niu_init_xif(struct niu *);
static void niu_handle_led(struct niu *, int status);
static int niu_link_status_common(struct niu *np, int link_up)
{
struct niu_link_config *lp = &np->link_config;
struct net_device *dev = np->dev;
unsigned long flags;
if (!netif_carrier_ok(dev) && link_up) {
netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
lp->active_speed == SPEED_10000 ? "10Gb/sec" :
lp->active_speed == SPEED_1000 ? "1Gb/sec" :
lp->active_speed == SPEED_100 ? "100Mbit/sec" :
"10Mbit/sec",
lp->active_duplex == DUPLEX_FULL ? "full" : "half");
spin_lock_irqsave(&np->lock, flags);
niu_init_xif(np);
niu_handle_led(np, 1);
spin_unlock_irqrestore(&np->lock, flags);
netif_carrier_on(dev);
} else if (netif_carrier_ok(dev) && !link_up) {
netif_warn(np, link, dev, "Link is down\n");
spin_lock_irqsave(&np->lock, flags);
niu_handle_led(np, 0);
spin_unlock_irqrestore(&np->lock, flags);
netif_carrier_off(dev);
}
return 0;
}
static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
{
int err, link_up, pma_status, pcs_status;
link_up = 0;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_10G_PMD_STATUS_2);
if (err < 0)
goto out;
/* Check PMA/PMD Register: 1.0001.2 == 1 */
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
MRVL88X2011_PMA_PMD_STATUS_1);
if (err < 0)
goto out;
pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
/* Check PMC Register : 3.0001.2 == 1: read twice */
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
MRVL88X2011_PMA_PMD_STATUS_1);
if (err < 0)
goto out;
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
MRVL88X2011_PMA_PMD_STATUS_1);
if (err < 0)
goto out;
pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
/* Check XGXS Register : 4.0018.[0-3,12] */
err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
MRVL88X2011_10G_XGXS_LANE_STAT);
if (err < 0)
goto out;
if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
0x800))
link_up = (pma_status && pcs_status) ? 1 : 0;
np->link_config.active_speed = SPEED_10000;
np->link_config.active_duplex = DUPLEX_FULL;
err = 0;
out:
mrvl88x2011_act_led(np, (link_up ?
MRVL88X2011_LED_CTL_PCS_ACT :
MRVL88X2011_LED_CTL_OFF));
*link_up_p = link_up;
return err;
}
static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
{
int err, link_up;
link_up = 0;
err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
BCM8704_PMD_RCV_SIGDET);
if (err < 0 || err == 0xffff)
goto out;
if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
err = 0;
goto out;
}
err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
BCM8704_PCS_10G_R_STATUS);
if (err < 0)
goto out;
if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
err = 0;
goto out;
}
err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
BCM8704_PHYXS_XGXS_LANE_STAT);
if (err < 0)
goto out;
if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
PHYXS_XGXS_LANE_STAT_MAGIC |
PHYXS_XGXS_LANE_STAT_PATTEST |
PHYXS_XGXS_LANE_STAT_LANE3 |
PHYXS_XGXS_LANE_STAT_LANE2 |
PHYXS_XGXS_LANE_STAT_LANE1 |
PHYXS_XGXS_LANE_STAT_LANE0)) {
err = 0;
np->link_config.active_speed = SPEED_INVALID;
np->link_config.active_duplex = DUPLEX_INVALID;
goto out;
}
link_up = 1;
np->link_config.active_speed = SPEED_10000;
np->link_config.active_duplex = DUPLEX_FULL;
err = 0;
out:
*link_up_p = link_up;
return err;
}
static int link_status_10g_bcom(struct niu *np, int *link_up_p)
{
int err, link_up;
link_up = 0;
err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
BCM8704_PMD_RCV_SIGDET);
if (err < 0)
goto out;
if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
err = 0;
goto out;
}
err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
BCM8704_PCS_10G_R_STATUS);
if (err < 0)
goto out;
if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
err = 0;
goto out;
}
err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
BCM8704_PHYXS_XGXS_LANE_STAT);
if (err < 0)
goto out;
if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
PHYXS_XGXS_LANE_STAT_MAGIC |
PHYXS_XGXS_LANE_STAT_LANE3 |
PHYXS_XGXS_LANE_STAT_LANE2 |
PHYXS_XGXS_LANE_STAT_LANE1 |
PHYXS_XGXS_LANE_STAT_LANE0)) {
err = 0;
goto out;
}
link_up = 1;
np->link_config.active_speed = SPEED_10000;
np->link_config.active_duplex = DUPLEX_FULL;
err = 0;
out:
*link_up_p = link_up;
return err;
}
static int link_status_10g(struct niu *np, int *link_up_p)
{
unsigned long flags;
int err = -EINVAL;
spin_lock_irqsave(&np->lock, flags);
if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
int phy_id;
phy_id = phy_decode(np->parent->port_phy, np->port);
phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
/* handle different phy types */
switch (phy_id & NIU_PHY_ID_MASK) {
case NIU_PHY_ID_MRVL88X2011:
err = link_status_10g_mrvl(np, link_up_p);
break;
default: /* bcom 8704 */
err = link_status_10g_bcom(np, link_up_p);
break;
}
}
spin_unlock_irqrestore(&np->lock, flags);
return err;
}
static int niu_10g_phy_present(struct niu *np)
{
u64 sig, mask, val;
sig = nr64(ESR_INT_SIGNALS);
switch (np->port) {
case 0:
mask = ESR_INT_SIGNALS_P0_BITS;
val = (ESR_INT_SRDY0_P0 |
ESR_INT_DET0_P0 |
ESR_INT_XSRDY_P0 |
ESR_INT_XDP_P0_CH3 |
ESR_INT_XDP_P0_CH2 |
ESR_INT_XDP_P0_CH1 |
ESR_INT_XDP_P0_CH0);
break;
case 1:
mask = ESR_INT_SIGNALS_P1_BITS;
val = (ESR_INT_SRDY0_P1 |
ESR_INT_DET0_P1 |
ESR_INT_XSRDY_P1 |
ESR_INT_XDP_P1_CH3 |
ESR_INT_XDP_P1_CH2 |
ESR_INT_XDP_P1_CH1 |
ESR_INT_XDP_P1_CH0);
break;
default:
return 0;
}
if ((sig & mask) != val)
return 0;
return 1;
}
static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
{
unsigned long flags;
int err = 0;
int phy_present;
int phy_present_prev;
spin_lock_irqsave(&np->lock, flags);
if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
1 : 0;
phy_present = niu_10g_phy_present(np);
if (phy_present != phy_present_prev) {
/* state change */
if (phy_present) {
/* A NEM was just plugged in */
np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
if (np->phy_ops->xcvr_init)
err = np->phy_ops->xcvr_init(np);
if (err) {
err = mdio_read(np, np->phy_addr,
BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
if (err == 0xffff) {
/* No mdio, back-to-back XAUI */
goto out;
}
/* debounce */
np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
}
} else {
np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
*link_up_p = 0;
netif_warn(np, link, np->dev,
"Hotplug PHY Removed\n");
}
}
out:
if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
err = link_status_10g_bcm8706(np, link_up_p);
if (err == 0xffff) {
/* No mdio, back-to-back XAUI: it is C10NEM */
*link_up_p = 1;
np->link_config.active_speed = SPEED_10000;
np->link_config.active_duplex = DUPLEX_FULL;
}
}
}
spin_unlock_irqrestore(&np->lock, flags);
return 0;
}
static int niu_link_status(struct niu *np, int *link_up_p)
{
const struct niu_phy_ops *ops = np->phy_ops;
int err;
err = 0;
if (ops->link_status)
err = ops->link_status(np, link_up_p);
return err;
}
static void niu_timer(struct timer_list *t)
{
struct niu *np = from_timer(np, t, timer);
unsigned long off;
int err, link_up;
err = niu_link_status(np, &link_up);
if (!err)
niu_link_status_common(np, link_up);
if (netif_carrier_ok(np->dev))
off = 5 * HZ;
else
off = 1 * HZ;
np->timer.expires = jiffies + off;
add_timer(&np->timer);
}
static const struct niu_phy_ops phy_ops_10g_serdes = {
.serdes_init = serdes_init_10g_serdes,
.link_status = link_status_10g_serdes,
};
static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
.serdes_init = serdes_init_niu_10g_serdes,
.link_status = link_status_10g_serdes,
};
static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
.serdes_init = serdes_init_niu_1g_serdes,
.link_status = link_status_1g_serdes,
};
static const struct niu_phy_ops phy_ops_1g_rgmii = {
.xcvr_init = xcvr_init_1g_rgmii,
.link_status = link_status_1g_rgmii,
};
static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
.serdes_init = serdes_init_niu_10g_fiber,
.xcvr_init = xcvr_init_10g,
.link_status = link_status_10g,
};
static const struct niu_phy_ops phy_ops_10g_fiber = {
.serdes_init = serdes_init_10g,
.xcvr_init = xcvr_init_10g,
.link_status = link_status_10g,
};
static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
.serdes_init = serdes_init_10g,
.xcvr_init = xcvr_init_10g_bcm8706,
.link_status = link_status_10g_hotplug,
};
static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
.serdes_init = serdes_init_niu_10g_fiber,
.xcvr_init = xcvr_init_10g_bcm8706,
.link_status = link_status_10g_hotplug,
};
static const struct niu_phy_ops phy_ops_10g_copper = {
.serdes_init = serdes_init_10g,
.link_status = link_status_10g, /* XXX */
};
static const struct niu_phy_ops phy_ops_1g_fiber = {
.serdes_init = serdes_init_1g,
.xcvr_init = xcvr_init_1g,
.link_status = link_status_1g,
};
static const struct niu_phy_ops phy_ops_1g_copper = {
.xcvr_init = xcvr_init_1g,
.link_status = link_status_1g,
};
struct niu_phy_template {
const struct niu_phy_ops *ops;
u32 phy_addr_base;
};
static const struct niu_phy_template phy_template_niu_10g_fiber = {
.ops = &phy_ops_10g_fiber_niu,
.phy_addr_base = 16,
};
static const struct niu_phy_template phy_template_niu_10g_serdes = {
.ops = &phy_ops_10g_serdes_niu,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_niu_1g_serdes = {
.ops = &phy_ops_1g_serdes_niu,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_10g_fiber = {
.ops = &phy_ops_10g_fiber,
.phy_addr_base = 8,
};
static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
.ops = &phy_ops_10g_fiber_hotplug,
.phy_addr_base = 8,
};
static const struct niu_phy_template phy_template_niu_10g_hotplug = {
.ops = &phy_ops_niu_10g_hotplug,
.phy_addr_base = 8,
};
static const struct niu_phy_template phy_template_10g_copper = {
.ops = &phy_ops_10g_copper,
.phy_addr_base = 10,
};
static const struct niu_phy_template phy_template_1g_fiber = {
.ops = &phy_ops_1g_fiber,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_1g_copper = {
.ops = &phy_ops_1g_copper,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_1g_rgmii = {
.ops = &phy_ops_1g_rgmii,
.phy_addr_base = 0,
};
static const struct niu_phy_template phy_template_10g_serdes = {
.ops = &phy_ops_10g_serdes,
.phy_addr_base = 0,
};
static int niu_atca_port_num[4] = {
0, 0, 11, 10
};
static int serdes_init_10g_serdes(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
u64 ctrl_val, test_cfg_val, sig, mask, val;
switch (np->port) {
case 0:
ctrl_reg = ENET_SERDES_0_CTRL_CFG;
test_cfg_reg = ENET_SERDES_0_TEST_CFG;
pll_cfg = ENET_SERDES_0_PLL_CFG;
break;
case 1:
ctrl_reg = ENET_SERDES_1_CTRL_CFG;
test_cfg_reg = ENET_SERDES_1_TEST_CFG;
pll_cfg = ENET_SERDES_1_PLL_CFG;
break;
default:
return -EINVAL;
}
ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
ENET_SERDES_CTRL_SDET_1 |
ENET_SERDES_CTRL_SDET_2 |
ENET_SERDES_CTRL_SDET_3 |
(0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
(0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
(0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
test_cfg_val = 0;
if (lp->loopback_mode == LOOPBACK_PHY) {
test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_0_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_1_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_2_SHIFT) |
(ENET_TEST_MD_PAD_LOOPBACK <<
ENET_SERDES_TEST_MD_3_SHIFT));
}
esr_reset(np);
nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
nw64(ctrl_reg, ctrl_val);
nw64(test_cfg_reg, test_cfg_val);
/* Initialize all 4 lanes of the SERDES. */
for (i = 0; i < 4; i++) {
u32 rxtx_ctrl, glue0;
int err;
err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
if (err)
return err;
err = esr_read_glue0(np, i, &glue0);
if (err)
return err;
rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
(2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
ESR_GLUE_CTRL0_THCNT |
ESR_GLUE_CTRL0_BLTIME);
glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
(0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
(0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
(BLTIME_300_CYCLES <<
ESR_GLUE_CTRL0_BLTIME_SHIFT));
err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
if (err)
return err;
err = esr_write_glue0(np, i, glue0);
if (err)
return err;
}
sig = nr64(ESR_INT_SIGNALS);
switch (np->port) {
case 0:
mask = ESR_INT_SIGNALS_P0_BITS;
val = (ESR_INT_SRDY0_P0 |
ESR_INT_DET0_P0 |
ESR_INT_XSRDY_P0 |
ESR_INT_XDP_P0_CH3 |
ESR_INT_XDP_P0_CH2 |
ESR_INT_XDP_P0_CH1 |
ESR_INT_XDP_P0_CH0);
break;
case 1:
mask = ESR_INT_SIGNALS_P1_BITS;
val = (ESR_INT_SRDY0_P1 |
ESR_INT_DET0_P1 |
ESR_INT_XSRDY_P1 |
ESR_INT_XDP_P1_CH3 |
ESR_INT_XDP_P1_CH2 |
ESR_INT_XDP_P1_CH1 |
ESR_INT_XDP_P1_CH0);
break;
default:
return -EINVAL;
}
if ((sig & mask) != val) {
int err;
err = serdes_init_1g_serdes(np);
if (!err) {
np->flags &= ~NIU_FLAGS_10G;
np->mac_xcvr = MAC_XCVR_PCS;
} else {
netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
np->port);
return -ENODEV;
}
}
return 0;
}
static int niu_determine_phy_disposition(struct niu *np)
{
struct niu_parent *parent = np->parent;
u8 plat_type = parent->plat_type;
const struct niu_phy_template *tp;
u32 phy_addr_off = 0;
if (plat_type == PLAT_TYPE_NIU) {
switch (np->flags &
(NIU_FLAGS_10G |
NIU_FLAGS_FIBER |
NIU_FLAGS_XCVR_SERDES)) {
case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
/* 10G Serdes */
tp = &phy_template_niu_10g_serdes;
break;
case NIU_FLAGS_XCVR_SERDES:
/* 1G Serdes */
tp = &phy_template_niu_1g_serdes;
break;
case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
/* 10G Fiber */
default:
if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
tp = &phy_template_niu_10g_hotplug;
if (np->port == 0)
phy_addr_off = 8;
if (np->port == 1)
phy_addr_off = 12;
} else {
tp = &phy_template_niu_10g_fiber;
phy_addr_off += np->port;
}
break;
}
} else {
switch (np->flags &
(NIU_FLAGS_10G |
NIU_FLAGS_FIBER |
NIU_FLAGS_XCVR_SERDES)) {
case 0:
/* 1G copper */
tp = &phy_template_1g_copper;
if (plat_type == PLAT_TYPE_VF_P0)
phy_addr_off = 10;
else if (plat_type == PLAT_TYPE_VF_P1)
phy_addr_off = 26;
phy_addr_off += (np->port ^ 0x3);
break;
case NIU_FLAGS_10G:
/* 10G copper */
tp = &phy_template_10g_copper;
break;
case NIU_FLAGS_FIBER:
/* 1G fiber */
tp = &phy_template_1g_fiber;
break;
case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
/* 10G fiber */
tp = &phy_template_10g_fiber;
if (plat_type == PLAT_TYPE_VF_P0 ||
plat_type == PLAT_TYPE_VF_P1)
phy_addr_off = 8;
phy_addr_off += np->port;
if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
tp = &phy_template_10g_fiber_hotplug;
if (np->port == 0)
phy_addr_off = 8;
if (np->port == 1)
phy_addr_off = 12;
}
break;
case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
case NIU_FLAGS_XCVR_SERDES:
switch(np->port) {
case 0:
case 1:
tp = &phy_template_10g_serdes;
break;
case 2:
case 3:
tp = &phy_template_1g_rgmii;
break;
default:
return -EINVAL;
}
phy_addr_off = niu_atca_port_num[np->port];
break;
default:
return -EINVAL;
}
}
np->phy_ops = tp->ops;
np->phy_addr = tp->phy_addr_base + phy_addr_off;
return 0;
}
static int niu_init_link(struct niu *np)
{
struct niu_parent *parent = np->parent;
int err, ignore;
if (parent->plat_type == PLAT_TYPE_NIU) {
err = niu_xcvr_init(np);
if (err)
return err;
msleep(200);
}
err = niu_serdes_init(np);
if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
return err;
msleep(200);
err = niu_xcvr_init(np);
if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
niu_link_status(np, &ignore);
return 0;
}
static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
{
u16 reg0 = addr[4] << 8 | addr[5];
u16 reg1 = addr[2] << 8 | addr[3];
u16 reg2 = addr[0] << 8 | addr[1];
if (np->flags & NIU_FLAGS_XMAC) {
nw64_mac(XMAC_ADDR0, reg0);
nw64_mac(XMAC_ADDR1, reg1);
nw64_mac(XMAC_ADDR2, reg2);
} else {
nw64_mac(BMAC_ADDR0, reg0);
nw64_mac(BMAC_ADDR1, reg1);
nw64_mac(BMAC_ADDR2, reg2);
}
}
static int niu_num_alt_addr(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
return XMAC_NUM_ALT_ADDR;
else
return BMAC_NUM_ALT_ADDR;
}
static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
{
u16 reg0 = addr[4] << 8 | addr[5];
u16 reg1 = addr[2] << 8 | addr[3];
u16 reg2 = addr[0] << 8 | addr[1];
if (index >= niu_num_alt_addr(np))
return -EINVAL;
if (np->flags & NIU_FLAGS_XMAC) {
nw64_mac(XMAC_ALT_ADDR0(index), reg0);
nw64_mac(XMAC_ALT_ADDR1(index), reg1);
nw64_mac(XMAC_ALT_ADDR2(index), reg2);
} else {
nw64_mac(BMAC_ALT_ADDR0(index), reg0);
nw64_mac(BMAC_ALT_ADDR1(index), reg1);
nw64_mac(BMAC_ALT_ADDR2(index), reg2);
}
return 0;
}
static int niu_enable_alt_mac(struct niu *np, int index, int on)
{
unsigned long reg;
u64 val, mask;
if (index >= niu_num_alt_addr(np))
return -EINVAL;
if (np->flags & NIU_FLAGS_XMAC) {
reg = XMAC_ADDR_CMPEN;
mask = 1 << index;
} else {
reg = BMAC_ADDR_CMPEN;
mask = 1 << (index + 1);
}
val = nr64_mac(reg);
if (on)
val |= mask;
else
val &= ~mask;
nw64_mac(reg, val);
return 0;
}
static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
int num, int mac_pref)
{
u64 val = nr64_mac(reg);
val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
val |= num;
if (mac_pref)
val |= HOST_INFO_MPR;
nw64_mac(reg, val);
}
static int __set_rdc_table_num(struct niu *np,
int xmac_index, int bmac_index,
int rdc_table_num, int mac_pref)
{
unsigned long reg;
if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
return -EINVAL;
if (np->flags & NIU_FLAGS_XMAC)
reg = XMAC_HOST_INFO(xmac_index);
else
reg = BMAC_HOST_INFO(bmac_index);
__set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
return 0;
}
static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
int mac_pref)
{
return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
}
static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
int mac_pref)
{
return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
}
static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
int table_num, int mac_pref)
{
if (idx >= niu_num_alt_addr(np))
return -EINVAL;
return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
}
static u64 vlan_entry_set_parity(u64 reg_val)
{
u64 port01_mask;
u64 port23_mask;
port01_mask = 0x00ff;
port23_mask = 0xff00;
if (hweight64(reg_val & port01_mask) & 1)
reg_val |= ENET_VLAN_TBL_PARITY0;
else
reg_val &= ~ENET_VLAN_TBL_PARITY0;
if (hweight64(reg_val & port23_mask) & 1)
reg_val |= ENET_VLAN_TBL_PARITY1;
else
reg_val &= ~ENET_VLAN_TBL_PARITY1;
return reg_val;
}
static void vlan_tbl_write(struct niu *np, unsigned long index,
int port, int vpr, int rdc_table)
{
u64 reg_val = nr64(ENET_VLAN_TBL(index));
reg_val &= ~((ENET_VLAN_TBL_VPR |
