| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org> |
| */ |
| |
| #include <linux/efi.h> |
| #include <linux/log2.h> |
| #include <asm/efi.h> |
| |
| #include "efistub.h" |
| |
| struct efi_rng_protocol { |
| efi_status_t (*get_info)(struct efi_rng_protocol *, |
| unsigned long *, efi_guid_t *); |
| efi_status_t (*get_rng)(struct efi_rng_protocol *, |
| efi_guid_t *, unsigned long, u8 *out); |
| }; |
| |
| efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg, |
| unsigned long size, u8 *out) |
| { |
| efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID; |
| efi_status_t status; |
| struct efi_rng_protocol *rng; |
| |
| status = efi_call_early(locate_protocol, &rng_proto, NULL, |
| (void **)&rng); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| return rng->get_rng(rng, NULL, size, out); |
| } |
| |
| /* |
| * Return the number of slots covered by this entry, i.e., the number of |
| * addresses it covers that are suitably aligned and supply enough room |
| * for the allocation. |
| */ |
| static unsigned long get_entry_num_slots(efi_memory_desc_t *md, |
| unsigned long size, |
| unsigned long align_shift) |
| { |
| unsigned long align = 1UL << align_shift; |
| u64 first_slot, last_slot, region_end; |
| |
| if (md->type != EFI_CONVENTIONAL_MEMORY) |
| return 0; |
| |
| region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1); |
| |
| first_slot = round_up(md->phys_addr, align); |
| last_slot = round_down(region_end - size + 1, align); |
| |
| if (first_slot > last_slot) |
| return 0; |
| |
| return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1; |
| } |
| |
| /* |
| * The UEFI memory descriptors have a virtual address field that is only used |
| * when installing the virtual mapping using SetVirtualAddressMap(). Since it |
| * is unused here, we can reuse it to keep track of each descriptor's slot |
| * count. |
| */ |
| #define MD_NUM_SLOTS(md) ((md)->virt_addr) |
| |
| efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg, |
| unsigned long size, |
| unsigned long align, |
| unsigned long *addr, |
| unsigned long random_seed) |
| { |
| unsigned long map_size, desc_size, total_slots = 0, target_slot; |
| unsigned long buff_size; |
| efi_status_t status; |
| efi_memory_desc_t *memory_map; |
| int map_offset; |
| struct efi_boot_memmap map; |
| |
| map.map = &memory_map; |
| map.map_size = &map_size; |
| map.desc_size = &desc_size; |
| map.desc_ver = NULL; |
| map.key_ptr = NULL; |
| map.buff_size = &buff_size; |
| |
| status = efi_get_memory_map(sys_table_arg, &map); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| if (align < EFI_ALLOC_ALIGN) |
| align = EFI_ALLOC_ALIGN; |
| |
| /* count the suitable slots in each memory map entry */ |
| for (map_offset = 0; map_offset < map_size; map_offset += desc_size) { |
| efi_memory_desc_t *md = (void *)memory_map + map_offset; |
| unsigned long slots; |
| |
| slots = get_entry_num_slots(md, size, ilog2(align)); |
| MD_NUM_SLOTS(md) = slots; |
| total_slots += slots; |
| } |
| |
| /* find a random number between 0 and total_slots */ |
| target_slot = (total_slots * (u16)random_seed) >> 16; |
| |
| /* |
| * target_slot is now a value in the range [0, total_slots), and so |
| * it corresponds with exactly one of the suitable slots we recorded |
| * when iterating over the memory map the first time around. |
| * |
| * So iterate over the memory map again, subtracting the number of |
| * slots of each entry at each iteration, until we have found the entry |
| * that covers our chosen slot. Use the residual value of target_slot |
| * to calculate the randomly chosen address, and allocate it directly |
| * using EFI_ALLOCATE_ADDRESS. |
| */ |
| for (map_offset = 0; map_offset < map_size; map_offset += desc_size) { |
| efi_memory_desc_t *md = (void *)memory_map + map_offset; |
| efi_physical_addr_t target; |
| unsigned long pages; |
| |
| if (target_slot >= MD_NUM_SLOTS(md)) { |
| target_slot -= MD_NUM_SLOTS(md); |
| continue; |
| } |
| |
| target = round_up(md->phys_addr, align) + target_slot * align; |
| pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE; |
| |
| status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS, |
| EFI_LOADER_DATA, pages, &target); |
| if (status == EFI_SUCCESS) |
| *addr = target; |
| break; |
| } |
| |
| efi_call_early(free_pool, memory_map); |
| |
| return status; |
| } |
| |
| efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg) |
| { |
| efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID; |
| efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW; |
| efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID; |
| struct efi_rng_protocol *rng; |
| struct linux_efi_random_seed *seed; |
| efi_status_t status; |
| |
| status = efi_call_early(locate_protocol, &rng_proto, NULL, |
| (void **)&rng); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA, |
| sizeof(*seed) + EFI_RANDOM_SEED_SIZE, |
| (void **)&seed); |
| if (status != EFI_SUCCESS) |
| return status; |
| |
| status = rng->get_rng(rng, &rng_algo_raw, EFI_RANDOM_SEED_SIZE, |
| seed->bits); |
| if (status == EFI_UNSUPPORTED) |
| /* |
| * Use whatever algorithm we have available if the raw algorithm |
| * is not implemented. |
| */ |
| status = rng->get_rng(rng, NULL, EFI_RANDOM_SEED_SIZE, |
| seed->bits); |
| |
| if (status != EFI_SUCCESS) |
| goto err_freepool; |
| |
| seed->size = EFI_RANDOM_SEED_SIZE; |
| status = efi_call_early(install_configuration_table, &rng_table_guid, |
| seed); |
| if (status != EFI_SUCCESS) |
| goto err_freepool; |
| |
| return EFI_SUCCESS; |
| |
| err_freepool: |
| efi_call_early(free_pool, seed); |
| return status; |
| } |