ENET_VLAN_TBL_VLANRDCTBLN) <<
ENET_VLAN_TBL_SHIFT(port));
if (vpr)
reg_val |= (ENET_VLAN_TBL_VPR <<
ENET_VLAN_TBL_SHIFT(port));
reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
reg_val = vlan_entry_set_parity(reg_val);
nw64(ENET_VLAN_TBL(index), reg_val);
}
static void vlan_tbl_clear(struct niu *np)
{
int i;
for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
nw64(ENET_VLAN_TBL(i), 0);
}
static int tcam_wait_bit(struct niu *np, u64 bit)
{
int limit = 1000;
while (--limit > 0) {
if (nr64(TCAM_CTL) & bit)
break;
udelay(1);
}
if (limit <= 0)
return -ENODEV;
return 0;
}
static int tcam_flush(struct niu *np, int index)
{
nw64(TCAM_KEY_0, 0x00);
nw64(TCAM_KEY_MASK_0, 0xff);
nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
return tcam_wait_bit(np, TCAM_CTL_STAT);
}
#if 0
static int tcam_read(struct niu *np, int index,
u64 *key, u64 *mask)
{
int err;
nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
err = tcam_wait_bit(np, TCAM_CTL_STAT);
if (!err) {
key[0] = nr64(TCAM_KEY_0);
key[1] = nr64(TCAM_KEY_1);
key[2] = nr64(TCAM_KEY_2);
key[3] = nr64(TCAM_KEY_3);
mask[0] = nr64(TCAM_KEY_MASK_0);
mask[1] = nr64(TCAM_KEY_MASK_1);
mask[2] = nr64(TCAM_KEY_MASK_2);
mask[3] = nr64(TCAM_KEY_MASK_3);
}
return err;
}
#endif
static int tcam_write(struct niu *np, int index,
u64 *key, u64 *mask)
{
nw64(TCAM_KEY_0, key[0]);
nw64(TCAM_KEY_1, key[1]);
nw64(TCAM_KEY_2, key[2]);
nw64(TCAM_KEY_3, key[3]);
nw64(TCAM_KEY_MASK_0, mask[0]);
nw64(TCAM_KEY_MASK_1, mask[1]);
nw64(TCAM_KEY_MASK_2, mask[2]);
nw64(TCAM_KEY_MASK_3, mask[3]);
nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
return tcam_wait_bit(np, TCAM_CTL_STAT);
}
#if 0
static int tcam_assoc_read(struct niu *np, int index, u64 *data)
{
int err;
nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
err = tcam_wait_bit(np, TCAM_CTL_STAT);
if (!err)
*data = nr64(TCAM_KEY_1);
return err;
}
#endif
static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
{
nw64(TCAM_KEY_1, assoc_data);
nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
return tcam_wait_bit(np, TCAM_CTL_STAT);
}
static void tcam_enable(struct niu *np, int on)
{
u64 val = nr64(FFLP_CFG_1);
if (on)
val &= ~FFLP_CFG_1_TCAM_DIS;
else
val |= FFLP_CFG_1_TCAM_DIS;
nw64(FFLP_CFG_1, val);
}
static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
{
u64 val = nr64(FFLP_CFG_1);
val &= ~(FFLP_CFG_1_FFLPINITDONE |
FFLP_CFG_1_CAMLAT |
FFLP_CFG_1_CAMRATIO);
val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
nw64(FFLP_CFG_1, val);
val = nr64(FFLP_CFG_1);
val |= FFLP_CFG_1_FFLPINITDONE;
nw64(FFLP_CFG_1, val);
}
static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
int on)
{
unsigned long reg;
u64 val;
if (class < CLASS_CODE_ETHERTYPE1 ||
class > CLASS_CODE_ETHERTYPE2)
return -EINVAL;
reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
val = nr64(reg);
if (on)
val |= L2_CLS_VLD;
else
val &= ~L2_CLS_VLD;
nw64(reg, val);
return 0;
}
#if 0
static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
u64 ether_type)
{
unsigned long reg;
u64 val;
if (class < CLASS_CODE_ETHERTYPE1 ||
class > CLASS_CODE_ETHERTYPE2 ||
(ether_type & ~(u64)0xffff) != 0)
return -EINVAL;
reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
val = nr64(reg);
val &= ~L2_CLS_ETYPE;
val |= (ether_type << L2_CLS_ETYPE_SHIFT);
nw64(reg, val);
return 0;
}
#endif
static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
int on)
{
unsigned long reg;
u64 val;
if (class < CLASS_CODE_USER_PROG1 ||
class > CLASS_CODE_USER_PROG4)
return -EINVAL;
reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
val = nr64(reg);
if (on)
val |= L3_CLS_VALID;
else
val &= ~L3_CLS_VALID;
nw64(reg, val);
return 0;
}
static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
int ipv6, u64 protocol_id,
u64 tos_mask, u64 tos_val)
{
unsigned long reg;
u64 val;
if (class < CLASS_CODE_USER_PROG1 ||
class > CLASS_CODE_USER_PROG4 ||
(protocol_id & ~(u64)0xff) != 0 ||
(tos_mask & ~(u64)0xff) != 0 ||
(tos_val & ~(u64)0xff) != 0)
return -EINVAL;
reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
val = nr64(reg);
val &= ~(L3_CLS_IPVER | L3_CLS_PID |
L3_CLS_TOSMASK | L3_CLS_TOS);
if (ipv6)
val |= L3_CLS_IPVER;
val |= (protocol_id << L3_CLS_PID_SHIFT);
val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
val |= (tos_val << L3_CLS_TOS_SHIFT);
nw64(reg, val);
return 0;
}
static int tcam_early_init(struct niu *np)
{
unsigned long i;
int err;
tcam_enable(np, 0);
tcam_set_lat_and_ratio(np,
DEFAULT_TCAM_LATENCY,
DEFAULT_TCAM_ACCESS_RATIO);
for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
err = tcam_user_eth_class_enable(np, i, 0);
if (err)
return err;
}
for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
err = tcam_user_ip_class_enable(np, i, 0);
if (err)
return err;
}
return 0;
}
static int tcam_flush_all(struct niu *np)
{
unsigned long i;
for (i = 0; i < np->parent->tcam_num_entries; i++) {
int err = tcam_flush(np, i);
if (err)
return err;
}
return 0;
}
static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
{
return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
}
#if 0
static int hash_read(struct niu *np, unsigned long partition,
unsigned long index, unsigned long num_entries,
u64 *data)
{
u64 val = hash_addr_regval(index, num_entries);
unsigned long i;
if (partition >= FCRAM_NUM_PARTITIONS ||
index + num_entries > FCRAM_SIZE)
return -EINVAL;
nw64(HASH_TBL_ADDR(partition), val);
for (i = 0; i < num_entries; i++)
data[i] = nr64(HASH_TBL_DATA(partition));
return 0;
}
#endif
static int hash_write(struct niu *np, unsigned long partition,
unsigned long index, unsigned long num_entries,
u64 *data)
{
u64 val = hash_addr_regval(index, num_entries);
unsigned long i;
if (partition >= FCRAM_NUM_PARTITIONS ||
index + (num_entries * 8) > FCRAM_SIZE)
return -EINVAL;
nw64(HASH_TBL_ADDR(partition), val);
for (i = 0; i < num_entries; i++)
nw64(HASH_TBL_DATA(partition), data[i]);
return 0;
}
static void fflp_reset(struct niu *np)
{
u64 val;
nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
udelay(10);
nw64(FFLP_CFG_1, 0);
val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
nw64(FFLP_CFG_1, val);
}
static void fflp_set_timings(struct niu *np)
{
u64 val = nr64(FFLP_CFG_1);
val &= ~FFLP_CFG_1_FFLPINITDONE;
val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
nw64(FFLP_CFG_1, val);
val = nr64(FFLP_CFG_1);
val |= FFLP_CFG_1_FFLPINITDONE;
nw64(FFLP_CFG_1, val);
val = nr64(FCRAM_REF_TMR);
val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
nw64(FCRAM_REF_TMR, val);
}
static int fflp_set_partition(struct niu *np, u64 partition,
u64 mask, u64 base, int enable)
{
unsigned long reg;
u64 val;
if (partition >= FCRAM_NUM_PARTITIONS ||
(mask & ~(u64)0x1f) != 0 ||
(base & ~(u64)0x1f) != 0)
return -EINVAL;
reg = FLW_PRT_SEL(partition);
val = nr64(reg);
val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
val |= (base << FLW_PRT_SEL_BASE_SHIFT);
if (enable)
val |= FLW_PRT_SEL_EXT;
nw64(reg, val);
return 0;
}
static int fflp_disable_all_partitions(struct niu *np)
{
unsigned long i;
for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
int err = fflp_set_partition(np, 0, 0, 0, 0);
if (err)
return err;
}
return 0;
}
static void fflp_llcsnap_enable(struct niu *np, int on)
{
u64 val = nr64(FFLP_CFG_1);
if (on)
val |= FFLP_CFG_1_LLCSNAP;
else
val &= ~FFLP_CFG_1_LLCSNAP;
nw64(FFLP_CFG_1, val);
}
static void fflp_errors_enable(struct niu *np, int on)
{
u64 val = nr64(FFLP_CFG_1);
if (on)
val &= ~FFLP_CFG_1_ERRORDIS;
else
val |= FFLP_CFG_1_ERRORDIS;
nw64(FFLP_CFG_1, val);
}
static int fflp_hash_clear(struct niu *np)
{
struct fcram_hash_ipv4 ent;
unsigned long i;
/* IPV4 hash entry with valid bit clear, rest is don't care. */
memset(&ent, 0, sizeof(ent));
ent.header = HASH_HEADER_EXT;
for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
int err = hash_write(np, 0, i, 1, (u64 *) &ent);
if (err)
return err;
}
return 0;
}
static int fflp_early_init(struct niu *np)
{
struct niu_parent *parent;
unsigned long flags;
int err;
niu_lock_parent(np, flags);
parent = np->parent;
err = 0;
if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
if (np->parent->plat_type != PLAT_TYPE_NIU) {
fflp_reset(np);
fflp_set_timings(np);
err = fflp_disable_all_partitions(np);
if (err) {
netif_printk(np, probe, KERN_DEBUG, np->dev,
"fflp_disable_all_partitions failed, err=%d\n",
err);
goto out;
}
}
err = tcam_early_init(np);
if (err) {
netif_printk(np, probe, KERN_DEBUG, np->dev,
"tcam_early_init failed, err=%d\n", err);
goto out;
}
fflp_llcsnap_enable(np, 1);
fflp_errors_enable(np, 0);
nw64(H1POLY, 0);
nw64(H2POLY, 0);
err = tcam_flush_all(np);
if (err) {
netif_printk(np, probe, KERN_DEBUG, np->dev,
"tcam_flush_all failed, err=%d\n", err);
goto out;
}
if (np->parent->plat_type != PLAT_TYPE_NIU) {
err = fflp_hash_clear(np);
if (err) {
netif_printk(np, probe, KERN_DEBUG, np->dev,
"fflp_hash_clear failed, err=%d\n",
err);
goto out;
}
}
vlan_tbl_clear(np);
parent->flags |= PARENT_FLGS_CLS_HWINIT;
}
out:
niu_unlock_parent(np, flags);
return err;
}
static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
{
if (class_code < CLASS_CODE_USER_PROG1 ||
class_code > CLASS_CODE_SCTP_IPV6)
return -EINVAL;
nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
return 0;
}
static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
{
if (class_code < CLASS_CODE_USER_PROG1 ||
class_code > CLASS_CODE_SCTP_IPV6)
return -EINVAL;
nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
return 0;
}
/* Entries for the ports are interleaved in the TCAM */
static u16 tcam_get_index(struct niu *np, u16 idx)
{
/* One entry reserved for IP fragment rule */
if (idx >= (np->clas.tcam_sz - 1))
idx = 0;
return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
}
static u16 tcam_get_size(struct niu *np)
{
/* One entry reserved for IP fragment rule */
return np->clas.tcam_sz - 1;
}
static u16 tcam_get_valid_entry_cnt(struct niu *np)
{
/* One entry reserved for IP fragment rule */
return np->clas.tcam_valid_entries - 1;
}
static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
u32 offset, u32 size, u32 truesize)
{
skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
skb->len += size;
skb->data_len += size;
skb->truesize += truesize;
}
static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
{
a >>= PAGE_SHIFT;
a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
return a & (MAX_RBR_RING_SIZE - 1);
}
static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
struct page ***link)
{
unsigned int h = niu_hash_rxaddr(rp, addr);
struct page *p, **pp;
addr &= PAGE_MASK;
pp = &rp->rxhash[h];
for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
if (p->index == addr) {
*link = pp;
goto found;
}
}
BUG();
found:
return p;
}
static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
{
unsigned int h = niu_hash_rxaddr(rp, base);
page->index = base;
page->mapping = (struct address_space *) rp->rxhash[h];
rp->rxhash[h] = page;
}
static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
gfp_t mask, int start_index)
{
struct page *page;
u64 addr;
int i;
page = alloc_page(mask);
if (!page)
return -ENOMEM;
addr = np->ops->map_page(np->device, page, 0,
PAGE_SIZE, DMA_FROM_DEVICE);
if (!addr) {
__free_page(page);
return -ENOMEM;
}
niu_hash_page(rp, page, addr);
if (rp->rbr_blocks_per_page > 1)
page_ref_add(page, rp->rbr_blocks_per_page - 1);
for (i = 0; i < rp->rbr_blocks_per_page; i++) {
__le32 *rbr = &rp->rbr[start_index + i];
*rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
addr += rp->rbr_block_size;
}
return 0;
}
static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
{
int index = rp->rbr_index;
rp->rbr_pending++;
if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
int err = niu_rbr_add_page(np, rp, mask, index);
if (unlikely(err)) {
rp->rbr_pending--;
return;
}
rp->rbr_index += rp->rbr_blocks_per_page;
BUG_ON(rp->rbr_index > rp->rbr_table_size);
if (rp->rbr_index == rp->rbr_table_size)
rp->rbr_index = 0;
if (rp->rbr_pending >= rp->rbr_kick_thresh) {
nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
rp->rbr_pending = 0;
}
}
}
static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
{
unsigned int index = rp->rcr_index;
int num_rcr = 0;
rp->rx_dropped++;
while (1) {
struct page *page, **link;
u64 addr, val;
u32 rcr_size;
num_rcr++;
val = le64_to_cpup(&rp->rcr[index]);
addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
page = niu_find_rxpage(rp, addr, &link);
rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
RCR_ENTRY_PKTBUFSZ_SHIFT];
if ((page->index + PAGE_SIZE) - rcr_size == addr) {
*link = (struct page *) page->mapping;
np->ops->unmap_page(np->device, page->index,
PAGE_SIZE, DMA_FROM_DEVICE);
page->index = 0;
page->mapping = NULL;
__free_page(page);
rp->rbr_refill_pending++;
}
index = NEXT_RCR(rp, index);
if (!(val & RCR_ENTRY_MULTI))
break;
}
rp->rcr_index = index;
return num_rcr;
}
static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
struct rx_ring_info *rp)
{
unsigned int index = rp->rcr_index;
struct rx_pkt_hdr1 *rh;
struct sk_buff *skb;
int len, num_rcr;
skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
if (unlikely(!skb))
return niu_rx_pkt_ignore(np, rp);
num_rcr = 0;
while (1) {
struct page *page, **link;
u32 rcr_size, append_size;
u64 addr, val, off;
num_rcr++;
val = le64_to_cpup(&rp->rcr[index]);
len = (val & RCR_ENTRY_L2_LEN) >>
RCR_ENTRY_L2_LEN_SHIFT;
append_size = len + ETH_HLEN + ETH_FCS_LEN;
addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
page = niu_find_rxpage(rp, addr, &link);
rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
RCR_ENTRY_PKTBUFSZ_SHIFT];
off = addr & ~PAGE_MASK;
if (num_rcr == 1) {
int ptype;
ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
if ((ptype == RCR_PKT_TYPE_TCP ||
ptype == RCR_PKT_TYPE_UDP) &&
!(val & (RCR_ENTRY_NOPORT |
RCR_ENTRY_ERROR)))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
} else if (!(val & RCR_ENTRY_MULTI))
append_size = append_size - skb->len;
niu_rx_skb_append(skb, page, off, append_size, rcr_size);
if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
*link = (struct page *) page->mapping;
np->ops->unmap_page(np->device, page->index,
PAGE_SIZE, DMA_FROM_DEVICE);
page->index = 0;
page->mapping = NULL;
rp->rbr_refill_pending++;
} else
get_page(page);
index = NEXT_RCR(rp, index);
if (!(val & RCR_ENTRY_MULTI))
break;
}
rp->rcr_index = index;
len += sizeof(*rh);
len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
__pskb_pull_tail(skb, len);
rh = (struct rx_pkt_hdr1 *) skb->data;
if (np->dev->features & NETIF_F_RXHASH)
skb_set_hash(skb,
((u32)rh->hashval2_0 << 24 |
(u32)rh->hashval2_1 << 16 |
(u32)rh->hashval1_1 << 8 |
(u32)rh->hashval1_2 << 0),
PKT_HASH_TYPE_L3);
skb_pull(skb, sizeof(*rh));
rp->rx_packets++;
rp->rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, np->dev);
skb_record_rx_queue(skb, rp->rx_channel);
napi_gro_receive(napi, skb);
return num_rcr;
}
static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
{
int blocks_per_page = rp->rbr_blocks_per_page;
int err, index = rp->rbr_index;
err = 0;
while (index < (rp->rbr_table_size - blocks_per_page)) {
err = niu_rbr_add_page(np, rp, mask, index);
if (unlikely(err))
break;
index += blocks_per_page;
}
rp->rbr_index = index;
return err;
}
static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
{
int i;
for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
struct page *page;
page = rp->rxhash[i];
while (page) {
struct page *next = (struct page *) page->mapping;
u64 base = page->index;
np->ops->unmap_page(np->device, base, PAGE_SIZE,
DMA_FROM_DEVICE);
page->index = 0;
page->mapping = NULL;
__free_page(page);
page = next;
}
}
for (i = 0; i < rp->rbr_table_size; i++)
rp->rbr[i] = cpu_to_le32(0);
rp->rbr_index = 0;
}
static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
{
struct tx_buff_info *tb = &rp->tx_buffs[idx];
struct sk_buff *skb = tb->skb;
struct tx_pkt_hdr *tp;
u64 tx_flags;
int i, len;
tp = (struct tx_pkt_hdr *) skb->data;
tx_flags = le64_to_cpup(&tp->flags);
rp->tx_packets++;
rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
((tx_flags & TXHDR_PAD) / 2));
len = skb_headlen(skb);
np->ops->unmap_single(np->device, tb->mapping,
len, DMA_TO_DEVICE);
if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
rp->mark_pending--;
tb->skb = NULL;
do {
idx = NEXT_TX(rp, idx);
len -= MAX_TX_DESC_LEN;
} while (len > 0);
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
tb = &rp->tx_buffs[idx];
BUG_ON(tb->skb != NULL);
np->ops->unmap_page(np->device, tb->mapping,
skb_frag_size(&skb_shinfo(skb)->frags[i]),
DMA_TO_DEVICE);
idx = NEXT_TX(rp, idx);
}
dev_kfree_skb(skb);
return idx;
}
#define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
{
struct netdev_queue *txq;
u16 pkt_cnt, tmp;
int cons, index;
u64 cs;
index = (rp - np->tx_rings);
txq = netdev_get_tx_queue(np->dev, index);
cs = rp->tx_cs;
if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
goto out;
tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
(TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
rp->last_pkt_cnt = tmp;
cons = rp->cons;
netif_printk(np, tx_done, KERN_DEBUG, np->dev,
"%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
while (pkt_cnt--)
cons = release_tx_packet(np, rp, cons);
rp->cons = cons;
smp_mb();
out:
if (unlikely(netif_tx_queue_stopped(txq) &&
(niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
__netif_tx_lock(txq, smp_processor_id());
if (netif_tx_queue_stopped(txq) &&
(niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
netif_tx_wake_queue(txq);
__netif_tx_unlock(txq);
}
}
static inline void niu_sync_rx_discard_stats(struct niu *np,
struct rx_ring_info *rp,
const int limit)
{
/* This elaborate scheme is needed for reading the RX discard
* counters, as they are only 16-bit and can overflow quickly,
* and because the overflow indication bit is not usable as
* the counter value does not wrap, but remains at max value
* 0xFFFF.
*
* In theory and in practice counters can be lost in between
* reading nr64() and clearing the counter nw64(). For this
* reason, the number of counter clearings nw64() is
* limited/reduced though the limit parameter.
*/
int rx_channel = rp->rx_channel;
u32 misc, wred;
/* RXMISC (Receive Miscellaneous Discard Count), covers the
* following discard events: IPP (Input Port Process),
* FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
* Block Ring) prefetch buffer is empty.
*/
misc = nr64(RXMISC(rx_channel));
if (unlikely((misc & RXMISC_COUNT) > limit)) {
nw64(RXMISC(rx_channel), 0);
rp->rx_errors += misc & RXMISC_COUNT;
if (unlikely(misc & RXMISC_OFLOW))
dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
rx_channel);
netif_printk(np, rx_err, KERN_DEBUG, np->dev,
"rx-%d: MISC drop=%u over=%u\n",
rx_channel, misc, misc-limit);
}
/* WRED (Weighted Random Early Discard) by hardware */
wred = nr64(RED_DIS_CNT(rx_channel));
if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
nw64(RED_DIS_CNT(rx_channel), 0);
rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
if (unlikely(wred & RED_DIS_CNT_OFLOW))
dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
netif_printk(np, rx_err, KERN_DEBUG, np->dev,
"rx-%d: WRED drop=%u over=%u\n",
rx_channel, wred, wred-limit);
}
}
static int niu_rx_work(struct napi_struct *napi, struct niu *np,
struct rx_ring_info *rp, int budget)
{
int qlen, rcr_done = 0, work_done = 0;
struct rxdma_mailbox *mbox = rp->mbox;
u64 stat;
#if 1
stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
#else
stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
#endif
mbox->rx_dma_ctl_stat = 0;
mbox->rcrstat_a = 0;
netif_printk(np, rx_status, KERN_DEBUG, np->dev,
"%s(chan[%d]), stat[%llx] qlen=%d\n",
__func__, rp->rx_channel, (unsigned long long)stat, qlen);
rcr_done = work_done = 0;
qlen = min(qlen, budget);
while (work_done < qlen) {
rcr_done += niu_process_rx_pkt(napi, np, rp);
work_done++;
}
if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
unsigned int i;
for (i = 0; i < rp->rbr_refill_pending; i++)
niu_rbr_refill(np, rp, GFP_ATOMIC);
rp->rbr_refill_pending = 0;
}
stat = (RX_DMA_CTL_STAT_MEX |
((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
/* Only sync discards stats when qlen indicate potential for drops */
if (qlen > 10)
niu_sync_rx_discard_stats(np, rp, 0x7FFF);
return work_done;
}
static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
{
u64 v0 = lp->v0;
u32 tx_vec = (v0 >> 32);
u32 rx_vec = (v0 & 0xffffffff);
int i, work_done = 0;
netif_printk(np, intr, KERN_DEBUG, np->dev,
"%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
if (tx_vec & (1 << rp->tx_channel))
niu_tx_work(np, rp);
nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
}
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
if (rx_vec & (1 << rp->rx_channel)) {
int this_work_done;
this_work_done = niu_rx_work(&lp->napi, np, rp,
budget);
budget -= this_work_done;
work_done += this_work_done;
}
nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
}
return work_done;
}
static int niu_poll(struct napi_struct *napi, int budget)
{
struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
struct niu *np = lp->np;
int work_done;
work_done = niu_poll_core(np, lp, budget);
if (work_done < budget) {
napi_complete_done(napi, work_done);
niu_ldg_rearm(np, lp, 1);
}
return work_done;
}
static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
u64 stat)
{
netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
pr_cont("RBR_TMOUT ");
if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
pr_cont("RSP_CNT ");
if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
pr_cont("BYTE_EN_BUS ");
if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
pr_cont("RSP_DAT ");
if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
pr_cont("RCR_ACK ");
if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
pr_cont("RCR_SHA_PAR ");
if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
pr_cont("RBR_PRE_PAR ");
if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
pr_cont("CONFIG ");
if (stat & RX_DMA_CTL_STAT_RCRINCON)
pr_cont("RCRINCON ");
if (stat & RX_DMA_CTL_STAT_RCRFULL)
pr_cont("RCRFULL ");
if (stat & RX_DMA_CTL_STAT_RBRFULL)
pr_cont("RBRFULL ");
if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
pr_cont("RBRLOGPAGE ");
if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
pr_cont("CFIGLOGPAGE ");
if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
pr_cont("DC_FIDO ");
pr_cont(")\n");
}
static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
{
u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
int err = 0;
if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
RX_DMA_CTL_STAT_PORT_FATAL))
err = -EINVAL;
if (err) {
netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
rp->rx_channel,
(unsigned long long) stat);
niu_log_rxchan_errors(np, rp, stat);
}
nw64(RX_DMA_CTL_STAT(rp->rx_channel),
stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
return err;
}
static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
u64 cs)
{
netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
if (cs & TX_CS_MBOX_ERR)
pr_cont("MBOX ");
if (cs & TX_CS_PKT_SIZE_ERR)
pr_cont("PKT_SIZE ");
if (cs & TX_CS_TX_RING_OFLOW)
pr_cont("TX_RING_OFLOW ");
if (cs & TX_CS_PREF_BUF_PAR_ERR)
pr_cont("PREF_BUF_PAR ");
if (cs & TX_CS_NACK_PREF)
pr_cont("NACK_PREF ");
if (cs & TX_CS_NACK_PKT_RD)
pr_cont("NACK_PKT_RD ");
if (cs & TX_CS_CONF_PART_ERR)
pr_cont("CONF_PART ");
if (cs & TX_CS_PKT_PRT_ERR)
pr_cont("PKT_PTR ");
pr_cont(")\n");
}
static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
{
u64 cs, logh, logl;
cs = nr64(TX_CS(rp->tx_channel));
logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
rp->tx_channel,
(unsigned long long)cs,
(unsigned long long)logh,
(unsigned long long)logl);
niu_log_txchan_errors(np, rp, cs);
return -ENODEV;
}
static int niu_mif_interrupt(struct niu *np)
{
u64 mif_status = nr64(MIF_STATUS);
int phy_mdint = 0;
if (np->flags & NIU_FLAGS_XMAC) {
u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
phy_mdint = 1;
}
netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
(unsigned long long)mif_status, phy_mdint);
return -ENODEV;
}
static void niu_xmac_interrupt(struct niu *np)
{
struct niu_xmac_stats *mp = &np->mac_stats.xmac;
u64 val;
val = nr64_mac(XTXMAC_STATUS);
if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
mp->tx_frames += TXMAC_FRM_CNT_COUNT;
if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
mp->tx_fifo_errors++;
if (val & XTXMAC_STATUS_TXMAC_OFLOW)
mp->tx_overflow_errors++;
if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
mp->tx_max_pkt_size_errors++;
if (val & XTXMAC_STATUS_TXMAC_UFLOW)
mp->tx_underflow_errors++;
val = nr64_mac(XRXMAC_STATUS);
if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
mp->rx_local_faults++;
if (val & XRXMAC_STATUS_RFLT_DET)
mp->rx_remote_faults++;
if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
mp->rx_octets += RXMAC_BT_CNT_COUNT;
if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
if (val & XRXMAC_STATUS_RXUFLOW)
mp->rx_underflows++;
if (val & XRXMAC_STATUS_RXOFLOW)
mp->rx_overflows++;
val = nr64_mac(XMAC_FC_STAT);
if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
mp->pause_off_state++;
if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
mp->pause_on_state++;
if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
mp->pause_received++;
}
static void niu_bmac_interrupt(struct niu *np)
{
struct niu_bmac_stats *mp = &np->mac_stats.bmac;
u64 val;
val = nr64_mac(BTXMAC_STATUS);
if (val & BTXMAC_STATUS_UNDERRUN)
mp->tx_underflow_errors++;
if (val & BTXMAC_STATUS_MAX_PKT_ERR)
mp->tx_max_pkt_size_errors++;
if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
val = nr64_mac(BRXMAC_STATUS);
if (val & BRXMAC_STATUS_OVERFLOW)
mp->rx_overflows++;
if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
if (val & BRXMAC_STATUS_CRC_ERR_EXP)
mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
if (val & BRXMAC_STATUS_LEN_ERR_EXP)
mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
val = nr64_mac(BMAC_CTRL_STATUS);
if (val & BMAC_CTRL_STATUS_NOPAUSE)
mp->pause_off_state++;
if (val & BMAC_CTRL_STATUS_PAUSE)
mp->pause_on_state++;
if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
mp->pause_received++;
}
static int niu_mac_interrupt(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_xmac_interrupt(np);
else
niu_bmac_interrupt(np);
return 0;
}
static void niu_log_device_error(struct niu *np, u64 stat)
{
netdev_err(np->dev, "Core device errors ( ");
if (stat & SYS_ERR_MASK_META2)
pr_cont("META2 ");
if (stat & SYS_ERR_MASK_META1)
pr_cont("META1 ");
if (stat & SYS_ERR_MASK_PEU)
pr_cont("PEU ");
if (stat & SYS_ERR_MASK_TXC)
pr_cont("TXC ");
if (stat & SYS_ERR_MASK_RDMC)
pr_cont("RDMC ");
if (stat & SYS_ERR_MASK_TDMC)
pr_cont("TDMC ");
if (stat & SYS_ERR_MASK_ZCP)
pr_cont("ZCP ");
if (stat & SYS_ERR_MASK_FFLP)
pr_cont("FFLP ");
if (stat & SYS_ERR_MASK_IPP)
pr_cont("IPP ");
if (stat & SYS_ERR_MASK_MAC)
pr_cont("MAC ");
if (stat & SYS_ERR_MASK_SMX)
pr_cont("SMX ");
pr_cont(")\n");
}
static int niu_device_error(struct niu *np)
{
u64 stat = nr64(SYS_ERR_STAT);
netdev_err(np->dev, "Core device error, stat[%llx]\n",
(unsigned long long)stat);
niu_log_device_error(np, stat);
return -ENODEV;
}
static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
u64 v0, u64 v1, u64 v2)
{
int i, err = 0;
lp->v0 = v0;
lp->v1 = v1;
lp->v2 = v2;
if (v1 & 0x00000000ffffffffULL) {
u32 rx_vec = (v1 & 0xffffffff);
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
if (rx_vec & (1 << rp->rx_channel)) {
int r = niu_rx_error(np, rp);
if (r) {
err = r;
} else {
if (!v0)
nw64(RX_DMA_CTL_STAT(rp->rx_channel),
RX_DMA_CTL_STAT_MEX);
}
}
}
}
if (v1 & 0x7fffffff00000000ULL) {
u32 tx_vec = (v1 >> 32) & 0x7fffffff;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
if (tx_vec & (1 << rp->tx_channel)) {
int r = niu_tx_error(np, rp);
if (r)
err = r;
}
}
}
if ((v0 | v1) & 0x8000000000000000ULL) {
int r = niu_mif_interrupt(np);
if (r)
err = r;
}
if (v2) {
if (v2 & 0x01ef) {
int r = niu_mac_interrupt(np);
if (r)
err = r;
}
if (v2 & 0x0210) {
int r = niu_device_error(np);
if (r)
err = r;
}
}
if (err)
niu_enable_interrupts(np, 0);
return err;
}
static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
int ldn)
{
struct rxdma_mailbox *mbox = rp->mbox;
u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
RX_DMA_CTL_STAT_RCRTO);
nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
netif_printk(np, intr, KERN_DEBUG, np->dev,
"%s() stat[%llx]\n", __func__, (unsigned long long)stat);
}
static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
int ldn)
{
rp->tx_cs = nr64(TX_CS(rp->tx_channel));
netif_printk(np, intr, KERN_DEBUG, np->dev,
"%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
}
static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
{
struct niu_parent *parent = np->parent;
u32 rx_vec, tx_vec;
int i;
tx_vec = (v0 >> 32);
rx_vec = (v0 & 0xffffffff);
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
int ldn = LDN_RXDMA(rp->rx_channel);
if (parent->ldg_map[ldn] != ldg)
continue;
nw64(LD_IM0(ldn), LD_IM0_MASK);
if (rx_vec & (1 << rp->rx_channel))
niu_rxchan_intr(np, rp, ldn);
}
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
int ldn = LDN_TXDMA(rp->tx_channel);
if (parent->ldg_map[ldn] != ldg)
continue;
nw64(LD_IM0(ldn), LD_IM0_MASK);
if (tx_vec & (1 << rp->tx_channel))
niu_txchan_intr(np, rp, ldn);
}
}
static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
u64 v0, u64 v1, u64 v2)
{
if (likely(napi_schedule_prep(&lp->napi))) {
lp->v0 = v0;
lp->v1 = v1;
lp->v2 = v2;
__niu_fastpath_interrupt(np, lp->ldg_num, v0);
__napi_schedule(&lp->napi);
}
}
static irqreturn_t niu_interrupt(int irq, void *dev_id)
{
struct niu_ldg *lp = dev_id;
struct niu *np = lp->np;
int ldg = lp->ldg_num;
unsigned long flags;
u64 v0, v1, v2;
if (netif_msg_intr(np))
printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
__func__, lp, ldg);
spin_lock_irqsave(&np->lock, flags);
v0 = nr64(LDSV0(ldg));
v1 = nr64(LDSV1(ldg));
v2 = nr64(LDSV2(ldg));
if (netif_msg_intr(np))
pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
(unsigned long long) v0,
(unsigned long long) v1,
(unsigned long long) v2);
if (unlikely(!v0 && !v1 && !v2)) {
spin_unlock_irqrestore(&np->lock, flags);
return IRQ_NONE;
}
if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
if (err)
goto out;
}
if (likely(v0 & ~((u64)1 << LDN_MIF)))
niu_schedule_napi(np, lp, v0, v1, v2);
else
niu_ldg_rearm(np, lp, 1);
out:
spin_unlock_irqrestore(&np->lock, flags);
return IRQ_HANDLED;
}
static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
{
if (rp->mbox) {
np->ops->free_coherent(np->device,
sizeof(struct rxdma_mailbox),
rp->mbox, rp->mbox_dma);
rp->mbox = NULL;
}
if (rp->rcr) {
np->ops->free_coherent(np->device,
MAX_RCR_RING_SIZE * sizeof(__le64),
rp->rcr, rp->rcr_dma);
rp->rcr = NULL;
rp->rcr_table_size = 0;
rp->rcr_index = 0;
}
if (rp->rbr) {
niu_rbr_free(np, rp);
np->ops->free_coherent(np->device,
MAX_RBR_RING_SIZE * sizeof(__le32),
rp->rbr, rp->rbr_dma);
rp->rbr = NULL;
rp->rbr_table_size = 0;
rp->rbr_index = 0;
}
kfree(rp->rxhash);
rp->rxhash = NULL;
}
static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
{
if (rp->mbox) {
np->ops->free_coherent(np->device,
sizeof(struct txdma_mailbox),
rp->mbox, rp->mbox_dma);
rp->mbox = NULL;
}
if (rp->descr) {
int i;
for (i = 0; i < MAX_TX_RING_SIZE; i++) {
if (rp->tx_buffs[i].skb)
(void) release_tx_packet(np, rp, i);
}
np->ops->free_coherent(np->device,
MAX_TX_RING_SIZE * sizeof(__le64),
rp->descr, rp->descr_dma);
rp->descr = NULL;
rp->pending = 0;
rp->prod = 0;
rp->cons = 0;
rp->wrap_bit = 0;
}
}
static void niu_free_channels(struct niu *np)
{
int i;
if (np->rx_rings) {
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_free_rx_ring_info(np, rp);
}
kfree(np->rx_rings);
np->rx_rings = NULL;
np->num_rx_rings = 0;
}
if (np->tx_rings) {
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
niu_free_tx_ring_info(np, rp);
}
kfree(np->tx_rings);
np->tx_rings = NULL;
np->num_tx_rings = 0;
}
}
static int niu_alloc_rx_ring_info(struct niu *np,
struct rx_ring_info *rp)
{
BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *),
GFP_KERNEL);
if (!rp->rxhash)
return -ENOMEM;
rp->mbox = np->ops->alloc_coherent(np->device,
sizeof(struct rxdma_mailbox),
&rp->mbox_dma, GFP_KERNEL);
if (!rp->mbox)
return -ENOMEM;
if ((unsigned long)rp->mbox & (64UL - 1)) {
netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
rp->mbox);
return -EINVAL;
}
rp->rcr = np->ops->alloc_coherent(np->device,
MAX_RCR_RING_SIZE * sizeof(__le64),
&rp->rcr_dma, GFP_KERNEL);
if (!rp->rcr)
return -ENOMEM;
if ((unsigned long)rp->rcr & (64UL - 1)) {
netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
rp->rcr);
return -EINVAL;
}
rp->rcr_table_size = MAX_RCR_RING_SIZE;
rp->rcr_index = 0;
rp->rbr = np->ops->alloc_coherent(np->device,
MAX_RBR_RING_SIZE * sizeof(__le32),
&rp->rbr_dma, GFP_KERNEL);
if (!rp->rbr)
return -ENOMEM;
if ((unsigned long)rp->rbr & (64UL - 1)) {
netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
rp->rbr);
return -EINVAL;
}
rp->rbr_table_size = MAX_RBR_RING_SIZE;
rp->rbr_index = 0;
rp->rbr_pending = 0;
return 0;
}
static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
{
int mtu = np->dev->mtu;
/* These values are recommended by the HW designers for fair
* utilization of DRR amongst the rings.
*/
rp->max_burst = mtu + 32;
if (rp->max_burst > 4096)
rp->max_burst = 4096;
}
static int niu_alloc_tx_ring_info(struct niu *np,
struct tx_ring_info *rp)
{
BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
rp->mbox = np->ops->alloc_coherent(np->device,
sizeof(struct txdma_mailbox),
&rp->mbox_dma, GFP_KERNEL);
if (!rp->mbox)
return -ENOMEM;
if ((unsigned long)rp->mbox & (64UL - 1)) {
netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
rp->mbox);
return -EINVAL;
}
rp->descr = np->ops->alloc_coherent(np->device,
MAX_TX_RING_SIZE * sizeof(__le64),
&rp->descr_dma, GFP_KERNEL);
if (!rp->descr)
return -ENOMEM;
if ((unsigned long)rp->descr & (64UL - 1)) {
netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
rp->descr);
return -EINVAL;
}
rp->pending = MAX_TX_RING_SIZE;
rp->prod = 0;
rp->cons = 0;
rp->wrap_bit = 0;
/* XXX make these configurable... XXX */
rp->mark_freq = rp->pending / 4;
niu_set_max_burst(np, rp);
return 0;
}
static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
{
u16 bss;
bss = min(PAGE_SHIFT, 15);
rp->rbr_block_size = 1 << bss;
rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
rp->rbr_sizes[0] = 256;
rp->rbr_sizes[1] = 1024;
if (np->dev->mtu > ETH_DATA_LEN) {
switch (PAGE_SIZE) {
case 4 * 1024:
rp->rbr_sizes[2] = 4096;
break;
default:
rp->rbr_sizes[2] = 8192;
break;
}
} else {
rp->rbr_sizes[2] = 2048;
}
rp->rbr_sizes[3] = rp->rbr_block_size;
}
static int niu_alloc_channels(struct niu *np)
{
struct niu_parent *parent = np->parent;
int first_rx_channel, first_tx_channel;
int num_rx_rings, num_tx_rings;
struct rx_ring_info *rx_rings;
struct tx_ring_info *tx_rings;
int i, port, err;
port = np->port;
first_rx_channel = first_tx_channel = 0;
for (i = 0; i < port; i++) {
first_rx_channel += parent->rxchan_per_port[i];
first_tx_channel += parent->txchan_per_port[i];
}
num_rx_rings = parent->rxchan_per_port[port];
num_tx_rings = parent->txchan_per_port[port];
rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
GFP_KERNEL);
err = -ENOMEM;
if (!rx_rings)
goto out_err;
np->num_rx_rings = num_rx_rings;
smp_wmb();
np->rx_rings = rx_rings;
netif_set_real_num_rx_queues(np->dev, num_rx_rings);
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
rp->np = np;
rp->rx_channel = first_rx_channel + i;
err = niu_alloc_rx_ring_info(np, rp);
if (err)
goto out_err;
niu_size_rbr(np, rp);
/* XXX better defaults, configurable, etc... XXX */
rp->nonsyn_window = 64;
rp->nonsyn_threshold = rp->rcr_table_size - 64;
rp->syn_window = 64;
rp->syn_threshold = rp->rcr_table_size - 64;
rp->rcr_pkt_threshold = 16;
rp->rcr_timeout = 8;
rp->rbr_kick_thresh = RBR_REFILL_MIN;
if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
err = niu_rbr_fill(np, rp, GFP_KERNEL);
if (err)
return err;
}
tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
GFP_KERNEL);
err = -ENOMEM;
if (!tx_rings)
goto out_err;
np->num_tx_rings = num_tx_rings;
smp_wmb();
np->tx_rings = tx_rings;
netif_set_real_num_tx_queues(np->dev, num_tx_rings);
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
rp->np = np;
rp->tx_channel = first_tx_channel + i;
err = niu_alloc_tx_ring_info(np, rp);
if (err)
goto out_err;
}
return 0;
out_err:
niu_free_channels(np);
return err;
}
static int niu_tx_cs_sng_poll(struct niu *np, int channel)
{
int limit = 1000;
while (--limit > 0) {
u64 val = nr64(TX_CS(channel));
if (val & TX_CS_SNG_STATE)
return 0;
}
return -ENODEV;
}
static int niu_tx_channel_stop(struct niu *np, int channel)
{
u64 val = nr64(TX_CS(channel));
val |= TX_CS_STOP_N_GO;
nw64(TX_CS(channel), val);
return niu_tx_cs_sng_poll(np, channel);
}
static int niu_tx_cs_reset_poll(struct niu *np, int channel)
{
int limit = 1000;
while (--limit > 0) {
u64 val = nr64(TX_CS(channel));
if (!(val & TX_CS_RST))
return 0;
}
return -ENODEV;
}
static int niu_tx_channel_reset(struct niu *np, int channel)
{
u64 val = nr64(TX_CS(channel));
int err;
val |= TX_CS_RST;
nw64(TX_CS(channel), val);
err = niu_tx_cs_reset_poll(np, channel);
if (!err)
nw64(TX_RING_KICK(channel), 0);
return err;
}
static int niu_tx_channel_lpage_init(struct niu *np, int channel)
{
u64 val;
nw64(TX_LOG_MASK1(channel), 0);
nw64(TX_LOG_VAL1(channel), 0);
nw64(TX_LOG_MASK2(channel), 0);
nw64(TX_LOG_VAL2(channel), 0);
nw64(TX_LOG_PAGE_RELO1(channel), 0);
nw64(TX_LOG_PAGE_RELO2(channel), 0);
nw64(TX_LOG_PAGE_HDL(channel), 0);
val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
nw64(TX_LOG_PAGE_VLD(channel), val);
/* XXX TXDMA 32bit mode? XXX */
return 0;
}
static void niu_txc_enable_port(struct niu *np, int on)
{
unsigned long flags;
u64 val, mask;
niu_lock_parent(np, flags);
val = nr64(TXC_CONTROL);
mask = (u64)1 << np->port;
if (on) {
val |= TXC_CONTROL_ENABLE | mask;
} else {
val &= ~mask;
if ((val & ~TXC_CONTROL_ENABLE) == 0)
val &= ~TXC_CONTROL_ENABLE;
}
nw64(TXC_CONTROL, val);
niu_unlock_parent(np, flags);
}
static void niu_txc_set_imask(struct niu *np, u64 imask)
{
unsigned long flags;
u64 val;
niu_lock_parent(np, flags);
val = nr64(TXC_INT_MASK);
val &= ~TXC_INT_MASK_VAL(np->port);
val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
niu_unlock_parent(np, flags);
}
static void niu_txc_port_dma_enable(struct niu *np, int on)
{
u64 val = 0;
if (on) {
int i;
for (i = 0; i < np->num_tx_rings; i++)
val |= (1 << np->tx_rings[i].tx_channel);
}
nw64(TXC_PORT_DMA(np->port), val);
}
static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
{
int err, channel = rp->tx_channel;
u64 val, ring_len;
err = niu_tx_channel_stop(np, channel);
if (err)
return err;
err = niu_tx_channel_reset(np, channel);
if (err)
return err;
err = niu_tx_channel_lpage_init(np, channel);
if (err)
return err;
nw64(TXC_DMA_MAX(channel), rp->max_burst);
nw64(TX_ENT_MSK(channel), 0);
if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
TX_RNG_CFIG_STADDR)) {
netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
channel, (unsigned long long)rp->descr_dma);
return -EINVAL;
}
/* The length field in TX_RNG_CFIG is measured in 64-byte
* blocks. rp->pending is the number of TX descriptors in
* our ring, 8 bytes each, thus we divide by 8 bytes more
* to get the proper value the chip wants.
*/
ring_len = (rp->pending / 8);
val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
rp->descr_dma);
nw64(TX_RNG_CFIG(channel), val);
if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
channel, (unsigned long long)rp->mbox_dma);
return -EINVAL;
}
nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
nw64(TX_CS(channel), 0);
rp->last_pkt_cnt = 0;
return 0;
}
static void niu_init_rdc_groups(struct niu *np)
{
struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
int i, first_table_num = tp->first_table_num;
for (i = 0; i < tp->num_tables; i++) {
struct rdc_table *tbl = &tp->tables[i];
int this_table = first_table_num + i;
int slot;
for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
nw64(RDC_TBL(this_table, slot),
tbl->rxdma_channel[slot]);
}
nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
}
static void niu_init_drr_weight(struct niu *np)
{
int type = phy_decode(np->parent->port_phy, np->port);
u64 val;
switch (type) {
case PORT_TYPE_10G:
val = PT_DRR_WEIGHT_DEFAULT_10G;
break;
case PORT_TYPE_1G:
default:
val = PT_DRR_WEIGHT_DEFAULT_1G;
break;
}
nw64(PT_DRR_WT(np->port), val);
}
static int niu_init_hostinfo(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
int i, err, num_alt = niu_num_alt_addr(np);
int first_rdc_table = tp->first_table_num;
err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
if (err)
return err;
err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
if (err)
return err;
for (i = 0; i < num_alt; i++) {
err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
if (err)
return err;
}
return 0;
}
static int niu_rx_channel_reset(struct niu *np, int channel)
{
return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
RXDMA_CFIG1_RST, 1000, 10,
"RXDMA_CFIG1");
}
static int niu_rx_channel_lpage_init(struct niu *np, int channel)
{
u64 val;
nw64(RX_LOG_MASK1(channel), 0);
nw64(RX_LOG_VAL1(channel), 0);
nw64(RX_LOG_MASK2(channel), 0);
nw64(RX_LOG_VAL2(channel), 0);
nw64(RX_LOG_PAGE_RELO1(channel), 0);
nw64(RX_LOG_PAGE_RELO2(channel), 0);
nw64(RX_LOG_PAGE_HDL(channel), 0);
val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
nw64(RX_LOG_PAGE_VLD(channel), val);
return 0;
}
static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
{
u64 val;
val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
nw64(RDC_RED_PARA(rp->rx_channel), val);
}
static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
{
u64 val = 0;
*ret = 0;
switch (rp->rbr_block_size) {
case 4 * 1024:
val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
break;
case 8 * 1024:
val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
break;
case 16 * 1024:
val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
break;
case 32 * 1024:
val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
break;
default:
return -EINVAL;
}
val |= RBR_CFIG_B_VLD2;
switch (rp->rbr_sizes[2]) {
case 2 * 1024:
val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
break;
case 4 * 1024:
val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
break;
case 8 * 1024:
val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
break;
case 16 * 1024:
val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
break;
default:
return -EINVAL;
}
val |= RBR_CFIG_B_VLD1;
switch (rp->rbr_sizes[1]) {
case 1 * 1024:
val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
break;
case 2 * 1024:
val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
break;
case 4 * 1024:
val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
break;
case 8 * 1024:
val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
break;
default:
return -EINVAL;
}
val |= RBR_CFIG_B_VLD0;
switch (rp->rbr_sizes[0]) {
case 256:
val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
break;
case 512:
val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
break;
case 1 * 1024:
val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
break;
case 2 * 1024:
val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
break;
default:
return -EINVAL;
}
*ret = val;
return 0;
}
static int niu_enable_rx_channel(struct niu *np, int channel, int on)
{
u64 val = nr64(RXDMA_CFIG1(channel));
int limit;
if (on)
val |= RXDMA_CFIG1_EN;
else
val &= ~RXDMA_CFIG1_EN;
nw64(RXDMA_CFIG1(channel), val);
limit = 1000;
while (--limit > 0) {
if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
break;
udelay(10);
}
if (limit <= 0)
return -ENODEV;
return 0;
}
static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
{
int err, channel = rp->rx_channel;
u64 val;
err = niu_rx_channel_reset(np, channel);
if (err)
return err;
err = niu_rx_channel_lpage_init(np, channel);
if (err)
return err;
niu_rx_channel_wred_init(np, rp);
nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
nw64(RX_DMA_CTL_STAT(channel),
(RX_DMA_CTL_STAT_MEX |
RX_DMA_CTL_STAT_RCRTHRES |
RX_DMA_CTL_STAT_RCRTO |
RX_DMA_CTL_STAT_RBR_EMPTY));
nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
nw64(RXDMA_CFIG2(channel),
((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
RXDMA_CFIG2_FULL_HDR));
nw64(RBR_CFIG_A(channel),
((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
(rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
err = niu_compute_rbr_cfig_b(rp, &val);
if (err)
return err;
nw64(RBR_CFIG_B(channel), val);
nw64(RCRCFIG_A(channel),
((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
(rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
nw64(RCRCFIG_B(channel),
((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
RCRCFIG_B_ENTOUT |
((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
err = niu_enable_rx_channel(np, channel, 1);
if (err)
return err;
nw64(RBR_KICK(channel), rp->rbr_index);
val = nr64(RX_DMA_CTL_STAT(channel));
val |= RX_DMA_CTL_STAT_RBR_EMPTY;
nw64(RX_DMA_CTL_STAT(channel), val);
return 0;
}
static int niu_init_rx_channels(struct niu *np)
{
unsigned long flags;
u64 seed = jiffies_64;
int err, i;
niu_lock_parent(np, flags);
nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
niu_unlock_parent(np, flags);
/* XXX RXDMA 32bit mode? XXX */
niu_init_rdc_groups(np);
niu_init_drr_weight(np);
err = niu_init_hostinfo(np);
if (err)
return err;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
err = niu_init_one_rx_channel(np, rp);
if (err)
return err;
}
return 0;
}
static int niu_set_ip_frag_rule(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_classifier *cp = &np->clas;
struct niu_tcam_entry *tp;
int index, err;
index = cp->tcam_top;
tp = &parent->tcam[index];
/* Note that the noport bit is the same in both ipv4 and
* ipv6 format TCAM entries.
*/
memset(tp, 0, sizeof(*tp));
tp->key[1] = TCAM_V4KEY1_NOPORT;
tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
err = tcam_write(np, index, tp->key, tp->key_mask);
if (err)
return err;
err = tcam_assoc_write(np, index, tp->assoc_data);
if (err)
return err;
tp->valid = 1;
cp->tcam_valid_entries++;
return 0;
}
static int niu_init_classifier_hw(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_classifier *cp = &np->clas;
int i, err;
nw64(H1POLY, cp->h1_init);
nw64(H2POLY, cp->h2_init);
err = niu_init_hostinfo(np);
if (err)
return err;
for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
vlan_tbl_write(np, i, np->port,
vp->vlan_pref, vp->rdc_num);
}
for (i = 0; i < cp->num_alt_mac_mappings; i++) {
struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
ap->rdc_num, ap->mac_pref);
if (err)
return err;
}
for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
int index = i - CLASS_CODE_USER_PROG1;
err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
if (err)
return err;
err = niu_set_flow_key(np, i, parent->flow_key[index]);
if (err)
return err;
}
err = niu_set_ip_frag_rule(np);
if (err)
return err;
tcam_enable(np, 1);
return 0;
}
static int niu_zcp_write(struct niu *np, int index, u64 *data)
{
nw64(ZCP_RAM_DATA0, data[0]);
nw64(ZCP_RAM_DATA1, data[1]);
nw64(ZCP_RAM_DATA2, data[2]);
nw64(ZCP_RAM_DATA3, data[3]);
nw64(ZCP_RAM_DATA4, data[4]);
nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
nw64(ZCP_RAM_ACC,
(ZCP_RAM_ACC_WRITE |
(0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
(ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
1000, 100);
}
static int niu_zcp_read(struct niu *np, int index, u64 *data)
{
int err;
err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
1000, 100);
if (err) {
netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
(unsigned long long)nr64(ZCP_RAM_ACC));
return err;
}
nw64(ZCP_RAM_ACC,
(ZCP_RAM_ACC_READ |
(0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
(ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
1000, 100);
if (err) {
netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
(unsigned long long)nr64(ZCP_RAM_ACC));
return err;
}
data[0] = nr64(ZCP_RAM_DATA0);
data[1] = nr64(ZCP_RAM_DATA1);
data[2] = nr64(ZCP_RAM_DATA2);
data[3] = nr64(ZCP_RAM_DATA3);
data[4] = nr64(ZCP_RAM_DATA4);
return 0;
}
static void niu_zcp_cfifo_reset(struct niu *np)
{
u64 val = nr64(RESET_CFIFO);
val |= RESET_CFIFO_RST(np->port);
nw64(RESET_CFIFO, val);
udelay(10);
val &= ~RESET_CFIFO_RST(np->port);
nw64(RESET_CFIFO, val);
}
static int niu_init_zcp(struct niu *np)
{
u64 data[5], rbuf[5];
int i, max, err;
if (np->parent->plat_type != PLAT_TYPE_NIU) {
if (np->port == 0 || np->port == 1)
max = ATLAS_P0_P1_CFIFO_ENTRIES;
else
max = ATLAS_P2_P3_CFIFO_ENTRIES;
} else
max = NIU_CFIFO_ENTRIES;
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
data[4] = 0;
for (i = 0; i < max; i++) {
err = niu_zcp_write(np, i, data);
if (err)
return err;
err = niu_zcp_read(np, i, rbuf);
if (err)
return err;
}
niu_zcp_cfifo_reset(np);
nw64(CFIFO_ECC(np->port), 0);
nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
(void) nr64(ZCP_INT_STAT);
nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
return 0;
}
static void niu_ipp_write(struct niu *np, int index, u64 *data)
{
u64 val = nr64_ipp(IPP_CFIG);
nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
nw64_ipp(IPP_DFIFO_WR_PTR, index);
nw64_ipp(IPP_DFIFO_WR0, data[0]);
nw64_ipp(IPP_DFIFO_WR1, data[1]);
nw64_ipp(IPP_DFIFO_WR2, data[2]);
nw64_ipp(IPP_DFIFO_WR3, data[3]);
nw64_ipp(IPP_DFIFO_WR4, data[4]);
nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
}
static void niu_ipp_read(struct niu *np, int index, u64 *data)
{
nw64_ipp(IPP_DFIFO_RD_PTR, index);
data[0] = nr64_ipp(IPP_DFIFO_RD0);
data[1] = nr64_ipp(IPP_DFIFO_RD1);
data[2] = nr64_ipp(IPP_DFIFO_RD2);
data[3] = nr64_ipp(IPP_DFIFO_RD3);
data[4] = nr64_ipp(IPP_DFIFO_RD4);
}
static int niu_ipp_reset(struct niu *np)
{
return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
1000, 100, "IPP_CFIG");
}
static int niu_init_ipp(struct niu *np)
{
u64 data[5], rbuf[5], val;
int i, max, err;
if (np->parent->plat_type != PLAT_TYPE_NIU) {
if (np->port == 0 || np->port == 1)
max = ATLAS_P0_P1_DFIFO_ENTRIES;
else
max = ATLAS_P2_P3_DFIFO_ENTRIES;
} else
max = NIU_DFIFO_ENTRIES;
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
data[4] = 0;
for (i = 0; i < max; i++) {
niu_ipp_write(np, i, data);
niu_ipp_read(np, i, rbuf);
}
(void) nr64_ipp(IPP_INT_STAT);
(void) nr64_ipp(IPP_INT_STAT);
err = niu_ipp_reset(np);
if (err)
return err;
(void) nr64_ipp(IPP_PKT_DIS);
(void) nr64_ipp(IPP_BAD_CS_CNT);
(void) nr64_ipp(IPP_ECC);
(void) nr64_ipp(IPP_INT_STAT);
nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
val = nr64_ipp(IPP_CFIG);
val &= ~IPP_CFIG_IP_MAX_PKT;
val |= (IPP_CFIG_IPP_ENABLE |
IPP_CFIG_DFIFO_ECC_EN |
IPP_CFIG_DROP_BAD_CRC |
IPP_CFIG_CKSUM_EN |
(0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
nw64_ipp(IPP_CFIG, val);
return 0;
}
static void niu_handle_led(struct niu *np, int status)
{
u64 val;
val = nr64_mac(XMAC_CONFIG);
if ((np->flags & NIU_FLAGS_10G) != 0 &&
(np->flags & NIU_FLAGS_FIBER) != 0) {
if (status) {
val |= XMAC_CONFIG_LED_POLARITY;
val &= ~XMAC_CONFIG_FORCE_LED_ON;
} else {
val |= XMAC_CONFIG_FORCE_LED_ON;
val &= ~XMAC_CONFIG_LED_POLARITY;
}
}
nw64_mac(XMAC_CONFIG, val);
}
static void niu_init_xif_xmac(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u64 val;
if (np->flags & NIU_FLAGS_XCVR_SERDES) {
val = nr64(MIF_CONFIG);
val |= MIF_CONFIG_ATCA_GE;
nw64(MIF_CONFIG, val);
}
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
val |= XMAC_CONFIG_TX_OUTPUT_EN;
if (lp->loopback_mode == LOOPBACK_MAC) {
val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
val |= XMAC_CONFIG_LOOPBACK;
} else {
val &= ~XMAC_CONFIG_LOOPBACK;
}
if (np->flags & NIU_FLAGS_10G) {
val &= ~XMAC_CONFIG_LFS_DISABLE;
} else {
val |= XMAC_CONFIG_LFS_DISABLE;
if (!(np->flags & NIU_FLAGS_FIBER) &&
!(np->flags & NIU_FLAGS_XCVR_SERDES))
val |= XMAC_CONFIG_1G_PCS_BYPASS;
else
val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
}
val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
if (lp->active_speed == SPEED_100)
val |= XMAC_CONFIG_SEL_CLK_25MHZ;
else
val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
nw64_mac(XMAC_CONFIG, val);
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_MODE_MASK;
if (np->flags & NIU_FLAGS_10G) {
val |= XMAC_CONFIG_MODE_XGMII;
} else {
if (lp->active_speed == SPEED_1000)
val |= XMAC_CONFIG_MODE_GMII;
else
val |= XMAC_CONFIG_MODE_MII;
}
nw64_mac(XMAC_CONFIG, val);
}
static void niu_init_xif_bmac(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u64 val;
val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
if (lp->loopback_mode == LOOPBACK_MAC)
val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
else
val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
if (lp->active_speed == SPEED_1000)
val |= BMAC_XIF_CONFIG_GMII_MODE;
else
val &= ~BMAC_XIF_CONFIG_GMII_MODE;
val &= ~(BMAC_XIF_CONFIG_LINK_LED |
BMAC_XIF_CONFIG_LED_POLARITY);
if (!(np->flags & NIU_FLAGS_10G) &&
!(np->flags & NIU_FLAGS_FIBER) &&
lp->active_speed == SPEED_100)
val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
else
val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
nw64_mac(BMAC_XIF_CONFIG, val);
}
static void niu_init_xif(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_init_xif_xmac(np);
else
niu_init_xif_bmac(np);
}
static void niu_pcs_mii_reset(struct niu *np)
{
int limit = 1000;
u64 val = nr64_pcs(PCS_MII_CTL);
val |= PCS_MII_CTL_RST;
nw64_pcs(PCS_MII_CTL, val);
while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
udelay(100);
val = nr64_pcs(PCS_MII_CTL);
}
}
static void niu_xpcs_reset(struct niu *np)
{
int limit = 1000;
u64 val = nr64_xpcs(XPCS_CONTROL1);
val |= XPCS_CONTROL1_RESET;
nw64_xpcs(XPCS_CONTROL1, val);
while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
udelay(100);
val = nr64_xpcs(XPCS_CONTROL1);
}
}
static int niu_init_pcs(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
u64 val;
switch (np->flags & (NIU_FLAGS_10G |
NIU_FLAGS_FIBER |
NIU_FLAGS_XCVR_SERDES)) {
case NIU_FLAGS_FIBER:
/* 1G fiber */
nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
nw64_pcs(PCS_DPATH_MODE, 0);
niu_pcs_mii_reset(np);
break;
case NIU_FLAGS_10G:
case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
/* 10G SERDES */
if (!(np->flags & NIU_FLAGS_XMAC))
return -EINVAL;
/* 10G copper or fiber */
val = nr64_mac(XMAC_CONFIG);
val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
nw64_mac(XMAC_CONFIG, val);
niu_xpcs_reset(np);
val = nr64_xpcs(XPCS_CONTROL1);
if (lp->loopback_mode == LOOPBACK_PHY)
val |= XPCS_CONTROL1_LOOPBACK;
else
val &= ~XPCS_CONTROL1_LOOPBACK;
nw64_xpcs(XPCS_CONTROL1, val);
nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
(void) nr64_xpcs(XPCS_SYMERR_CNT01);
(void) nr64_xpcs(XPCS_SYMERR_CNT23);
break;
case NIU_FLAGS_XCVR_SERDES:
/* 1G SERDES */
niu_pcs_mii_reset(np);
nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
nw64_pcs(PCS_DPATH_MODE, 0);
break;
case 0:
/* 1G copper */
case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
/* 1G RGMII FIBER */
nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
niu_pcs_mii_reset(np);
break;
default:
return -EINVAL;
}
return 0;
}
static int niu_reset_tx_xmac(struct niu *np)
{
return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
(XTXMAC_SW_RST_REG_RS |
XTXMAC_SW_RST_SOFT_RST),
1000, 100, "XTXMAC_SW_RST");
}
static int niu_reset_tx_bmac(struct niu *np)
{
int limit;
nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
limit = 1000;
while (--limit >= 0) {
if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
break;
udelay(100);
}
if (limit < 0) {
dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
np->port,
(unsigned long long) nr64_mac(BTXMAC_SW_RST));
return -ENODEV;
}
return 0;
}
static int niu_reset_tx_mac(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
return niu_reset_tx_xmac(np);
else
return niu_reset_tx_bmac(np);
}
static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
{
u64 val;
val = nr64_mac(XMAC_MIN);
val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
XMAC_MIN_RX_MIN_PKT_SIZE);
val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
nw64_mac(XMAC_MIN, val);
nw64_mac(XMAC_MAX, max);
nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
val = nr64_mac(XMAC_IPG);
if (np->flags & NIU_FLAGS_10G) {
val &= ~XMAC_IPG_IPG_XGMII;
val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
} else {
val &= ~XMAC_IPG_IPG_MII_GMII;
val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
}
nw64_mac(XMAC_IPG, val);
val = nr64_mac(XMAC_CONFIG);
val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
XMAC_CONFIG_STRETCH_MODE |
XMAC_CONFIG_VAR_MIN_IPG_EN |
XMAC_CONFIG_TX_ENABLE);
nw64_mac(XMAC_CONFIG, val);
nw64_mac(TXMAC_FRM_CNT, 0);
nw64_mac(TXMAC_BYTE_CNT, 0);
}
static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
{
u64 val;
nw64_mac(BMAC_MIN_FRAME, min);
nw64_mac(BMAC_MAX_FRAME, max);
nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
nw64_mac(BMAC_CTRL_TYPE, 0x8808);
nw64_mac(BMAC_PREAMBLE_SIZE, 7);
val = nr64_mac(BTXMAC_CONFIG);
val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
BTXMAC_CONFIG_ENABLE);
nw64_mac(BTXMAC_CONFIG, val);
}
static void niu_init_tx_mac(struct niu *np)
{
u64 min, max;
min = 64;
if (np->dev->mtu > ETH_DATA_LEN)
max = 9216;
else
max = 1522;
/* The XMAC_MIN register only accepts values for TX min which
* have the low 3 bits cleared.
*/
BUG_ON(min & 0x7);
if (np->flags & NIU_FLAGS_XMAC)
niu_init_tx_xmac(np, min, max);
else
niu_init_tx_bmac(np, min, max);
}
static int niu_reset_rx_xmac(struct niu *np)
{
int limit;
nw64_mac(XRXMAC_SW_RST,
XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
limit = 1000;
while (--limit >= 0) {
if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
XRXMAC_SW_RST_SOFT_RST)))
break;
udelay(100);
}
if (limit < 0) {
dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
np->port,
(unsigned long long) nr64_mac(XRXMAC_SW_RST));
return -ENODEV;
}
return 0;
}
static int niu_reset_rx_bmac(struct niu *np)
{
int limit;
nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
limit = 1000;
while (--limit >= 0) {
if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
break;
udelay(100);
}
if (limit < 0) {
dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
np->port,
(unsigned long long) nr64_mac(BRXMAC_SW_RST));
return -ENODEV;
}
return 0;
}
static int niu_reset_rx_mac(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
return niu_reset_rx_xmac(np);
else
return niu_reset_rx_bmac(np);
}
static void niu_init_rx_xmac(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
int first_rdc_table = tp->first_table_num;
unsigned long i;
u64 val;
nw64_mac(XMAC_ADD_FILT0, 0);
nw64_mac(XMAC_ADD_FILT1, 0);
nw64_mac(XMAC_ADD_FILT2, 0);
nw64_mac(XMAC_ADD_FILT12_MASK, 0);
nw64_mac(XMAC_ADD_FILT00_MASK, 0);
for (i = 0; i < MAC_NUM_HASH; i++)
nw64_mac(XMAC_HASH_TBL(i), 0);
nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
val = nr64_mac(XMAC_CONFIG);
val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
XMAC_CONFIG_PROMISCUOUS |
XMAC_CONFIG_PROMISC_GROUP |
XMAC_CONFIG_ERR_CHK_DIS |
XMAC_CONFIG_RX_CRC_CHK_DIS |
XMAC_CONFIG_RESERVED_MULTICAST |
XMAC_CONFIG_RX_CODEV_CHK_DIS |
XMAC_CONFIG_ADDR_FILTER_EN |
XMAC_CONFIG_RCV_PAUSE_ENABLE |
XMAC_CONFIG_STRIP_CRC |
XMAC_CONFIG_PASS_FLOW_CTRL |
XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
val |= (XMAC_CONFIG_HASH_FILTER_EN);
nw64_mac(XMAC_CONFIG, val);
nw64_mac(RXMAC_BT_CNT, 0);
nw64_mac(RXMAC_BC_FRM_CNT, 0);
nw64_mac(RXMAC_MC_FRM_CNT, 0);
nw64_mac(RXMAC_FRAG_CNT, 0);
nw64_mac(RXMAC_HIST_CNT1, 0);
nw64_mac(RXMAC_HIST_CNT2, 0);
nw64_mac(RXMAC_HIST_CNT3, 0);
nw64_mac(RXMAC_HIST_CNT4, 0);
nw64_mac(RXMAC_HIST_CNT5, 0);
nw64_mac(RXMAC_HIST_CNT6, 0);
nw64_mac(RXMAC_HIST_CNT7, 0);
nw64_mac(RXMAC_MPSZER_CNT, 0);
nw64_mac(RXMAC_CRC_ER_CNT, 0);
nw64_mac(RXMAC_CD_VIO_CNT, 0);
nw64_mac(LINK_FAULT_CNT, 0);
}
static void niu_init_rx_bmac(struct niu *np)
{
struct niu_parent *parent = np->parent;
struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
int first_rdc_table = tp->first_table_num;
unsigned long i;
u64 val;
nw64_mac(BMAC_ADD_FILT0, 0);
nw64_mac(BMAC_ADD_FILT1, 0);
nw64_mac(BMAC_ADD_FILT2, 0);
nw64_mac(BMAC_ADD_FILT12_MASK, 0);
nw64_mac(BMAC_ADD_FILT00_MASK, 0);
for (i = 0; i < MAC_NUM_HASH; i++)
nw64_mac(BMAC_HASH_TBL(i), 0);
niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
val = nr64_mac(BRXMAC_CONFIG);
val &= ~(BRXMAC_CONFIG_ENABLE |
BRXMAC_CONFIG_STRIP_PAD |
BRXMAC_CONFIG_STRIP_FCS |
BRXMAC_CONFIG_PROMISC |
BRXMAC_CONFIG_PROMISC_GRP |
BRXMAC_CONFIG_ADDR_FILT_EN |
BRXMAC_CONFIG_DISCARD_DIS);
val |= (BRXMAC_CONFIG_HASH_FILT_EN);
nw64_mac(BRXMAC_CONFIG, val);
val = nr64_mac(BMAC_ADDR_CMPEN);
val |= BMAC_ADDR_CMPEN_EN0;
nw64_mac(BMAC_ADDR_CMPEN, val);
}
static void niu_init_rx_mac(struct niu *np)
{
niu_set_primary_mac(np, np->dev->dev_addr);
if (np->flags & NIU_FLAGS_XMAC)
niu_init_rx_xmac(np);
else
niu_init_rx_bmac(np);
}
static void niu_enable_tx_xmac(struct niu *np, int on)
{
u64 val = nr64_mac(XMAC_CONFIG);
if (on)
val |= XMAC_CONFIG_TX_ENABLE;
else
val &= ~XMAC_CONFIG_TX_ENABLE;
nw64_mac(XMAC_CONFIG, val);
}
static void niu_enable_tx_bmac(struct niu *np, int on)
{
u64 val = nr64_mac(BTXMAC_CONFIG);
if (on)
val |= BTXMAC_CONFIG_ENABLE;
else
val &= ~BTXMAC_CONFIG_ENABLE;
nw64_mac(BTXMAC_CONFIG, val);
}
static void niu_enable_tx_mac(struct niu *np, int on)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_enable_tx_xmac(np, on);
else
niu_enable_tx_bmac(np, on);
}
static void niu_enable_rx_xmac(struct niu *np, int on)
{
u64 val = nr64_mac(XMAC_CONFIG);
val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
XMAC_CONFIG_PROMISCUOUS);
if (np->flags & NIU_FLAGS_MCAST)
val |= XMAC_CONFIG_HASH_FILTER_EN;
if (np->flags & NIU_FLAGS_PROMISC)
val |= XMAC_CONFIG_PROMISCUOUS;
if (on)
val |= XMAC_CONFIG_RX_MAC_ENABLE;
else
val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
nw64_mac(XMAC_CONFIG, val);
}
static void niu_enable_rx_bmac(struct niu *np, int on)
{
u64 val = nr64_mac(BRXMAC_CONFIG);
val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
BRXMAC_CONFIG_PROMISC);
if (np->flags & NIU_FLAGS_MCAST)
val |= BRXMAC_CONFIG_HASH_FILT_EN;
if (np->flags & NIU_FLAGS_PROMISC)
val |= BRXMAC_CONFIG_PROMISC;
if (on)
val |= BRXMAC_CONFIG_ENABLE;
else
val &= ~BRXMAC_CONFIG_ENABLE;
nw64_mac(BRXMAC_CONFIG, val);
}
static void niu_enable_rx_mac(struct niu *np, int on)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_enable_rx_xmac(np, on);
else
niu_enable_rx_bmac(np, on);
}
static int niu_init_mac(struct niu *np)
{
int err;
niu_init_xif(np);
err = niu_init_pcs(np);
if (err)
return err;
err = niu_reset_tx_mac(np);
if (err)
return err;
niu_init_tx_mac(np);
err = niu_reset_rx_mac(np);
if (err)
return err;
niu_init_rx_mac(np);
/* This looks hookey but the RX MAC reset we just did will
* undo some of the state we setup in niu_init_tx_mac() so we
* have to call it again. In particular, the RX MAC reset will
* set the XMAC_MAX register back to it's default value.
*/
niu_init_tx_mac(np);
niu_enable_tx_mac(np, 1);
niu_enable_rx_mac(np, 1);
return 0;
}
static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
{
(void) niu_tx_channel_stop(np, rp->tx_channel);
}
static void niu_stop_tx_channels(struct niu *np)
{
int i;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
niu_stop_one_tx_channel(np, rp);
}
}
static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
{
(void) niu_tx_channel_reset(np, rp->tx_channel);
}
static void niu_reset_tx_channels(struct niu *np)
{
int i;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
niu_reset_one_tx_channel(np, rp);
}
}
static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
{
(void) niu_enable_rx_channel(np, rp->rx_channel, 0);
}
static void niu_stop_rx_channels(struct niu *np)
{
int i;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_stop_one_rx_channel(np, rp);
}
}
static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
{
int channel = rp->rx_channel;
(void) niu_rx_channel_reset(np, channel);
nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
nw64(RX_DMA_CTL_STAT(channel), 0);
(void) niu_enable_rx_channel(np, channel, 0);
}
static void niu_reset_rx_channels(struct niu *np)
{
int i;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_reset_one_rx_channel(np, rp);
}
}
static void niu_disable_ipp(struct niu *np)
{
u64 rd, wr, val;
int limit;
rd = nr64_ipp(IPP_DFIFO_RD_PTR);
wr = nr64_ipp(IPP_DFIFO_WR_PTR);
limit = 100;
while (--limit >= 0 && (rd != wr)) {
rd = nr64_ipp(IPP_DFIFO_RD_PTR);
wr = nr64_ipp(IPP_DFIFO_WR_PTR);
}
if (limit < 0 &&
(rd != 0 && wr != 1)) {
netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
(unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
(unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
}
val = nr64_ipp(IPP_CFIG);
val &= ~(IPP_CFIG_IPP_ENABLE |
IPP_CFIG_DFIFO_ECC_EN |
IPP_CFIG_DROP_BAD_CRC |
IPP_CFIG_CKSUM_EN);
nw64_ipp(IPP_CFIG, val);
(void) niu_ipp_reset(np);
}
static int niu_init_hw(struct niu *np)
{
int i, err;
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
niu_txc_enable_port(np, 1);
niu_txc_port_dma_enable(np, 1);
niu_txc_set_imask(np, 0);
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
err = niu_init_one_tx_channel(np, rp);
if (err)
return err;
}
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
err = niu_init_rx_channels(np);
if (err)
goto out_uninit_tx_channels;
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
err = niu_init_classifier_hw(np);
if (err)
goto out_uninit_rx_channels;
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
err = niu_init_zcp(np);
if (err)
goto out_uninit_rx_channels;
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
err = niu_init_ipp(np);
if (err)
goto out_uninit_rx_channels;
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
err = niu_init_mac(np);
if (err)
goto out_uninit_ipp;
return 0;
out_uninit_ipp:
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
niu_disable_ipp(np);
out_uninit_rx_channels:
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
niu_stop_rx_channels(np);
niu_reset_rx_channels(np);
out_uninit_tx_channels:
netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
niu_stop_tx_channels(np);
niu_reset_tx_channels(np);
return err;
}
static void niu_stop_hw(struct niu *np)
{
netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
niu_enable_interrupts(np, 0);
netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
niu_enable_rx_mac(np, 0);
netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
niu_disable_ipp(np);
netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
niu_stop_tx_channels(np);
netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
niu_stop_rx_channels(np);
netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
niu_reset_tx_channels(np);
netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
niu_reset_rx_channels(np);
}
static void niu_set_irq_name(struct niu *np)
{
int port = np->port;
int i, j = 1;
sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
if (port == 0) {
sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
j = 3;
}
for (i = 0; i < np->num_ldg - j; i++) {
if (i < np->num_rx_rings)
sprintf(np->irq_name[i+j], "%s-rx-%d",
np->dev->name, i);
else if (i < np->num_tx_rings + np->num_rx_rings)
sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
i - np->num_rx_rings);
}
}
static int niu_request_irq(struct niu *np)
{
int i, j, err;
niu_set_irq_name(np);
err = 0;
for (i = 0; i < np->num_ldg; i++) {
struct niu_ldg *lp = &np->ldg[i];
err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
np->irq_name[i], lp);
if (err)
goto out_free_irqs;
}
return 0;
out_free_irqs:
for (j = 0; j < i; j++) {
struct niu_ldg *lp = &np->ldg[j];
free_irq(lp->irq, lp);
}
return err;
}
static void niu_free_irq(struct niu *np)
{
int i;
for (i = 0; i < np->num_ldg; i++) {
struct niu_ldg *lp = &np->ldg[i];
free_irq(lp->irq, lp);
}
}
static void niu_enable_napi(struct niu *np)
{
int i;
for (i = 0; i < np->num_ldg; i++)
napi_enable(&np->ldg[i].napi);
}
static void niu_disable_napi(struct niu *np)
{
int i;
for (i = 0; i < np->num_ldg; i++)
napi_disable(&np->ldg[i].napi);
}
static int niu_open(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
int err;
netif_carrier_off(dev);
err = niu_alloc_channels(np);
if (err)
goto out_err;
err = niu_enable_interrupts(np, 0);
if (err)
goto out_free_channels;
err = niu_request_irq(np);
if (err)
goto out_free_channels;
niu_enable_napi(np);
spin_lock_irq(&np->lock);
err = niu_init_hw(np);
if (!err) {
timer_setup(&np->timer, niu_timer, 0);
np->timer.expires = jiffies + HZ;
err = niu_enable_interrupts(np, 1);
if (err)
niu_stop_hw(np);
}
spin_unlock_irq(&np->lock);
if (err) {
niu_disable_napi(np);
goto out_free_irq;
}
netif_tx_start_all_queues(dev);
if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
netif_carrier_on(dev);
add_timer(&np->timer);
return 0;
out_free_irq:
niu_free_irq(np);
out_free_channels:
niu_free_channels(np);
out_err:
return err;
}
static void niu_full_shutdown(struct niu *np, struct net_device *dev)
{
cancel_work_sync(&np->reset_task);
niu_disable_napi(np);
netif_tx_stop_all_queues(dev);
del_timer_sync(&np->timer);
spin_lock_irq(&np->lock);
niu_stop_hw(np);
spin_unlock_irq(&np->lock);
}
static int niu_close(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
niu_full_shutdown(np, dev);
niu_free_irq(np);
niu_free_channels(np);
niu_handle_led(np, 0);
return 0;
}
static void niu_sync_xmac_stats(struct niu *np)
{
struct niu_xmac_stats *mp = &np->mac_stats.xmac;
mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
}
static void niu_sync_bmac_stats(struct niu *np)
{
struct niu_bmac_stats *mp = &np->mac_stats.bmac;
mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
}
static void niu_sync_mac_stats(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_sync_xmac_stats(np);
else
niu_sync_bmac_stats(np);
}
static void niu_get_rx_stats(struct niu *np,
struct rtnl_link_stats64 *stats)
{
u64 pkts, dropped, errors, bytes;
struct rx_ring_info *rx_rings;
int i;
pkts = dropped = errors = bytes = 0;
rx_rings = READ_ONCE(np->rx_rings);
if (!rx_rings)
goto no_rings;
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &rx_rings[i];
niu_sync_rx_discard_stats(np, rp, 0);
pkts += rp->rx_packets;
bytes += rp->rx_bytes;
dropped += rp->rx_dropped;
errors += rp->rx_errors;
}
no_rings:
stats->rx_packets = pkts;
stats->rx_bytes = bytes;
stats->rx_dropped = dropped;
stats->rx_errors = errors;
}
static void niu_get_tx_stats(struct niu *np,
struct rtnl_link_stats64 *stats)
{
u64 pkts, errors, bytes;
struct tx_ring_info *tx_rings;
int i;
pkts = errors = bytes = 0;
tx_rings = READ_ONCE(np->tx_rings);
if (!tx_rings)
goto no_rings;
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &tx_rings[i];
pkts += rp->tx_packets;
bytes += rp->tx_bytes;
errors += rp->tx_errors;
}
no_rings:
stats->tx_packets = pkts;
stats->tx_bytes = bytes;
stats->tx_errors = errors;
}
static void niu_get_stats(struct net_device *dev,
struct rtnl_link_stats64 *stats)
{
struct niu *np = netdev_priv(dev);
if (netif_running(dev)) {
niu_get_rx_stats(np, stats);
niu_get_tx_stats(np, stats);
}
}
static void niu_load_hash_xmac(struct niu *np, u16 *hash)
{
int i;
for (i = 0; i < 16; i++)
nw64_mac(XMAC_HASH_TBL(i), hash[i]);
}
static void niu_load_hash_bmac(struct niu *np, u16 *hash)
{
int i;
for (i = 0; i < 16; i++)
nw64_mac(BMAC_HASH_TBL(i), hash[i]);
}
static void niu_load_hash(struct niu *np, u16 *hash)
{
if (np->flags & NIU_FLAGS_XMAC)
niu_load_hash_xmac(np, hash);
else
niu_load_hash_bmac(np, hash);
}
static void niu_set_rx_mode(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
int i, alt_cnt, err;
struct netdev_hw_addr *ha;
unsigned long flags;
u16 hash[16] = { 0, };
spin_lock_irqsave(&np->lock, flags);
niu_enable_rx_mac(np, 0);
np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
if (dev->flags & IFF_PROMISC)
np->flags |= NIU_FLAGS_PROMISC;
if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
np->flags |= NIU_FLAGS_MCAST;
alt_cnt = netdev_uc_count(dev);
if (alt_cnt > niu_num_alt_addr(np)) {
alt_cnt = 0;
np->flags |= NIU_FLAGS_PROMISC;
}
if (alt_cnt) {
int index = 0;
netdev_for_each_uc_addr(ha, dev) {
err = niu_set_alt_mac(np, index, ha->addr);
if (err)
netdev_warn(dev, "Error %d adding alt mac %d\n",
err, index);
err = niu_enable_alt_mac(np, index, 1);
if (err)
netdev_warn(dev, "Error %d enabling alt mac %d\n",
err, index);
index++;
}
} else {
int alt_start;
if (np->flags & NIU_FLAGS_XMAC)
alt_start = 0;
else
alt_start = 1;
for (i = alt_start; i < niu_num_alt_addr(np); i++) {
err = niu_enable_alt_mac(np, i, 0);
if (err)
netdev_warn(dev, "Error %d disabling alt mac %d\n",
err, i);
}
}
if (dev->flags & IFF_ALLMULTI) {
for (i = 0; i < 16; i++)
hash[i] = 0xffff;
} else if (!netdev_mc_empty(dev)) {
netdev_for_each_mc_addr(ha, dev) {
u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
crc >>= 24;
hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
}
}
if (np->flags & NIU_FLAGS_MCAST)
niu_load_hash(np, hash);
niu_enable_rx_mac(np, 1);
spin_unlock_irqrestore(&np->lock, flags);
}
static int niu_set_mac_addr(struct net_device *dev, void *p)
{
struct niu *np = netdev_priv(dev);
struct sockaddr *addr = p;
unsigned long flags;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
if (!netif_running(dev))
return 0;
spin_lock_irqsave(&np->lock, flags);
niu_enable_rx_mac(np, 0);
niu_set_primary_mac(np, dev->dev_addr);
niu_enable_rx_mac(np, 1);
spin_unlock_irqrestore(&np->lock, flags);
return 0;
}
static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
return -EOPNOTSUPP;
}
static void niu_netif_stop(struct niu *np)
{
netif_trans_update(np->dev); /* prevent tx timeout */
niu_disable_napi(np);
netif_tx_disable(np->dev);
}
static void niu_netif_start(struct niu *np)
{
/* NOTE: unconditional netif_wake_queue is only appropriate
* so long as all callers are assured to have free tx slots
* (such as after niu_init_hw).
*/
netif_tx_wake_all_queues(np->dev);
niu_enable_napi(np);
niu_enable_interrupts(np, 1);
}
static void niu_reset_buffers(struct niu *np)
{
int i, j, k, err;
if (np->rx_rings) {
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
struct page *page;
page = rp->rxhash[j];
while (page) {
struct page *next =
(struct page *) page->mapping;
u64 base = page->index;
base = base >> RBR_DESCR_ADDR_SHIFT;
rp->rbr[k++] = cpu_to_le32(base);
page = next;
}
}
for (; k < MAX_RBR_RING_SIZE; k++) {
err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
if (unlikely(err))
break;
}
rp->rbr_index = rp->rbr_table_size - 1;
rp->rcr_index = 0;
rp->rbr_pending = 0;
rp->rbr_refill_pending = 0;
}
}
if (np->tx_rings) {
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
for (j = 0; j < MAX_TX_RING_SIZE; j++) {
if (rp->tx_buffs[j].skb)
(void) release_tx_packet(np, rp, j);
}
rp->pending = MAX_TX_RING_SIZE;
rp->prod = 0;
rp->cons = 0;
rp->wrap_bit = 0;
}
}
}
static void niu_reset_task(struct work_struct *work)
{
struct niu *np = container_of(work, struct niu, reset_task);
unsigned long flags;
int err;
spin_lock_irqsave(&np->lock, flags);
if (!netif_running(np->dev)) {
spin_unlock_irqrestore(&np->lock, flags);
return;
}
spin_unlock_irqrestore(&np->lock, flags);
del_timer_sync(&np->timer);
niu_netif_stop(np);
spin_lock_irqsave(&np->lock, flags);
niu_stop_hw(np);
spin_unlock_irqrestore(&np->lock, flags);
niu_reset_buffers(np);
spin_lock_irqsave(&np->lock, flags);
err = niu_init_hw(np);
if (!err) {
np->timer.expires = jiffies + HZ;
add_timer(&np->timer);
niu_netif_start(np);
}
spin_unlock_irqrestore(&np->lock, flags);
}
static void niu_tx_timeout(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
dev_err(np->device, "%s: Transmit timed out, resetting\n",
dev->name);
schedule_work(&np->reset_task);
}
static void niu_set_txd(struct tx_ring_info *rp, int index,
u64 mapping, u64 len, u64 mark,
u64 n_frags)
{
__le64 *desc = &rp->descr[index];
*desc = cpu_to_le64(mark |
(n_frags << TX_DESC_NUM_PTR_SHIFT) |
(len << TX_DESC_TR_LEN_SHIFT) |
(mapping & TX_DESC_SAD));
}
static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
u64 pad_bytes, u64 len)
{
u16 eth_proto, eth_proto_inner;
u64 csum_bits, l3off, ihl, ret;
u8 ip_proto;
int ipv6;
eth_proto = be16_to_cpu(ehdr->h_proto);
eth_proto_inner = eth_proto;
if (eth_proto == ETH_P_8021Q) {
struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
__be16 val = vp->h_vlan_encapsulated_proto;
eth_proto_inner = be16_to_cpu(val);
}
ipv6 = ihl = 0;
switch (skb->protocol) {
case cpu_to_be16(ETH_P_IP):
ip_proto = ip_hdr(skb)->protocol;
ihl = ip_hdr(skb)->ihl;
break;
case cpu_to_be16(ETH_P_IPV6):
ip_proto = ipv6_hdr(skb)->nexthdr;
ihl = (40 >> 2);
ipv6 = 1;
break;
default:
ip_proto = ihl = 0;
break;
}
csum_bits = TXHDR_CSUM_NONE;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
u64 start, stuff;
csum_bits = (ip_proto == IPPROTO_TCP ?
TXHDR_CSUM_TCP :
(ip_proto == IPPROTO_UDP ?
TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
start = skb_checksum_start_offset(skb) -
(pad_bytes + sizeof(struct tx_pkt_hdr));
stuff = start + skb->csum_offset;
csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
}
l3off = skb_network_offset(skb) -
(pad_bytes + sizeof(struct tx_pkt_hdr));
ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
(len << TXHDR_LEN_SHIFT) |
((l3off / 2) << TXHDR_L3START_SHIFT) |
(ihl << TXHDR_IHL_SHIFT) |
((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) |
((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
(ipv6 ? TXHDR_IP_VER : 0) |
csum_bits);
return ret;
}
static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
unsigned long align, headroom;
struct netdev_queue *txq;
struct tx_ring_info *rp;
struct tx_pkt_hdr *tp;
unsigned int len, nfg;
struct ethhdr *ehdr;
int prod, i, tlen;
u64 mapping, mrk;
i = skb_get_queue_mapping(skb);
rp = &np->tx_rings[i];
txq = netdev_get_tx_queue(dev, i);
if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
netif_tx_stop_queue(txq);
dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
rp->tx_errors++;
return NETDEV_TX_BUSY;
}
if (eth_skb_pad(skb))
goto out;
len = sizeof(struct tx_pkt_hdr) + 15;
if (skb_headroom(skb) < len) {
struct sk_buff *skb_new;
skb_new = skb_realloc_headroom(skb, len);
if (!skb_new)
goto out_drop;
kfree_skb(skb);
skb = skb_new;
} else
skb_orphan(skb);
align = ((unsigned long) skb->data & (16 - 1));
headroom = align + sizeof(struct tx_pkt_hdr);
ehdr = (struct ethhdr *) skb->data;
tp = skb_push(skb, headroom);
len = skb->len - sizeof(struct tx_pkt_hdr);
tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
tp->resv = 0;
len = skb_headlen(skb);
mapping = np->ops->map_single(np->device, skb->data,
len, DMA_TO_DEVICE);
prod = rp->prod;
rp->tx_buffs[prod].skb = skb;
rp->tx_buffs[prod].mapping = mapping;
mrk = TX_DESC_SOP;
if (++rp->mark_counter == rp->mark_freq) {
rp->mark_counter = 0;
mrk |= TX_DESC_MARK;
rp->mark_pending++;
}
tlen = len;
nfg = skb_shinfo(skb)->nr_frags;
while (tlen > 0) {
tlen -= MAX_TX_DESC_LEN;
nfg++;
}
while (len > 0) {
unsigned int this_len = len;
if (this_len > MAX_TX_DESC_LEN)
this_len = MAX_TX_DESC_LEN;
niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
mrk = nfg = 0;
prod = NEXT_TX(rp, prod);
mapping += this_len;
len -= this_len;
}
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
len = skb_frag_size(frag);
mapping = np->ops->map_page(np->device, skb_frag_page(frag),
frag->page_offset, len,
DMA_TO_DEVICE);
rp->tx_buffs[prod].skb = NULL;
rp->tx_buffs[prod].mapping = mapping;
niu_set_txd(rp, prod, mapping, len, 0, 0);
prod = NEXT_TX(rp, prod);
}
if (prod < rp->prod)
rp->wrap_bit ^= TX_RING_KICK_WRAP;
rp->prod = prod;
nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
netif_tx_stop_queue(txq);
if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
netif_tx_wake_queue(txq);
}
out:
return NETDEV_TX_OK;
out_drop:
rp->tx_errors++;
kfree_skb(skb);
goto out;
}
static int niu_change_mtu(struct net_device *dev, int new_mtu)
{
struct niu *np = netdev_priv(dev);
int err, orig_jumbo, new_jumbo;
orig_jumbo = (dev->mtu > ETH_DATA_LEN);
new_jumbo = (new_mtu > ETH_DATA_LEN);
dev->mtu = new_mtu;
if (!netif_running(dev) ||
(orig_jumbo == new_jumbo))
return 0;
niu_full_shutdown(np, dev);
niu_free_channels(np);
niu_enable_napi(np);
err = niu_alloc_channels(np);
if (err)
return err;
spin_lock_irq(&np->lock);
err = niu_init_hw(np);
if (!err) {
timer_setup(&np->timer, niu_timer, 0);
np->timer.expires = jiffies + HZ;
err = niu_enable_interrupts(np, 1);
if (err)
niu_stop_hw(np);
}
spin_unlock_irq(&np->lock);
if (!err) {
netif_tx_start_all_queues(dev);
if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
netif_carrier_on(dev);
add_timer(&np->timer);
}
return err;
}
static void niu_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info)
{
struct niu *np = netdev_priv(dev);
struct niu_vpd *vpd = &np->vpd;
strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
vpd->fcode_major, vpd->fcode_minor);
if (np->parent->plat_type != PLAT_TYPE_NIU)
strlcpy(info->bus_info, pci_name(np->pdev),
sizeof(info->bus_info));
}
static int niu_get_link_ksettings(struct net_device *dev,
struct ethtool_link_ksettings *cmd)
{
struct niu *np = netdev_priv(dev);
struct niu_link_config *lp;
lp = &np->link_config;
memset(cmd, 0, sizeof(*cmd));
cmd->base.phy_address = np->phy_addr;
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
lp->supported);
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
lp->active_advertising);
cmd->base.autoneg = lp->active_autoneg;
cmd->base.speed = lp->active_speed;
cmd->base.duplex = lp->active_duplex;
cmd->base.port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
return 0;
}
static int niu_set_link_ksettings(struct net_device *dev,
const struct ethtool_link_ksettings *cmd)
{
struct niu *np = netdev_priv(dev);
struct niu_link_config *lp = &np->link_config;
ethtool_convert_link_mode_to_legacy_u32(&lp->advertising,
cmd->link_modes.advertising);
lp->speed = cmd->base.speed;
lp->duplex = cmd->base.duplex;
lp->autoneg = cmd->base.autoneg;
return niu_init_link(np);
}
static u32 niu_get_msglevel(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
return np->msg_enable;
}
static void niu_set_msglevel(struct net_device *dev, u32 value)
{
struct niu *np = netdev_priv(dev);
np->msg_enable = value;
}
static int niu_nway_reset(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
if (np->link_config.autoneg)
return niu_init_link(np);
return 0;
}
static int niu_get_eeprom_len(struct net_device *dev)
{
struct niu *np = netdev_priv(dev);
return np->eeprom_len;
}
static int niu_get_eeprom(struct net_device *dev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct niu *np = netdev_priv(dev);
u32 offset, len, val;
offset = eeprom->offset;
len = eeprom->len;
if (offset + len < offset)
return -EINVAL;
if (offset >= np->eeprom_len)
return -EINVAL;
if (offset + len > np->eeprom_len)
len = eeprom->len = np->eeprom_len - offset;
if (offset & 3) {
u32 b_offset, b_count;
b_offset = offset & 3;
b_count = 4 - b_offset;
if (b_count > len)
b_count = len;
val = nr64(ESPC_NCR((offset - b_offset) / 4));
memcpy(data, ((char *)&val) + b_offset, b_count);
data += b_count;
len -= b_count;
offset += b_count;
}
while (len >= 4) {
val = nr64(ESPC_NCR(offset / 4));
memcpy(data, &val, 4);
data += 4;
len -= 4;
offset += 4;
}
if (len) {
val = nr64(ESPC_NCR(offset / 4));
memcpy(data, &val, len);
}
return 0;
}
static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
{
switch (flow_type) {
case TCP_V4_FLOW:
case TCP_V6_FLOW:
*pid = IPPROTO_TCP;
break;
case UDP_V4_FLOW:
case UDP_V6_FLOW:
*pid = IPPROTO_UDP;
break;
case SCTP_V4_FLOW:
case SCTP_V6_FLOW:
*pid = IPPROTO_SCTP;
break;
case AH_V4_FLOW:
case AH_V6_FLOW:
*pid = IPPROTO_AH;
break;
case ESP_V4_FLOW:
case ESP_V6_FLOW:
*pid = IPPROTO_ESP;
break;
default:
*pid = 0;
break;
}
}
static int niu_class_to_ethflow(u64 class, int *flow_type)
{
switch (class) {
case CLASS_CODE_TCP_IPV4:
*flow_type = TCP_V4_FLOW;
break;
case CLASS_CODE_UDP_IPV4:
*flow_type = UDP_V4_FLOW;
break;
case CLASS_CODE_AH_ESP_IPV4:
*flow_type = AH_V4_FLOW;
break;
case CLASS_CODE_SCTP_IPV4:
*flow_type = SCTP_V4_FLOW;
break;
case CLASS_CODE_TCP_IPV6:
*flow_type = TCP_V6_FLOW;
break;
case CLASS_CODE_UDP_IPV6:
*flow_type = UDP_V6_FLOW;
break;
case CLASS_CODE_AH_ESP_IPV6:
*flow_type = AH_V6_FLOW;
break;
case CLASS_CODE_SCTP_IPV6:
*flow_type = SCTP_V6_FLOW;
break;
case CLASS_CODE_USER_PROG1:
case CLASS_CODE_USER_PROG2:
case CLASS_CODE_USER_PROG3:
case CLASS_CODE_USER_PROG4:
*flow_type = IP_USER_FLOW;
break;
default:
return -EINVAL;
}
return 0;
}
static int niu_ethflow_to_class(int flow_type, u64 *class)
{
switch (flow_type) {
case TCP_V4_FLOW:
*class = CLASS_CODE_TCP_IPV4;
break;
case UDP_V4_FLOW:
*class = CLASS_CODE_UDP_IPV4;
break;
case AH_ESP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
*class = CLASS_CODE_AH_ESP_IPV4;
break;
case SCTP_V4_FLOW:
*class = CLASS_CODE_SCTP_IPV4;
break;
case TCP_V6_FLOW:
*class = CLASS_CODE_TCP_IPV6;
break;
case UDP_V6_FLOW:
*class = CLASS_CODE_UDP_IPV6;
break;
case AH_ESP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
*class = CLASS_CODE_AH_ESP_IPV6;
break;
case SCTP_V6_FLOW:
*class = CLASS_CODE_SCTP_IPV6;
break;
default:
return 0;
}
return 1;
}
static u64 niu_flowkey_to_ethflow(u64 flow_key)
{
u64 ethflow = 0;
if (flow_key & FLOW_KEY_L2DA)
ethflow |= RXH_L2DA;
if (flow_key & FLOW_KEY_VLAN)
ethflow |= RXH_VLAN;
if (flow_key & FLOW_KEY_IPSA)
ethflow |= RXH_IP_SRC;
if (flow_key & FLOW_KEY_IPDA)
ethflow |= RXH_IP_DST;
if (flow_key & FLOW_KEY_PROTO)
ethflow |= RXH_L3_PROTO;
if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
ethflow |= RXH_L4_B_0_1;
if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
ethflow |= RXH_L4_B_2_3;
return ethflow;
}
static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
{
u64 key = 0;
if (ethflow & RXH_L2DA)
key |= FLOW_KEY_L2DA;
if (ethflow & RXH_VLAN)
key |= FLOW_KEY_VLAN;
if (ethflow & RXH_IP_SRC)
key |= FLOW_KEY_IPSA;
if (ethflow & RXH_IP_DST)
key |= FLOW_KEY_IPDA;
if (ethflow & RXH_L3_PROTO)
key |= FLOW_KEY_PROTO;
if (ethflow & RXH_L4_B_0_1)
key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
if (ethflow & RXH_L4_B_2_3)
key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
*flow_key = key;
return 1;
}
static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
{
u64 class;
nfc->data = 0;
if (!niu_ethflow_to_class(nfc->flow_type, &class))
return -EINVAL;
if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
TCAM_KEY_DISC)
nfc->data = RXH_DISCARD;
else
nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
CLASS_CODE_USER_PROG1]);
return 0;
}
static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
struct ethtool_rx_flow_spec *fsp)
{
u32 tmp;
u16 prt;
tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
TCAM_V4KEY2_TOS_SHIFT;
fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
TCAM_V4KEY2_TOS_SHIFT;
switch (fsp->flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
break;
case AH_V4_FLOW:
case ESP_V4_FLOW:
tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
TCAM_V4KEY2_PORT_SPI_SHIFT;
fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
TCAM_V4KEY2_PORT_SPI_SHIFT;
fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
break;
case IP_USER_FLOW:
tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
TCAM_V4KEY2_PORT_SPI_SHIFT;
fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
TCAM_V4KEY2_PORT_SPI_SHIFT;
fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
fsp->h_u.usr_ip4_spec.proto =
(tp->key[2] & TCAM_V4KEY2_PROTO) >>
TCAM_V4KEY2_PROTO_SHIFT;
fsp->m_u.usr_ip4_spec.proto =
(tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
TCAM_V4KEY2_PROTO_SHIFT;
fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
break;
default:
break;
}
}
static int niu_get_ethtool_tcam_entry(struct niu *np,
struct ethtool_rxnfc *nfc)
{
struct niu_parent *parent = np->parent;
struct niu_tcam_entry *tp;
struct ethtool_rx_flow_spec *fsp = &nfc->fs;
u16 idx;
u64 class;
int ret = 0;
idx = tcam_get_index(np, (u16)nfc->fs.location);
tp = &parent->tcam[idx];
if (!tp->valid) {
netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
parent->index, (u16)nfc->fs.location, idx);
return -EINVAL;
}
/* fill the flow spec entry */
class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
TCAM_V4KEY0_CLASS_CODE_SHIFT;
ret = niu_class_to_ethflow(class, &fsp->flow_type);
if (ret < 0) {
netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
parent->index);
goto out;
}
if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
TCAM_V4KEY2_PROTO_SHIFT;
if (proto == IPPROTO_ESP) {
if (fsp->flow_type == AH_V4_FLOW)
fsp->flow_type = ESP_V4_FLOW;
else
fsp->flow_type = ESP_V6_FLOW;
}
}
switch (fsp->flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
niu_get_ip4fs_from_tcam_key(tp, fsp);
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
/* Not yet implemented */
ret = -EINVAL;
break;
case IP_USER_FLOW:
niu_get_ip4fs_from_tcam_key(tp, fsp);
break;
default:
ret = -EINVAL;
break;
}
if (ret < 0)
goto out;
if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
fsp->ring_cookie = RX_CLS_FLOW_DISC;
else
fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
TCAM_ASSOCDATA_OFFSET_SHIFT;
/* put the tcam size here */
nfc->data = tcam_get_size(np);
out:
return ret;
}
static int niu_get_ethtool_tcam_all(struct niu *np,
struct ethtool_rxnfc *nfc,
u32 *rule_locs)
{
struct niu_parent *parent = np->parent;
struct niu_tcam_entry *tp;
int i, idx, cnt;
unsigned long flags;
int ret = 0;
/* put the tcam size here */
nfc->data = tcam_get_size(np);
niu_lock_parent(np, flags);
for (cnt = 0, i = 0; i < nfc->data; i++) {
idx = tcam_get_index(np, i);
tp = &parent->tcam[idx];
if (!tp->valid)
continue;
if (cnt == nfc->rule_cnt) {
ret = -EMSGSIZE;
break;
}
rule_locs[cnt] = i;
cnt++;
}
niu_unlock_parent(np, flags);
nfc->rule_cnt = cnt;
return ret;
}
static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
u32 *rule_locs)
{
struct niu *np = netdev_priv(dev);
int ret = 0;
switch (cmd->cmd) {
case ETHTOOL_GRXFH:
ret = niu_get_hash_opts(np, cmd);
break;
case ETHTOOL_GRXRINGS:
cmd->data = np->num_rx_rings;
break;
case ETHTOOL_GRXCLSRLCNT:
cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
break;
case ETHTOOL_GRXCLSRULE:
ret = niu_get_ethtool_tcam_entry(np, cmd);
break;
case ETHTOOL_GRXCLSRLALL:
ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
{
u64 class;
u64 flow_key = 0;
unsigned long flags;
if (!niu_ethflow_to_class(nfc->flow_type, &class))
return -EINVAL;
if (class < CLASS_CODE_USER_PROG1 ||
class > CLASS_CODE_SCTP_IPV6)
return -EINVAL;
if (nfc->data & RXH_DISCARD) {
niu_lock_parent(np, flags);
flow_key = np->parent->tcam_key[class -
CLASS_CODE_USER_PROG1];
flow_key |= TCAM_KEY_DISC;
nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
niu_unlock_parent(np, flags);
return 0;
} else {
/* Discard was set before, but is not set now */
if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
TCAM_KEY_DISC) {
niu_lock_parent(np, flags);
flow_key = np->parent->tcam_key[class -
CLASS_CODE_USER_PROG1];
flow_key &= ~TCAM_KEY_DISC;
nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
flow_key);
np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
flow_key;
niu_unlock_parent(np, flags);
}
}
if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
return -EINVAL;
niu_lock_parent(np, flags);
nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
niu_unlock_parent(np, flags);
return 0;
}
static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
struct niu_tcam_entry *tp,
int l2_rdc_tab, u64 class)
{
u8 pid = 0;
u32 sip, dip, sipm, dipm, spi, spim;
u16 sport, dport, spm, dpm;
sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
tp->key[3] |= dip;
tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
tp->key_mask[3] |= dipm;
tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
TCAM_V4KEY2_TOS_SHIFT);
tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
TCAM_V4KEY2_TOS_SHIFT);
switch (fsp->flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
tp->key[2] |= (((u64)sport << 16) | dport);
tp->key_mask[2] |= (((u64)spm << 16) | dpm);
niu_ethflow_to_l3proto(fsp->flow_type, &pid);
break;
case AH_V4_FLOW:
case ESP_V4_FLOW:
spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
tp->key[2] |= spi;
tp->key_mask[2] |= spim;
niu_ethflow_to_l3proto(fsp->flow_type, &pid);
break;
case IP_USER_FLOW:
spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
tp->key[2] |= spi;
tp->key_mask[2] |= spim;
pid = fsp->h_u.usr_ip4_spec.proto;
break;
default:
break;
}
tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
if (pid) {
tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
}
}
static int niu_add_ethtool_tcam_entry(struct niu *np,
struct ethtool_rxnfc *nfc)
{
struct niu_parent *parent = np->parent;
struct niu_tcam_entry *tp;
struct ethtool_rx_flow_spec *fsp = &nfc->fs;
struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
int l2_rdc_table = rdc_table->first_table_num;
u16 idx;
u64 class;
unsigned long flags;
int err, ret;
ret = 0;
idx = nfc->fs.location;
if (idx >= tcam_get_size(np))
return -EINVAL;
if (fsp->flow_type == IP_USER_FLOW) {
int i;
int add_usr_cls = 0;
struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
if (uspec->ip_ver != ETH_RX_NFC_IP4)
return -EINVAL;
niu_lock_parent(np, flags);
for (i = 0; i < NIU_L3_PROG_CLS; i++) {
if (parent->l3_cls[i]) {
if (uspec->proto == parent->l3_cls_pid[i]) {
class = parent->l3_cls[i];
parent->l3_cls_refcnt[i]++;
add_usr_cls = 1;
break;
}
} else {
/* Program new user IP class */
switch (i) {
case 0:
class = CLASS_CODE_USER_PROG1;
break;
case 1:
class = CLASS_CODE_USER_PROG2;
break;
case 2:
class = CLASS_CODE_USER_PROG3;
break;
case 3:
class = CLASS_CODE_USER_PROG4;
break;
default:
class = CLASS_CODE_UNRECOG;
break;
}
ret = tcam_user_ip_class_set(np, class, 0,
uspec->proto,
uspec->tos,
umask->tos);
if (ret)
goto out;
ret = tcam_user_ip_class_enable(np, class, 1);
if (ret)
goto out;
parent->l3_cls[i] = class;
parent->l3_cls_pid[i] = uspec->proto;
parent->l3_cls_refcnt[i]++;
add_usr_cls = 1;
break;
}
}
if (!add_usr_cls) {
netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
parent->index, __func__, uspec->proto);
ret = -EINVAL;
goto out;
}
niu_unlock_parent(np, flags);
} else {
if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
return -EINVAL;
}
}
niu_lock_parent(np, flags);
idx = tcam_get_index(np, idx);
tp = &parent->tcam[idx];
memset(tp, 0, sizeof(*tp));
/* fill in the tcam key and mask */
switch (fsp->flow_type) {
case TCP_V4_FLOW:
case UDP_V4_FLOW:
case SCTP_V4_FLOW:
case AH_V4_FLOW:
case ESP_V4_FLOW:
niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
break;
case TCP_V6_FLOW:
case UDP_V6_FLOW:
case SCTP_V6_FLOW:
case AH_V6_FLOW:
case ESP_V6_FLOW:
/* Not yet implemented */
netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
parent->index, __func__, fsp->flow_type);
ret = -EINVAL;
goto out;
case IP_USER_FLOW:
niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
break;
default:
netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
parent->index, __func__, fsp->flow_type);
ret = -EINVAL;
goto out;
}
/* fill in the assoc data */
if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
tp->assoc_data = TCAM_ASSOCDATA_DISC;
} else {
if (fsp->ring_cookie >= np->num_rx_rings) {
netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
parent->index, __func__,
(long long)fsp->ring_cookie);
ret = -EINVAL;
goto out;
}
tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
(fsp->ring_cookie <<
TCAM_ASSOCDATA_OFFSET_SHIFT));
}
err = tcam_write(np, idx, tp->key, tp->key_mask);
if (err) {
ret = -EINVAL;
goto out;
}
err = tcam_assoc_write(np, idx, tp->assoc_data);
if (err) {
ret = -EINVAL;
goto out;
}
/* validate the entry */
tp->valid = 1;
np->clas.tcam_valid_entries++;
out:
niu_unlock_parent(np, flags);
return ret;
}
static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
{
struct niu_parent *parent = np->parent;
struct niu_tcam_entry *tp;
u16 idx;
unsigned long flags;
u64 class;
int ret = 0;
if (loc >= tcam_get_size(np))
return -EINVAL;
niu_lock_parent(np, flags);
idx = tcam_get_index(np, loc);
tp = &parent->tcam[idx];
/* if the entry is of a user defined class, then update*/
class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
TCAM_V4KEY0_CLASS_CODE_SHIFT;
if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
int i;
for (i = 0; i < NIU_L3_PROG_CLS; i++) {
if (parent->l3_cls[i] == class) {
parent->l3_cls_refcnt[i]--;
if (!parent->l3_cls_refcnt[i]) {
/* disable class */
ret = tcam_user_ip_class_enable(np,
class,
0);
if (ret)
goto out;
parent->l3_cls[i] = 0;
parent->l3_cls_pid[i] = 0;
}
break;
}
}
if (i == NIU_L3_PROG_CLS) {
netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
parent->index, __func__,
(unsigned long long)class);
ret = -EINVAL;
goto out;
}
}
ret = tcam_flush(np, idx);
if (ret)
goto out;
/* invalidate the entry */
tp->valid = 0;
np->clas.tcam_valid_entries--;
out:
niu_unlock_parent(np, flags);
return ret;
}
static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
{
struct niu *np = netdev_priv(dev);
int ret = 0;
switch (cmd->cmd) {
case ETHTOOL_SRXFH:
ret = niu_set_hash_opts(np, cmd);
break;
case ETHTOOL_SRXCLSRLINS:
ret = niu_add_ethtool_tcam_entry(np, cmd);
break;
case ETHTOOL_SRXCLSRLDEL:
ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static const struct {
const char string[ETH_GSTRING_LEN];
} niu_xmac_stat_keys[] = {
{ "tx_frames" },
{ "tx_bytes" },
{ "tx_fifo_errors" },
{ "tx_overflow_errors" },
{ "tx_max_pkt_size_errors" },
{ "tx_underflow_errors" },
{ "rx_local_faults" },
{ "rx_remote_faults" },
{ "rx_link_faults" },
{ "rx_align_errors" },
{ "rx_frags" },
{ "rx_mcasts" },
{ "rx_bcasts" },
{ "rx_hist_cnt1" },
{ "rx_hist_cnt2" },
{ "rx_hist_cnt3" },
{ "rx_hist_cnt4" },
{ "rx_hist_cnt5" },
{ "rx_hist_cnt6" },
{ "rx_hist_cnt7" },
{ "rx_octets" },
{ "rx_code_violations" },
{ "rx_len_errors" },
{ "rx_crc_errors" },
{ "rx_underflows" },
{ "rx_overflows" },
{ "pause_off_state" },
{ "pause_on_state" },
{ "pause_received" },
};
#define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
static const struct {
const char string[ETH_GSTRING_LEN];
} niu_bmac_stat_keys[] = {
{ "tx_underflow_errors" },
{ "tx_max_pkt_size_errors" },
{ "tx_bytes" },
{ "tx_frames" },
{ "rx_overflows" },
{ "rx_frames" },
{ "rx_align_errors" },
{ "rx_crc_errors" },
{ "rx_len_errors" },
{ "pause_off_state" },
{ "pause_on_state" },
{ "pause_received" },
};
#define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
static const struct {
const char string[ETH_GSTRING_LEN];
} niu_rxchan_stat_keys[] = {
{ "rx_channel" },
{ "rx_packets" },
{ "rx_bytes" },
{ "rx_dropped" },
{ "rx_errors" },
};
#define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
static const struct {
const char string[ETH_GSTRING_LEN];
} niu_txchan_stat_keys[] = {
{ "tx_channel" },
{ "tx_packets" },
{ "tx_bytes" },
{ "tx_errors" },
};
#define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
{
struct niu *np = netdev_priv(dev);
int i;
if (stringset != ETH_SS_STATS)
return;
if (np->flags & NIU_FLAGS_XMAC) {
memcpy(data, niu_xmac_stat_keys,
sizeof(niu_xmac_stat_keys));
data += sizeof(niu_xmac_stat_keys);
} else {
memcpy(data, niu_bmac_stat_keys,
sizeof(niu_bmac_stat_keys));
data += sizeof(niu_bmac_stat_keys);
}
for (i = 0; i < np->num_rx_rings; i++) {
memcpy(data, niu_rxchan_stat_keys,
sizeof(niu_rxchan_stat_keys));
data += sizeof(niu_rxchan_stat_keys);
}
for (i = 0; i < np->num_tx_rings; i++) {
memcpy(data, niu_txchan_stat_keys,
sizeof(niu_txchan_stat_keys));
data += sizeof(niu_txchan_stat_keys);
}
}
static int niu_get_sset_count(struct net_device *dev, int stringset)
{
struct niu *np = netdev_priv(dev);
if (stringset != ETH_SS_STATS)
return -EINVAL;
return (np->flags & NIU_FLAGS_XMAC ?
NUM_XMAC_STAT_KEYS :
NUM_BMAC_STAT_KEYS) +
(np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
(np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
}
static void niu_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *data)
{
struct niu *np = netdev_priv(dev);
int i;
niu_sync_mac_stats(np);
if (np->flags & NIU_FLAGS_XMAC) {
memcpy(data, &np->mac_stats.xmac,
sizeof(struct niu_xmac_stats));
data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
} else {
memcpy(data, &np->mac_stats.bmac,
sizeof(struct niu_bmac_stats));
data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
}
for (i = 0; i < np->num_rx_rings; i++) {
struct rx_ring_info *rp = &np->rx_rings[i];
niu_sync_rx_discard_stats(np, rp, 0);
data[0] = rp->rx_channel;
data[1] = rp->rx_packets;
data[2] = rp->rx_bytes;
data[3] = rp->rx_dropped;
data[4] = rp->rx_errors;
data += 5;
}
for (i = 0; i < np->num_tx_rings; i++) {
struct tx_ring_info *rp = &np->tx_rings[i];
data[0] = rp->tx_channel;
data[1] = rp->tx_packets;
data[2] = rp->tx_bytes;
data[3] = rp->tx_errors;
data += 4;
}
}
static u64 niu_led_state_save(struct niu *np)
{
if (np->flags & NIU_FLAGS_XMAC)
return nr64_mac(XMAC_CONFIG);
else
return nr64_mac(BMAC_XIF_CONFIG);
}
static void niu_led_state_restore(struct niu *np, u64 val)
{
if (np->flags & NIU_FLAGS_XMAC)
nw64_mac(XMAC_CONFIG, val);
else
nw64_mac(BMAC_XIF_CONFIG, val);
}
static void niu_force_led(struct niu *np, int on)
{
u64 val, reg, bit;
if (np->flags & NIU_FLAGS_XMAC) {
reg = XMAC_CONFIG;
bit = XMAC_CONFIG_FORCE_LED_ON;
} else {
reg = BMAC_XIF_CONFIG;
bit = BMAC_XIF_CONFIG_LINK_LED;
}
val = nr64_mac(reg);
if (on)
val |= bit;
else
val &= ~bit;
nw64_mac(reg, val);
}
static int niu_set_phys_id(struct net_device *dev,
enum ethtool_phys_id_state state)
{
struct niu *np = netdev_priv(dev);
if (!netif_running(dev))
return -EAGAIN;
switch (state) {
case ETHTOOL_ID_ACTIVE:
np->orig_led_state = niu_led_state_save(np);
return 1; /* cycle on/off once per second */
case ETHTOOL_ID_ON:
niu_force_led(np, 1);
break;
case ETHTOOL_ID_OFF:
niu_force_led(np, 0);
break;
case ETHTOOL_ID_INACTIVE:
niu_led_state_restore(np, np->orig_led_state);
}
return 0;
}
static const struct ethtool_ops niu_ethtool_ops = {
.get_drvinfo = niu_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_msglevel = niu_get_msglevel,
.set_msglevel = niu_set_msglevel,
.nway_reset = niu_nway_reset,
.get_eeprom_len = niu_get_eeprom_len,
.get_eeprom = niu_get_eeprom,
.get_strings = niu_get_strings,
.get_sset_count = niu_get_sset_count,
.get_ethtool_stats = niu_get_ethtool_stats,
.set_phys_id = niu_set_phys_id,
.get_rxnfc = niu_get_nfc,
.set_rxnfc = niu_set_nfc,
.get_link_ksettings = niu_get_link_ksettings,
.set_link_ksettings = niu_set_link_ksettings,
};
static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
int ldg, int ldn)
{
if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
return -EINVAL;
if (ldn < 0 || ldn > LDN_MAX)
return -EINVAL;
parent->ldg_map[ldn] = ldg;
if (np->parent->plat_type == PLAT_TYPE_NIU) {
/* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
* the firmware, and we're not supposed to change them.
* Validate the mapping, because if it's wrong we probably
* won't get any interrupts and that's painful to debug.
*/
if (nr64(LDG_NUM(ldn)) != ldg) {
dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
np->port, ldn, ldg,
(unsigned long long) nr64(LDG_NUM(ldn)));
return -EINVAL;
}
} else
nw64(LDG_NUM(ldn), ldg);
return 0;
}
static int niu_set_ldg_timer_res(struct niu *np, int res)
{
if (res < 0 || res > LDG_TIMER_RES_VAL)
return -EINVAL;
nw64(LDG_TIMER_RES, res);
return 0;
}
static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
{
if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
(func < 0 || func > 3) ||
(vector < 0 || vector > 0x1f))
return -EINVAL;
nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
return 0;
}
static int niu_pci_eeprom_read(struct niu *np, u32 addr)
{
u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
(addr << ESPC_PIO_STAT_ADDR_SHIFT));
int limit;
if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
return -EINVAL;
frame = frame_base;
nw64(ESPC_PIO_STAT, frame);
limit = 64;
do {
udelay(5);
frame = nr64(ESPC_PIO_STAT);
if (frame & ESPC_PIO_STAT_READ_END)
break;
} while (limit--);
if (!(frame & ESPC_PIO_STAT_READ_END)) {
dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
(unsigned long long) frame);
return -ENODEV;
}
frame = frame_base;
nw64(ESPC_PIO_STAT, frame);
limit = 64;
do {
udelay(5);
frame = nr64(ESPC_PIO_STAT);
if (frame & ESPC_PIO_STAT_READ_END)
break;
} while (limit--);
if (!(frame & ESPC_PIO_STAT_READ_END)) {
dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
(unsigned long long) frame);
return -ENODEV;
}
frame = nr64(ESPC_PIO_STAT);
return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
}
static int niu_pci_eeprom_read16(struct niu *np, u32 off)
{
int err = niu_pci_eeprom_read(np, off);
u16 val;
if (err < 0)
return err;
val = (err << 8);
err = niu_pci_eeprom_read(np, off + 1);
if (err < 0)
return err;
val |= (err & 0xff);
return val;
}
static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
{
int err = niu_pci_eeprom_read(np, off);
u16 val;
if (err < 0)
return err;
val = (err & 0xff);
err = niu_pci_eeprom_read(np, off + 1);
if (err < 0)
return err;
val |= (err & 0xff) << 8;
return val;
}
static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf,
int namebuf_len)
{
int i;
for (i = 0; i < namebuf_len; i++) {
int err = niu_pci_eeprom_read(np, off + i);
if (err < 0)
return err;
*namebuf++ = err;
if (!err)
break;
}
if (i >= namebuf_len)
return -EINVAL;
return i + 1;
}
static void niu_vpd_parse_version(struct niu *np)
{
struct niu_vpd *vpd = &np->vpd;
int len = strlen(vpd->version) + 1;
const char *s = vpd->version;
int i;
for (i = 0; i < len - 5; i++) {
if (!strncmp(s + i, "FCode ", 6))
break;
}
if (i >= len - 5)
return;
s += i + 5;
sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
netif_printk(np, probe, KERN_DEBUG, np->dev,
"VPD_SCAN: FCODE major(%d) minor(%d)\n",
vpd->fcode_major, vpd->fcode_minor);
if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
(vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
np->flags |= NIU_FLAGS_VPD_VALID;
}
/* ESPC_PIO_EN_ENABLE must be set */
static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end)
{
unsigned int found_mask = 0;
#define FOUND_MASK_MODEL 0x00000001
#define FOUND_MASK_BMODEL 0x00000002
#define FOUND_MASK_VERS 0x00000004
#define FOUND_MASK_MAC 0x00000008
#define FOUND_MASK_NMAC 0x00000010
#define FOUND_MASK_PHY 0x00000020
#define FOUND_MASK_ALL 0x0000003f
netif_printk(np, probe, KERN_DEBUG, np->dev,
"VPD_SCAN: start[%x] end[%x]\n", start, end);
while (start < end) {
int len, err, prop_len;
char namebuf[64];
u8 *prop_buf;
int max_len;
if (found_mask == FOUND_MASK_ALL) {
niu_vpd_parse_version(np);
return 1;
}
err = niu_pci_eeprom_read(np, start + 2);
if (err < 0)
return err;
len = err;
start += 3;
prop_len = niu_pci_eeprom_read(np, start + 4);
if (prop_len < 0)
return prop_len;
err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
if (err < 0)
return err;
prop_buf = NULL;
max_len = 0;
if (!strcmp(namebuf, "model")) {
prop_buf = np->vpd.model;
max_len = NIU_VPD_MODEL_MAX;
found_mask |= FOUND_MASK_MODEL;
} else if (!strcmp(namebuf, "board-model")) {
prop_buf = np->vpd.board_model;
max_len = NIU_VPD_BD_MODEL_MAX;
found_mask |= FOUND_MASK_BMODEL;
} else if (!strcmp(namebuf, "version")) {
prop_buf = np->vpd.version;
max_len = NIU_VPD_VERSION_MAX;
found_mask |= FOUND_MASK_VERS;
} else if (!strcmp(namebuf, "local-mac-address")) {
prop_buf = np->vpd.local_mac;
max_len = ETH_ALEN;
found_mask |= FOUND_MASK_MAC;
} else if (!strcmp(namebuf, "num-mac-addresses")) {
prop_buf = &np->vpd.mac_num;
max_len = 1;
found_mask |= FOUND_MASK_NMAC;
} else if (!strcmp(namebuf, "phy-type")) {
prop_buf = np->vpd.phy_type;
max_len = NIU_VPD_PHY_TYPE_MAX;
found_mask |= FOUND_MASK_PHY;
}
if (max_len && prop_len > max_len) {
dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
return -EINVAL;
}
if (prop_buf) {
u32 off = start + 5 + err;
int i;
netif_printk(np, probe, KERN_DEBUG, np->dev,
"VPD_SCAN: Reading in property [%s] len[%d]\n",
namebuf, prop_len);
for (i = 0; i < prop_len; i++) {
err = niu_pci_eeprom_read(np, off + i);
if (err >= 0)
*prop_buf = err;
++prop_buf;
}
}
start += len;
}
return 0;
}
/* ESPC_PIO_EN_ENABLE must be set */
static void niu_pci_vpd_fetch(struct niu *np, u32 start)
{
u32 offset;
int err;
err = niu_pci_eeprom_read16_swp(np, start + 1);
if (err < 0)
return;
offset = err + 3;
while (start + offset < ESPC_EEPROM_SIZE) {
u32 here = start + offset;
u32 end;
err = niu_pci_eeprom_read(np, here);
if (err != 0x90)
return;
err = niu_pci_eeprom_read16_swp(np, here + 1);
if (err < 0)
return;
here = start + offset + 3;
end = start + offset + err;
offset += err;
err = niu_pci_vpd_scan_props(np, here, end);
if (err < 0 || err == 1)
return;
}
}
/* ESPC_PIO_EN_ENABLE must be set */
static u32 niu_pci_vpd_offset(struct niu *np)
{
u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
int err;
while (start < end) {
ret = start;
/* ROM header signature? */
err = niu_pci_eeprom_read16(np, start + 0);
if (err != 0x55aa)
return 0;
/* Apply offset to PCI data structure. */
err = niu_pci_eeprom_read16(np, start + 23);
if (err < 0)
return 0;
start += err;
/* Check for "PCIR" signature. */
err = niu_pci_eeprom_read16(np, start + 0);
if (err != 0x5043)
return 0;
err = niu_pci_eeprom_read16(np, start + 2);
if (err != 0x4952)
return 0;
/* Check for OBP image type. */
err = niu_pci_eeprom_read(np, start + 20);
if (err < 0)
return 0;
if (err != 0x01) {
err = niu_pci_eeprom_read(np, ret + 2);
if (err < 0)
return 0;
start = ret + (err * 512);
continue;
}
err = niu_pci_eeprom_read16_swp(np, start + 8);
if (err < 0)
return err;
ret += err;
err = niu_pci_eeprom_read(np, ret + 0);
if (err != 0x82)
return 0;
return ret;
}
return 0;
}
static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop)
{
if (!strcmp(phy_prop, "mif")) {
/* 1G copper, MII */
np->flags &= ~(NIU_FLAGS_FIBER |
NIU_FLAGS_10G);
np->mac_xcvr = MAC_XCVR_MII;
} else if (!strcmp(phy_prop, "xgf")) {
/* 10G fiber, XPCS */
np->flags |= (NIU_FLAGS_10G |
NIU_FLAGS_FIBER);
np->mac_xcvr = MAC_XCVR_XPCS;
} else if (!strcmp(phy_prop, "pcs")) {
/* 1G fiber, PCS */
np->flags &= ~NIU_FLAGS_10G;
np->flags |= NIU_FLAGS_FIBER;
np->mac_xcvr = MAC_XCVR_PCS;
} else if (!strcmp(phy_prop, "xgc")) {
/* 10G copper, XPCS */
np->flags |= NIU_FLAGS_10G;
np->flags &= ~NIU_FLAGS_FIBER;
np->mac_xcvr = MAC_XCVR_XPCS;
} else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
/* 10G Serdes or 1G Serdes, default to 10G */
np->flags |= NIU_FLAGS_10G;
np->flags &= ~NIU_FLAGS_FIBER;
np->flags |= NIU_FLAGS_XCVR_SERDES;
np->mac_xcvr = MAC_XCVR_XPCS;
} else {
return -EINVAL;
}
return 0;
}
static int niu_pci_vpd_get_nports(struct niu *np)
{
int ports = 0;
if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
ports = 4;
} else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
(!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
ports = 2;
}
return ports;
}
static void niu_pci_vpd_validate(struct niu *np)
{
struct net_device *dev = np->dev;
struct niu_vpd *vpd = &np->vpd;
u8 val8;
if (!is_valid_ether_addr(&vpd->local_mac[0])) {
dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
np->flags &= ~NIU_FLAGS_VPD_VALID;
return;
}
if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
np->flags |= NIU_FLAGS_10G;
np->flags &= ~NIU_FLAGS_FIBER;
np->flags |= NIU_FLAGS_XCVR_SERDES;
np->mac_xcvr = MAC_XCVR_PCS;
if (np->port > 1) {
np->flags |= NIU_FLAGS_FIBER;
np->flags &= ~NIU_FLAGS_10G;
}
if (np->flags & NIU_FLAGS_10G)
np->mac_xcvr = MAC_XCVR_XPCS;
} else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
NIU_FLAGS_HOTPLUG_PHY);
} else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
dev_err(np->device, "Illegal phy string [%s]\n",
np->vpd.phy_type);
dev_err(np->device, "Falling back to SPROM\n");
np->flags &= ~NIU_FLAGS_VPD_VALID;
return;
}
memcpy(dev->dev_addr, vpd->local_mac, ETH_ALEN);
val8 = dev->dev_addr[5];
dev->dev_addr[5] += np->port;
if (dev->dev_addr[5] < val8)
dev->dev_addr[4]++;
}
static int niu_pci_probe_sprom(struct niu *np)
{
struct net_device *dev = np->dev;
int len, i;
u64 val, sum;
u8 val8;
val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
len = val / 4;
np->eeprom_len = len;
netif_printk(np, probe, KERN_DEBUG, np->dev,
"SPROM: Image size %llu\n", (unsigned long long)val);
sum = 0;
for (i = 0; i < len; i++) {
val = nr64(ESPC_NCR(i));
sum += (val >> 0) & 0xff;
sum += (val >> 8) & 0xff;
sum += (val >> 16) & 0xff;
sum += (val >> 24) & 0xff;
}
netif_printk(np, probe, KERN_DEBUG, np->dev,
"SPROM: Checksum %x\n", (int)(sum & 0xff));
if ((sum & 0xff) != 0xab) {
dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
return -EINVAL;
}
val = nr64(ESPC_PHY_TYPE);
switch (np->port) {
case 0:
val8 = (val & ESPC_PHY_TYPE_PORT0) >>
ESPC_PHY_TYPE_PORT0_SHIFT;
break;
case 1:
val8 = (val & ESPC_PHY_TYPE_PORT1) >>
ESPC_PHY_TYPE_PORT1_SHIFT;
break;
case 2:
val8 = (val & ESPC_PHY_TYPE_PORT2) >>
ESPC_PHY_TYPE_PORT2_SHIFT;
break;
case 3:
val8 = (val & ESPC_PHY_TYPE_PORT3) >>
ESPC_PHY_TYPE_PORT3_SHIFT;
break;
default:
dev_err(np->device, "Bogus port number %u\n",
np->port);
return -EINVAL;
}
netif_printk(np, probe, KERN_DEBUG, np->dev,
"SPROM: PHY type %x\n", val8);
switch (val8) {
case ESPC_PHY_TYPE_1G_COPPER:
/* 1G copper, MII */
np->flags &= ~(NIU_FLAGS_FIBER |
NIU_FLAGS_10G);
np->mac_xcvr = MAC_XCVR_MII;
break;
case ESPC_PHY_TYPE_1G_FIBER:
/* 1G fiber, PCS */
np->flags &= ~NIU_FLAGS_10G;
np->flags |= NIU_FLAGS_FIBER;
np->mac_xcvr = MAC_XCVR_PCS;
break;
case ESPC_PHY_TYPE_10G_COPPER:
/* 10G copper, XPCS */
np->flags |= NIU_FLAGS_10G;
np->flags &= ~NIU_FLAGS_FIBER;
np->mac_xcvr = MAC_XCVR_XPCS;
break;
case ESPC_PHY_TYPE_10G_FIBER:
/* 10G fiber, XPCS */
np->flags |= (NIU_FLAGS_10G |
NIU_FLAGS_FIBER);
np->mac_xcvr = MAC_XCVR_XPCS;
break;
default:
dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
return -EINVAL;
}
val = nr64(ESPC_MAC_ADDR0);
netif_printk(np, probe, KERN_DEBUG, np->dev,
"SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
dev->dev_addr[0] = (val >> 0) & 0xff;
dev->dev_addr[1] = (val >> 8) & 0xff;
dev->dev_addr[2] = (val >> 16) & 0xff;
dev->dev_addr[3] = (val >> 24) & 0xff;
val = nr64(ESPC_MAC_ADDR1);
netif_printk(np, probe, KERN_DEBUG, np->dev,
"SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
dev->dev_addr[4] = (val >> 0) & 0xff;
dev->dev_addr[5] = (val >> 8) & 0xff;
if (!is_valid_ether_addr(&dev->dev_addr[0])) {
dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
dev->dev_addr);
return -EINVAL;
}
val8 = dev->dev_addr[5];
dev->dev_addr[5] += np->port;
if (dev->dev_addr[5] < val8)
dev->dev_addr[4]++;
val = nr64(ESPC_MOD_STR_LEN);
netif_printk(np, probe, KERN_DEBUG, np->dev,
"SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
if (val >= 8 * 4)
return -EINVAL;
for (i = 0; i < val; i += 4) {
u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
}
np->vpd.model[val] = '\0';
val = nr64(ESPC_BD_MOD_STR_LEN);
netif_printk(np, probe, KERN_DEBUG, np->dev,
"SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
if (val >= 4 * 4)
return -EINVAL;
for (i = 0; i < val; i += 4) {
u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
}
np->vpd.board_model[val] = '\0';
np->vpd.mac_num =
nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
netif_printk(np, probe, KERN_DEBUG, np->dev,
"SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
return 0;
}
static int niu_get_and_validate_port(struct niu *np)
{
struct niu_parent *parent = np->parent;
if (np->port <= 1)
np->flags |= NIU_FLAGS_XMAC;
if (!parent->num_ports) {
if (parent->plat_type == PLAT_TYPE_NIU) {
parent->num_ports = 2;
} else {
parent->num_ports = niu_pci_vpd_get_nports(np);
if (!parent->num_ports) {
/* Fall back to SPROM as last resort.
* This will fail on most cards.
*/
parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
ESPC_NUM_PORTS_MACS_VAL;
/* All of the current probing methods fail on
* Maramba on-board parts.
*/
if (!parent->num_ports)
parent->num_ports = 4;
}
}
}
if (np->port >= parent->num_ports)
return -ENODEV;
return 0;
}
static int phy_record(struct niu_parent *parent, struct phy_probe_info *p,
int dev_id_1, int dev_id_2, u8 phy_port, int type)
{
u32 id = (dev_id_1 << 16) | dev_id_2;
u8 idx;
if (dev_id_1 < 0 || dev_id_2 < 0)
return 0;
if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
/* Because of the NIU_PHY_ID_MASK being applied, the 8704
* test covers the 8706 as well.
*/
if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
return 0;
} else {
if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
return 0;
}
pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
parent->index, id,
type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
type == PHY_TYPE_PCS ? "PCS" : "MII",
phy_port);
if (p->cur[type] >= NIU_MAX_PORTS) {
pr_err("Too many PHY ports\n");
return -EINVAL;
}
idx = p->cur[type];
p->phy_id[type][idx] = id;
p->phy_port[type][idx] = phy_port;
p->cur[type] = idx + 1;
return 0;
}
static int port_has_10g(struct phy_probe_info *p, int port)
{
int i;
for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
return 1;
}
for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
if (p->phy_port[PHY_TYPE_PCS][i] == port)
return 1;
}
return 0;
}
static int count_10g_ports(struct phy_probe_info *p, int *lowest)
{
int port, cnt;
cnt = 0;
*lowest = 32;
for (port = 8; port < 32; port++) {
if (port_has_10g(p, port)) {
if (!cnt)
*lowest = port;
cnt++;
}
}
return cnt;
}
static int count_1g_ports(struct phy_probe_info *p, int *lowest)
{
*lowest = 32;
if (p->cur[PHY_TYPE_MII])
*lowest = p->phy_port[PHY_TYPE_MII][0];
return p->cur[PHY_TYPE_MII];
}
static void niu_n2_divide_channels(struct niu_parent *parent)
{
int num_ports = parent->num_ports;
int i;
for (i = 0; i < num_ports; i++) {
parent->rxchan_per_port[i] = (16 / num_ports);
parent->txchan_per_port[i] = (16 / num_ports);
pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
parent->index, i,
parent->rxchan_per_port[i],
parent->txchan_per_port[i]);
}
}
static void niu_divide_channels(struct niu_parent *parent,
int num_10g, int num_1g)
{
int num_ports = parent->num_ports;
int rx_chans_per_10g, rx_chans_per_1g;
int tx_chans_per_10g, tx_chans_per_1g;
int i, tot_rx, tot_tx;
if (!num_10g || !num_1g) {
rx_chans_per_10g = rx_chans_per_1g =
(NIU_NUM_RXCHAN / num_ports);
tx_chans_per_10g = tx_chans_per_1g =
(NIU_NUM_TXCHAN / num_ports);
} else {
rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
rx_chans_per_10g = (NIU_NUM_RXCHAN -
(rx_chans_per_1g * num_1g)) /
num_10g;
tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
tx_chans_per_10g = (NIU_NUM_TXCHAN -
(tx_chans_per_1g * num_1g)) /
num_10g;
}
tot_rx = tot_tx = 0;
for (i = 0; i < num_ports; i++) {
int type = phy_decode(parent->port_phy, i);
if (type == PORT_TYPE_10G) {
parent->rxchan_per_port[i] = rx_chans_per_10g;
parent->txchan_per_port[i] = tx_chans_per_10g;
} else {
parent->rxchan_per_port[i] = rx_chans_per_1g;
parent->txchan_per_port[i] = tx_chans_per_1g;
}
pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
parent->index, i,
parent->rxchan_per_port[i],
parent->txchan_per_port[i]);
tot_rx += parent->rxchan_per_port[i];
tot_tx += parent->txchan_per_port[i];
}
if (tot_rx > NIU_NUM_RXCHAN) {
pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
parent->index, tot_rx);
for (i = 0; i < num_ports; i++)
parent->rxchan_per_port[i] = 1;
}
if (tot_tx > NIU_NUM_TXCHAN) {
pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
parent->index, tot_tx);
for (i = 0; i < num_ports; i++)
parent->txchan_per_port[i] = 1;
}
if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
pr_warn("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
parent->index, tot_rx, tot_tx);
}
}
static void niu_divide_rdc_groups(struct niu_parent *parent,
int num_10g, int num_1g)
{
int i, num_ports = parent->num_ports;
int rdc_group, rdc_groups_per_port;
int rdc_channel_base;
rdc_group = 0;
rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
rdc_channel_base = 0;
for (i = 0; i < num_ports; i++) {
struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
int grp, num_channels = parent->rxchan_per_port[i];
int this_channel_offset;
tp->first_table_num = rdc_group;
tp->num_tables = rdc_groups_per_port;
this_channel_offset = 0;
for (grp = 0; grp < tp->num_tables; grp++) {
struct rdc_table *rt = &tp->tables[grp];
int slot;
pr_info("niu%d: Port %d RDC tbl(%d) [ ",
parent->index, i, tp->first_table_num + grp);
for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
rt->rxdma_channel[slot] =
rdc_channel_base + this_channel_offset;
pr_cont("%d ", rt->rxdma_channel[slot]);
if (++this_channel_offset == num_channels)
this_channel_offset = 0;
}
pr_cont("]\n");
}
parent->rdc_default[i] = rdc_channel_base;
rdc_channel_base += num_channels;
rdc_group += rdc_groups_per_port;
}
}
static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent,
struct phy_probe_info *info)
{
unsigned long flags;
int port, err;
memset(info, 0, sizeof(*info));
/* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
niu_lock_parent(np, flags);
err = 0;
for (port = 8; port < 32; port++) {
int dev_id_1, dev_id_2;
dev_id_1 = mdio_read(np, port,
NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
dev_id_2 = mdio_read(np, port,
NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
err = phy_record(parent, info, dev_id_1, dev_id_2, port,
PHY_TYPE_PMA_PMD);
if (err)
break;
dev_id_1 = mdio_read(np, port,
NIU_PCS_DEV_ADDR, MII_PHYSID1);
dev_id_2 = mdio_read(np, port,
NIU_PCS_DEV_ADDR, MII_PHYSID2);
err = phy_record(parent, info, dev_id_1, dev_id_2, port,
PHY_TYPE_PCS);
if (err)
break;
dev_id_1 = mii_read(np, port, MII_PHYSID1);
dev_id_2 = mii_read(np, port, MII_PHYSID2);
err = phy_record(parent, info, dev_id_1, dev_id_2, port,
PHY_TYPE_MII);
if (err)
break;
}
niu_unlock_parent(np, flags);
return err;
}
static int walk_phys(struct niu *np, struct niu_parent *parent)
{
struct phy_probe_info *info = &parent->phy_probe_info;
int lowest_10g, lowest_1g;
int num_10g, num_1g;
u32 val;
int err;
num_10g = num_1g = 0;
if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
num_10g = 0;
num_1g = 2;
parent->plat_type = PLAT_TYPE_ATCA_CP3220;
parent->num_ports = 4;
val = (phy_encode(PORT_TYPE_1G, 0) |
phy_encode(PORT_TYPE_1G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
} else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
num_10g = 2;
num_1g = 0;
parent->num_ports = 2;
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_10G, 1));
} else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
(parent->plat_type == PLAT_TYPE_NIU)) {
/* this is the Monza case */
if (np->flags & NIU_FLAGS_10G) {
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_10G, 1));
} else {
val = (phy_encode(PORT_TYPE_1G, 0) |
phy_encode(PORT_TYPE_1G, 1));
}
} else {
err = fill_phy_probe_info(np, parent, info);
if (err)
return err;
num_10g = count_10g_ports(info, &lowest_10g);
num_1g = count_1g_ports(info, &lowest_1g);
switch ((num_10g << 4) | num_1g) {
case 0x24:
if (lowest_1g == 10)
parent->plat_type = PLAT_TYPE_VF_P0;
else if (lowest_1g == 26)
parent->plat_type = PLAT_TYPE_VF_P1;
else
goto unknown_vg_1g_port;
/* fallthru */
case 0x22:
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_10G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
break;
case 0x20:
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_10G, 1));
break;
case 0x10:
val = phy_encode(PORT_TYPE_10G, np->port);
break;
case 0x14:
if (lowest_1g == 10)
parent->plat_type = PLAT_TYPE_VF_P0;
else if (lowest_1g == 26)
parent->plat_type = PLAT_TYPE_VF_P1;
else
goto unknown_vg_1g_port;
/* fallthru */
case 0x13:
if ((lowest_10g & 0x7) == 0)
val = (phy_encode(PORT_TYPE_10G, 0) |
phy_encode(PORT_TYPE_1G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
else
val = (phy_encode(PORT_TYPE_1G, 0) |
phy_encode(PORT_TYPE_10G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
break;
case 0x04:
if (lowest_1g == 10)
parent->plat_type = PLAT_TYPE_VF_P0;
else if (lowest_1g == 26)
parent->plat_type = PLAT_TYPE_VF_P1;
else
goto unknown_vg_1g_port;
val = (phy_encode(PORT_TYPE_1G, 0) |
phy_encode(PORT_TYPE_1G, 1) |
phy_encode(PORT_TYPE_1G, 2) |
phy_encode(PORT_TYPE_1G, 3));
break;
default:
pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
num_10g, num_1g);
return -EINVAL;
}
}
parent->port_phy = val;
if (parent->plat_type == PLAT_TYPE_NIU)
niu_n2_divide_channels(parent);
else
niu_divide_channels(parent, num_10g, num_1g);
niu_divide_rdc_groups(parent, num_10g, num_1g);
return 0;
unknown_vg_1g_port:
pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
return -EINVAL;
}
static int niu_probe_ports(struct niu *np)
{
struct niu_parent *parent = np->parent;
int err, i;
if (parent->port_phy == PORT_PHY_UNKNOWN) {
err = walk_phys(np, parent);
if (err)
return err;
niu_set_ldg_timer_res(np, 2);
for (i = 0; i <= LDN_MAX; i++)
niu_ldn_irq_enable(np, i, 0);
}
if (parent->port_phy == PORT_PHY_INVALID)
return -EINVAL;
return 0;
}
static int niu_classifier_swstate_init(struct niu *np)
{
struct niu_classifier *cp = &np->clas;
cp->tcam_top = (u16) np->port;
cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
cp->h1_init = 0xffffffff;
cp->h2_init = 0xffff;
return fflp_early_init(np);
}
static void niu_link_config_init(struct niu *np)
{
struct niu_link_config *lp = &np->link_config;
lp->advertising = (ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_1000baseT_Half |
ADVERTISED_1000baseT_Full |
ADVERTISED_10000baseT_Full |
ADVERTISED_Autoneg);
lp->speed = lp->active_speed = SPEED_INVALID;
lp->duplex = DUPLEX_FULL;
lp->active_duplex = DUPLEX_INVALID;
lp->autoneg = 1;
#if 0
lp->loopback_mode = LOOPBACK_MAC;
lp->active_speed = SPEED_10000;
lp->active_duplex = DUPLEX_FULL;
#else
lp->loopback_mode = LOOPBACK_DISABLED;
#endif
}
static int niu_init_mac_ipp_pcs_base(struct niu *np)
{
switch (np->port) {
case 0:
np->mac_regs = np->regs + XMAC_PORT0_OFF;
np->ipp_off = 0x00000;
np->pcs_off = 0x04000;
np->xpcs_off = 0x02000;
break;
case 1:
np->mac_regs = np->regs + XMAC_PORT1_OFF;
np->ipp_off = 0x08000;
np->pcs_off = 0x0a000;
np->xpcs_off = 0x08000;
break;
case 2:
np->mac_regs = np->regs + BMAC_PORT2_OFF;
np->ipp_off = 0x04000;
np->pcs_off = 0x0e000;
np->xpcs_off = ~0UL;
break;
case 3:
np->mac_regs = np->regs + BMAC_PORT3_OFF;
np->ipp_off = 0x0c000;
np->pcs_off = 0x12000;
np->xpcs_off = ~0UL;
break;
default:
dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
return -EINVAL;
}
return 0;
}
static void niu_try_msix(struct niu *np, u8 *ldg_num_map)
{
struct msix_entry msi_vec[NIU_NUM_LDG];
struct niu_parent *parent = np->parent;
struct pci_dev *pdev = np->pdev;
int i, num_irqs;
u8 first_ldg;
first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
ldg_num_map[i] = first_ldg + i;
num_irqs = (parent->rxchan_per_port[np->port] +
parent->txchan_per_port[np->port] +
(np->port == 0 ? 3 : 1));
BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
for (i = 0; i < num_irqs; i++) {
msi_vec[i].vector = 0;
msi_vec[i].entry = i;
}
num_irqs = pci_enable_msix_range(pdev, msi_vec, 1, num_irqs);
if (num_irqs < 0) {
np->flags &= ~NIU_FLAGS_MSIX;
return;
}
np->flags |= NIU_FLAGS_MSIX;
for (i = 0; i < num_irqs; i++)
np->ldg[i].irq = msi_vec[i].vector;
np->num_ldg = num_irqs;
}
static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
{
#ifdef CONFIG_SPARC64
struct platform_device *op = np->op;
const u32 *int_prop;
int i;
int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
if (!int_prop)
return -ENODEV;
for (i = 0; i < op->archdata.num_irqs; i++) {
ldg_num_map[i] = int_prop[i];
np->ldg[i].irq = op->archdata.irqs[i];
}
np->num_ldg = op->archdata.num_irqs;
return 0;
#else
return -EINVAL;
#endif
}
static int niu_ldg_init(struct niu *np)
{
struct niu_parent *parent = np->parent;
u8 ldg_num_map[NIU_NUM_LDG];
int first_chan, num_chan;
int i, err, ldg_rotor;
u8 port;
np->num_ldg = 1;
np->ldg[0].irq = np->dev->irq;
if (parent->plat_type == PLAT_TYPE_NIU) {
err = niu_n2_irq_init(np, ldg_num_map);
if (err)
return err;
} else
niu_try_msix(np, ldg_num_map);
port = np->port;
for (i = 0; i < np->num_ldg; i++) {
struct niu_ldg *lp = &np->ldg[i];
netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
lp->np = np;
lp->ldg_num = ldg_num_map[i];
lp->timer = 2; /* XXX */
/* On N2 NIU the firmware has setup the SID mappings so they go
* to the correct values that will route the LDG to the proper
* interrupt in the NCU interrupt table.
*/
if (np->parent->plat_type != PLAT_TYPE_NIU) {
err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
if (err)
return err;
}
}
/* We adopt the LDG assignment ordering used by the N2 NIU
* 'interrupt' properties because that simplifies a lot of
* things. This ordering is:
*
* MAC
* MIF (if port zero)
* SYSERR (if port zero)
* RX channels
* TX channels
*/
ldg_rotor = 0;
err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
LDN_MAC(port));
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
if (port == 0) {
err = niu_ldg_assign_ldn(np, parent,
ldg_num_map[ldg_rotor],
LDN_MIF);
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
err = niu_ldg_assign_ldn(np, parent,
ldg_num_map[ldg_rotor],
LDN_DEVICE_ERROR);
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
}
first_chan = 0;
for (i = 0; i < port; i++)
first_chan += parent->rxchan_per_port[i];
num_chan = parent->rxchan_per_port[port];
for (i = first_chan; i < (first_chan + num_chan); i++) {
err = niu_ldg_assign_ldn(np, parent,
ldg_num_map[ldg_rotor],
LDN_RXDMA(i));
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
}
first_chan = 0;
for (i = 0; i < port; i++)
first_chan += parent->txchan_per_port[i];
num_chan = parent->txchan_per_port[port];
for (i = first_chan; i < (first_chan + num_chan); i++) {
err = niu_ldg_assign_ldn(np, parent,
ldg_num_map[ldg_rotor],
LDN_TXDMA(i));
if (err)
return err;
ldg_rotor++;
if (ldg_rotor == np->num_ldg)
ldg_rotor = 0;
}
return 0;
}
static void niu_ldg_free(struct niu *np)
{
if (np->flags & NIU_FLAGS_MSIX)
pci_disable_msix(np->pdev);
}
static int niu_get_of_props(struct niu *np)
{
#ifdef CONFIG_SPARC64
struct net_device *dev = np->dev;
struct device_node *dp;
const char *phy_type;
const u8 *mac_addr;
const char *model;
int prop_len;
if (np->parent->plat_type == PLAT_TYPE_NIU)
dp = np->op->dev.of_node;
else
dp = pci_device_to_OF_node(np->pdev);
phy_type = of_get_property(dp, "phy-type", &prop_len);
if (!phy_type) {
netdev_err(dev, "%pOF: OF node lacks phy-type property\n", dp);
return -EINVAL;
}
if (!strcmp(phy_type, "none"))
return -ENODEV;
strcpy(np->vpd.phy_type, phy_type);
if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
netdev_err(dev, "%pOF: Illegal phy string [%s]\n",
dp, np->vpd.phy_type);
return -EINVAL;
}
mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
if (!mac_addr) {
netdev_err(dev, "%pOF: OF node lacks local-mac-address property\n",
dp);
return -EINVAL;
}
if (prop_len != dev->addr_len) {
netdev_err(dev, "%pOF: OF MAC address prop len (%d) is wrong\n",
dp, prop_len);
}
memcpy(dev->dev_addr, mac_addr, dev->addr_len);
if (!is_valid_ether_addr(&dev->dev_addr[0])) {
netdev_err(dev, "%pOF: OF MAC address is invalid\n", dp);
netdev_err(dev, "%pOF: [ %pM ]\n", dp, dev->dev_addr);
return -EINVAL;
}
model = of_get_property(dp, "model", &prop_len);
if (model)
strcpy(np->vpd.model, model);
if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
NIU_FLAGS_HOTPLUG_PHY);
}
return 0;
#else
return -EINVAL;
#endif
}
static int niu_get_invariants(struct niu *np)
{
int err, have_props;
u32 offset;
err = niu_get_of_props(np);
if (err == -ENODEV)
return err;
have_props = !err;
err = niu_init_mac_ipp_pcs_base(np);
if (err)
return err;
if (have_props) {
err = niu_get_and_validate_port(np);
if (err)
return err;
} else {
if (np->parent->plat_type == PLAT_TYPE_NIU)
return -EINVAL;
nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
offset = niu_pci_vpd_offset(np);
netif_printk(np, probe, KERN_DEBUG, np->dev,
"%s() VPD offset [%08x]\n", __func__, offset);
if (offset)
niu_pci_vpd_fetch(np, offset);
nw64(ESPC_PIO_EN, 0);
if (np->flags & NIU_FLAGS_VPD_VALID) {
niu_pci_vpd_validate(np);
err = niu_get_and_validate_port(np);
if (err)
return err;
}
if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
err = niu_get_and_validate_port(np);
if (err)
return err;
err = niu_pci_probe_sprom(np);
if (err)
return err;
}
}
err = niu_probe_ports(np);
if (err)
return err;
niu_ldg_init(np);
niu_classifier_swstate_init(np);
niu_link_config_init(np);
err = niu_determine_phy_disposition(np);
if (!err)
err = niu_init_link(np);
return err;
}
static LIST_HEAD(niu_parent_list);
static DEFINE_MUTEX(niu_parent_lock);
static int niu_parent_index;
static ssize_t show_port_phy(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
u32 port_phy = p->port_phy;
char *orig_buf = buf;
int i;
if (port_phy == PORT_PHY_UNKNOWN ||
port_phy == PORT_PHY_INVALID)
return 0;
for (i = 0; i < p->num_ports; i++) {
const char *type_str;
int type;
type = phy_decode(port_phy, i);
if (type == PORT_TYPE_10G)
type_str = "10G";
else
type_str = "1G";
buf += sprintf(buf,
(i == 0) ? "%s" : " %s",
type_str);
}
buf += sprintf(buf, "\n");
return buf - orig_buf;
}
static ssize_t show_plat_type(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
const char *type_str;
switch (p->plat_type) {
case PLAT_TYPE_ATLAS:
type_str = "atlas";
break;
case PLAT_TYPE_NIU:
type_str = "niu";
break;
case PLAT_TYPE_VF_P0:
type_str = "vf_p0";
break;
case PLAT_TYPE_VF_P1:
type_str = "vf_p1";
break;
default:
type_str = "unknown";
break;
}
return sprintf(buf, "%s\n", type_str);
}
static ssize_t __show_chan_per_port(struct device *dev,
struct device_attribute *attr, char *buf,
int rx)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
char *orig_buf = buf;
u8 *arr;
int i;
arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
for (i = 0; i < p->num_ports; i++) {
buf += sprintf(buf,
(i == 0) ? "%d" : " %d",
arr[i]);
}
buf += sprintf(buf, "\n");
return buf - orig_buf;
}
static ssize_t show_rxchan_per_port(struct device *dev,
struct device_attribute *attr, char *buf)
{
return __show_chan_per_port(dev, attr, buf, 1);
}
static ssize_t show_txchan_per_port(struct device *dev,
struct device_attribute *attr, char *buf)
{
return __show_chan_per_port(dev, attr, buf, 1);
}
static ssize_t show_num_ports(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct platform_device *plat_dev = to_platform_device(dev);
struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
return sprintf(buf, "%d\n", p->num_ports);
}
static struct device_attribute niu_parent_attributes[] = {
__ATTR(port_phy, 0444, show_port_phy, NULL),
__ATTR(plat_type, 0444, show_plat_type, NULL),
__ATTR(rxchan_per_port, 0444, show_rxchan_per_port, NULL),
__ATTR(txchan_per_port, 0444, show_txchan_per_port, NULL),
__ATTR(num_ports, 0444, show_num_ports, NULL),
{}
};
static struct niu_parent *niu_new_parent(struct niu *np,
union niu_parent_id *id, u8 ptype)
{
struct platform_device *plat_dev;
struct niu_parent *p;
int i;
plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
NULL, 0);
if (IS_ERR(plat_dev))
return NULL;
for (i = 0; niu_parent_attributes[i].attr.name; i++) {
int err = device_create_file(&plat_dev->dev,
&niu_parent_attributes[i]);
if (err)
goto fail_unregister;
}
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
goto fail_unregister;
p->index = niu_parent_index++;
plat_dev->dev.platform_data = p;
p->plat_dev = plat_dev;
memcpy(&p->id, id, sizeof(*id));
p->plat_type = ptype;
INIT_LIST_HEAD(&p->list);
atomic_set(&p->refcnt, 0);
list_add(&p->list, &niu_parent_list);
spin_lock_init(&p->lock);
p->rxdma_clock_divider = 7500;
p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
if (p->plat_type == PLAT_TYPE_NIU)
p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
int index = i - CLASS_CODE_USER_PROG1;
p->tcam_key[index] = TCAM_KEY_TSEL;
p->flow_key[index] = (FLOW_KEY_IPSA |
FLOW_KEY_IPDA |
FLOW_KEY_PROTO |
(FLOW_KEY_L4_BYTE12 <<
FLOW_KEY_L4_0_SHIFT) |
(FLOW_KEY_L4_BYTE12 <<
FLOW_KEY_L4_1_SHIFT));
}
for (i = 0; i < LDN_MAX + 1; i++)
p->ldg_map[i] = LDG_INVALID;
return p;
fail_unregister:
platform_device_unregister(plat_dev);
return NULL;
}
static struct niu_parent *niu_get_parent(struct niu *np,
union niu_parent_id *id, u8 ptype)
{
struct niu_parent *p, *tmp;
int port = np->port;
mutex_lock(&niu_parent_lock);
p = NULL;
list_for_each_entry(tmp, &niu_parent_list, list) {
if (!memcmp(id, &tmp->id, sizeof(*id))) {
p = tmp;
break;
}
}
if (!p)
p = niu_new_parent(np, id, ptype);
if (p) {
char port_name[8];
int err;
sprintf(port_name, "port%d", port);
err = sysfs_create_link(&p->plat_dev->dev.kobj,
&np->device->kobj,
port_name);
if (!err) {
p->ports[port] = np;
atomic_inc(&p->refcnt);
}
}
mutex_unlock(&niu_parent_lock);
return p;
}
static void niu_put_parent(struct niu *np)
{
struct niu_parent *p = np->parent;
u8 port = np->port;
char port_name[8];
BUG_ON(!p || p->ports[port] != np);
netif_printk(np, probe, KERN_DEBUG, np->dev,
"%s() port[%u]\n", __func__, port);
sprintf(port_name, "port%d", port);
mutex_lock(&niu_parent_lock);
sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
p->ports[port] = NULL;
np->parent = NULL;
if (atomic_dec_and_test(&p->refcnt)) {
list_del(&p->list);
platform_device_unregister(p->plat_dev);
}
mutex_unlock(&niu_parent_lock);
}
static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
u64 *handle, gfp_t flag)
{
dma_addr_t dh;
void *ret;
ret = dma_alloc_coherent(dev, size, &dh, flag);
if (ret)
*handle = dh;
return ret;
}
static void niu_pci_free_coherent(struct device *dev, size_t size,
void *cpu_addr, u64 handle)
{
dma_free_coherent(dev, size, cpu_addr, handle);
}
static u64 niu_pci_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
return dma_map_page(dev, page, offset, size, direction);
}
static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
size_t size, enum dma_data_direction direction)
{
dma_unmap_page(dev, dma_address, size, direction);
}
static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
size_t size,
enum dma_data_direction direction)
{
return dma_map_single(dev, cpu_addr, size, direction);
}
static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
size_t size,
enum dma_data_direction direction)
{
dma_unmap_single(dev, dma_address, size, direction);
}
static const struct niu_ops niu_pci_ops = {
.alloc_coherent = niu_pci_alloc_coherent,
.free_coherent = niu_pci_free_coherent,
.map_page = niu_pci_map_page,
.unmap_page = niu_pci_unmap_page,
.map_single = niu_pci_map_single,
.unmap_single = niu_pci_unmap_single,
};
static void niu_driver_version(void)
{
static int niu_version_printed;
if (niu_version_printed++ == 0)
pr_info("%s", version);
}
static struct net_device *niu_alloc_and_init(struct device *gen_dev,
struct pci_dev *pdev,
struct platform_device *op,
const struct niu_ops *ops, u8 port)
{
struct net_device *dev;
struct niu *np;
dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
if (!dev)
return NULL;
SET_NETDEV_DEV(dev, gen_dev);
np = netdev_priv(dev);
np->dev = dev;
np->pdev = pdev;
np->op = op;
np->device = gen_dev;
np->ops = ops;
np->msg_enable = niu_debug;
spin_lock_init(&np->lock);
INIT_WORK(&np->reset_task, niu_reset_task);
np->port = port;
return dev;
}
static const struct net_device_ops niu_netdev_ops = {
.ndo_open = niu_open,
.ndo_stop = niu_close,
.ndo_start_xmit = niu_start_xmit,
.ndo_get_stats64 = niu_get_stats,
.ndo_set_rx_mode = niu_set_rx_mode,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = niu_set_mac_addr,
.ndo_do_ioctl = niu_ioctl,
.ndo_tx_timeout = niu_tx_timeout,
.ndo_change_mtu = niu_change_mtu,
};
static void niu_assign_netdev_ops(struct net_device *dev)
{
dev->netdev_ops = &niu_netdev_ops;
dev->ethtool_ops = &niu_ethtool_ops;
dev->watchdog_timeo = NIU_TX_TIMEOUT;
}
static void niu_device_announce(struct niu *np)
{
struct net_device *dev = np->dev;
pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
dev->name,
(np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
(np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
(np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
(np->mac_xcvr == MAC_XCVR_MII ? "MII" :
(np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
np->vpd.phy_type);
} else {
pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
dev->name,
(np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
(np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
(np->flags & NIU_FLAGS_FIBER ? "FIBER" :
(np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
"COPPER")),
(np->mac_xcvr == MAC_XCVR_MII ? "MII" :
(np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
np->vpd.phy_type);
}
}
static void niu_set_basic_features(struct net_device *dev)
{
dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
dev->features |= dev->hw_features | NETIF_F_RXCSUM;
}
static int niu_pci_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
union niu_parent_id parent_id;
struct net_device *dev;
struct niu *np;
int err;
u64 dma_mask;
niu_driver_version();
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
return err;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
err = -ENODEV;
goto err_out_disable_pdev;
}
err = pci_request_regions(pdev, DRV_MODULE_NAME);
if (err) {
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
goto err_out_disable_pdev;
}
if (!pci_is_pcie(pdev)) {
dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
err = -ENODEV;
goto err_out_free_res;
}
dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
&niu_pci_ops, PCI_FUNC(pdev->devfn));
if (!dev) {
err = -ENOMEM;
goto err_out_free_res;
}
np = netdev_priv(dev);
memset(&parent_id, 0, sizeof(parent_id));
parent_id.pci.domain = pci_domain_nr(pdev->bus);
parent_id.pci.bus = pdev->bus->number;
parent_id.pci.device = PCI_SLOT(pdev->devfn);
np->parent = niu_get_parent(np, &parent_id,
PLAT_TYPE_ATLAS);
if (!np->parent) {
err = -ENOMEM;
goto err_out_free_dev;
}
pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
PCI_EXP_DEVCTL_NOSNOOP_EN,
PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE |
PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE |
PCI_EXP_DEVCTL_RELAX_EN);
dma_mask = DMA_BIT_MASK(44);
err = pci_set_dma_mask(pdev, dma_mask);
if (!err) {
dev->features |= NETIF_F_HIGHDMA;
err = pci_set_consistent_dma_mask(pdev, dma_mask);
if (err) {
dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
goto err_out_release_parent;
}
}
if (err) {
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err) {
dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
goto err_out_release_parent;
}
}
niu_set_basic_features(dev);
dev->priv_flags |= IFF_UNICAST_FLT;
np->regs = pci_ioremap_bar(pdev, 0);
if (!np->regs) {
dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
err = -ENOMEM;
goto err_out_release_parent;
}
pci_set_master(pdev);
pci_save_state(pdev);
dev->irq = pdev->irq;
/* MTU range: 68 - 9216 */
dev->min_mtu = ETH_MIN_MTU;
dev->max_mtu = NIU_MAX_MTU;
niu_assign_netdev_ops(dev);
err = niu_get_invariants(np);
if (err) {
if (err != -ENODEV)
dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
goto err_out_iounmap;
}
err = register_netdev(dev);
if (err) {
dev_err(&pdev->dev, "Cannot register net device, aborting\n");
goto err_out_iounmap;
}
pci_set_drvdata(pdev, dev);
niu_device_announce(np);
return 0;
err_out_iounmap:
if (np->regs) {
iounmap(np->regs);
np->regs = NULL;
}
err_out_release_parent:
niu_put_parent(np);
err_out_free_dev:
free_netdev(dev);
err_out_free_res:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
return err;
}
static void niu_pci_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
if (dev) {
struct niu *np = netdev_priv(dev);
unregister_netdev(dev);
if (np->regs) {
iounmap(np->regs);
np->regs = NULL;
}
niu_ldg_free(np);
niu_put_parent(np);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
}
static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct niu *np = netdev_priv(dev);
unsigned long flags;
if (!netif_running(dev))
return 0;
flush_work(&np->reset_task);
niu_netif_stop(np);
del_timer_sync(&np->timer);
spin_lock_irqsave(&np->lock, flags);
niu_enable_interrupts(np, 0);
spin_unlock_irqrestore(&np->lock, flags);
netif_device_detach(dev);
spin_lock_irqsave(&np->lock, flags);
niu_stop_hw(np);
spin_unlock_irqrestore(&np->lock, flags);
pci_save_state(pdev);
return 0;
}
static int niu_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct niu *np = netdev_priv(dev);
unsigned long flags;
int err;
if (!netif_running(dev))
return 0;
pci_restore_state(pdev);
netif_device_attach(dev);
spin_lock_irqsave(&np->lock, flags);
err = niu_init_hw(np);
if (!err) {
np->timer.expires = jiffies + HZ;
add_timer(&np->timer);
niu_netif_start(np);
}
spin_unlock_irqrestore(&np->lock, flags);
return err;
}
static struct pci_driver niu_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = niu_pci_tbl,
.probe = niu_pci_init_one,
.remove = niu_pci_remove_one,
.suspend = niu_suspend,
.resume = niu_resume,
};
#ifdef CONFIG_SPARC64
static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
u64 *dma_addr, gfp_t flag)
{
unsigned long order = get_order(size);
unsigned long page = __get_free_pages(flag, order);
if (page == 0UL)
return NULL;
memset((char *)page, 0, PAGE_SIZE << order);
*dma_addr = __pa(page);
return (void *) page;
}
static void niu_phys_free_coherent(struct device *dev, size_t size,
void *cpu_addr, u64 handle)
{
unsigned long order = get_order(size);
free_pages((unsigned long) cpu_addr, order);
}
static u64 niu_phys_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
{
return page_to_phys(page) + offset;
}
static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
size_t size, enum dma_data_direction direction)
{
/* Nothing to do. */
}
static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
size_t size,
enum dma_data_direction direction)
{
return __pa(cpu_addr);
}
static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
size_t size,
enum dma_data_direction direction)
{
/* Nothing to do. */
}
static const struct niu_ops niu_phys_ops = {
.alloc_coherent = niu_phys_alloc_coherent,
.free_coherent = niu_phys_free_coherent,
.map_page = niu_phys_map_page,
.unmap_page = niu_phys_unmap_page,
.map_single = niu_phys_map_single,
.unmap_single = niu_phys_unmap_single,
};
static int niu_of_probe(struct platform_device *op)
{
union niu_parent_id parent_id;
struct net_device *dev;
struct niu *np;
const u32 *reg;
int err;
niu_driver_version();
reg = of_get_property(op->dev.of_node, "reg", NULL);
if (!reg) {
dev_err(&op->dev, "%pOF: No 'reg' property, aborting\n",
op->dev.of_node);
return -ENODEV;
}
dev = niu_alloc_and_init(&op->dev, NULL, op,
&niu_phys_ops, reg[0] & 0x1);
if (!dev) {
err = -ENOMEM;
goto err_out;
}
np = netdev_priv(dev);
memset(&parent_id, 0, sizeof(parent_id));
parent_id.of = of_get_parent(op->dev.of_node);
np->parent = niu_get_parent(np, &parent_id,
PLAT_TYPE_NIU);
if (!np->parent) {
err = -ENOMEM;
goto err_out_free_dev;
}
niu_set_basic_features(dev);
np->regs = of_ioremap(&op->resource[1], 0,
resource_size(&op->resource[1]),
"niu regs");
if (!np->regs) {
dev_err(&op->dev, "Cannot map device registers, aborting\n");
err = -ENOMEM;
goto err_out_release_parent;
}
np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
resource_size(&op->resource[2]),
"niu vregs-1");
if (!np->vir_regs_1) {
dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
err = -ENOMEM;
goto err_out_iounmap;
}
np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
resource_size(&op->resource[3]),
"niu vregs-2");
if (!np->vir_regs_2) {
dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
err = -ENOMEM;
goto err_out_iounmap;
}
niu_assign_netdev_ops(dev);
err = niu_get_invariants(np);
if (err) {
if (err != -ENODEV)
dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
goto err_out_iounmap;
}
err = register_netdev(dev);
if (err) {
dev_err(&op->dev, "Cannot register net device, aborting\n");
goto err_out_iounmap;
}
platform_set_drvdata(op, dev);
niu_device_announce(np);
return 0;
err_out_iounmap:
if (np->vir_regs_1) {
of_iounmap(&op->resource[2], np->vir_regs_1,
resource_size(&op->resource[2]));
np->vir_regs_1 = NULL;
}
if (np->vir_regs_2) {
of_iounmap(&op->resource[3], np->vir_regs_2,
resource_size(&op->resource[3]));
np->vir_regs_2 = NULL;
}
if (np->regs) {
of_iounmap(&op->resource[1], np->regs,
resource_size(&op->resource[1]));
np->regs = NULL;
}
err_out_release_parent:
niu_put_parent(np);
err_out_free_dev:
free_netdev(dev);
err_out:
return err;
}
static int niu_of_remove(struct platform_device *op)
{
struct net_device *dev = platform_get_drvdata(op);
if (dev) {
struct niu *np = netdev_priv(dev);
unregister_netdev(dev);
if (np->vir_regs_1) {
of_iounmap(&op->resource[2], np->vir_regs_1,
resource_size(&op->resource[2]));
np->vir_regs_1 = NULL;
}
if (np->vir_regs_2) {
of_iounmap(&op->resource[3], np->vir_regs_2,
resource_size(&op->resource[3]));
np->vir_regs_2 = NULL;
}
if (np->regs) {
of_iounmap(&op->resource[1], np->regs,
resource_size(&op->resource[1]));
np->regs = NULL;
}
niu_ldg_free(np);
niu_put_parent(np);
free_netdev(dev);
}
return 0;
}
static const struct of_device_id niu_match[] = {
{
.name = "network",
.compatible = "SUNW,niusl",
},
{},
};
MODULE_DEVICE_TABLE(of, niu_match);
static struct platform_driver niu_of_driver = {
.driver = {
.name = "niu",
.of_match_table = niu_match,
},
.probe = niu_of_probe,
.remove = niu_of_remove,
};
#endif /* CONFIG_SPARC64 */
static int __init niu_init(void)
{
int err = 0;
BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
#ifdef CONFIG_SPARC64
err = platform_driver_register(&niu_of_driver);
#endif
if (!err) {
err = pci_register_driver(&niu_pci_driver);
#ifdef CONFIG_SPARC64
if (err)
platform_driver_unregister(&niu_of_driver);
#endif
}
return err;
}
static void __exit niu_exit(void)
{
pci_unregister_driver(&niu_pci_driver);
#ifdef CONFIG_SPARC64
platform_driver_unregister(&niu_of_driver);
#endif
}
module_init(niu_init);
module_exit(niu_exit);