blob: e9a81052728a4e20bf8b3ab1bea0441fa690a0fa [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
//! Extensions to [`Vec`] for fallible allocations.
use super::{AllocError, Flags};
use alloc::vec::Vec;
use core::ptr;
/// Extensions to [`Vec`].
pub trait VecExt<T>: Sized {
/// Creates a new [`Vec`] instance with at least the given capacity.
///
/// # Examples
///
/// ```
/// let v = Vec::<u32>::with_capacity(20, GFP_KERNEL)?;
///
/// assert!(v.capacity() >= 20);
/// # Ok::<(), Error>(())
/// ```
fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError>;
/// Appends an element to the back of the [`Vec`] instance.
///
/// # Examples
///
/// ```
/// let mut v = Vec::new();
/// v.push(1, GFP_KERNEL)?;
/// assert_eq!(&v, &[1]);
///
/// v.push(2, GFP_KERNEL)?;
/// assert_eq!(&v, &[1, 2]);
/// # Ok::<(), Error>(())
/// ```
fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError>;
/// Pushes clones of the elements of slice into the [`Vec`] instance.
///
/// # Examples
///
/// ```
/// let mut v = Vec::new();
/// v.push(1, GFP_KERNEL)?;
///
/// v.extend_from_slice(&[20, 30, 40], GFP_KERNEL)?;
/// assert_eq!(&v, &[1, 20, 30, 40]);
///
/// v.extend_from_slice(&[50, 60], GFP_KERNEL)?;
/// assert_eq!(&v, &[1, 20, 30, 40, 50, 60]);
/// # Ok::<(), Error>(())
/// ```
fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
where
T: Clone;
/// Ensures that the capacity exceeds the length by at least `additional` elements.
///
/// # Examples
///
/// ```
/// let mut v = Vec::new();
/// v.push(1, GFP_KERNEL)?;
///
/// v.reserve(10, GFP_KERNEL)?;
/// let cap = v.capacity();
/// assert!(cap >= 10);
///
/// v.reserve(10, GFP_KERNEL)?;
/// let new_cap = v.capacity();
/// assert_eq!(new_cap, cap);
///
/// # Ok::<(), Error>(())
/// ```
fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError>;
}
impl<T> VecExt<T> for Vec<T> {
fn with_capacity(capacity: usize, flags: Flags) -> Result<Self, AllocError> {
let mut v = Vec::new();
<Self as VecExt<_>>::reserve(&mut v, capacity, flags)?;
Ok(v)
}
fn push(&mut self, v: T, flags: Flags) -> Result<(), AllocError> {
<Self as VecExt<_>>::reserve(self, 1, flags)?;
let s = self.spare_capacity_mut();
s[0].write(v);
// SAFETY: We just initialised the first spare entry, so it is safe to increase the length
// by 1. We also know that the new length is <= capacity because of the previous call to
// `reserve` above.
unsafe { self.set_len(self.len() + 1) };
Ok(())
}
fn extend_from_slice(&mut self, other: &[T], flags: Flags) -> Result<(), AllocError>
where
T: Clone,
{
<Self as VecExt<_>>::reserve(self, other.len(), flags)?;
for (slot, item) in core::iter::zip(self.spare_capacity_mut(), other) {
slot.write(item.clone());
}
// SAFETY: We just initialised the `other.len()` spare entries, so it is safe to increase
// the length by the same amount. We also know that the new length is <= capacity because
// of the previous call to `reserve` above.
unsafe { self.set_len(self.len() + other.len()) };
Ok(())
}
#[cfg(any(test, testlib))]
fn reserve(&mut self, additional: usize, _flags: Flags) -> Result<(), AllocError> {
Vec::reserve(self, additional);
Ok(())
}
#[cfg(not(any(test, testlib)))]
fn reserve(&mut self, additional: usize, flags: Flags) -> Result<(), AllocError> {
let len = self.len();
let cap = self.capacity();
if cap - len >= additional {
return Ok(());
}
if core::mem::size_of::<T>() == 0 {
// The capacity is already `usize::MAX` for SZTs, we can't go higher.
return Err(AllocError);
}
// We know cap is <= `isize::MAX` because `Layout::array` fails if the resulting byte size
// is greater than `isize::MAX`. So the multiplication by two won't overflow.
let new_cap = core::cmp::max(cap * 2, len.checked_add(additional).ok_or(AllocError)?);
let layout = core::alloc::Layout::array::<T>(new_cap).map_err(|_| AllocError)?;
let (old_ptr, len, cap) = destructure(self);
// We need to make sure that `ptr` is either NULL or comes from a previous call to
// `krealloc_aligned`. A `Vec<T>`'s `ptr` value is not guaranteed to be NULL and might be
// dangling after being created with `Vec::new`. Instead, we can rely on `Vec<T>`'s capacity
// to be zero if no memory has been allocated yet.
let ptr = if cap == 0 { ptr::null_mut() } else { old_ptr };
// SAFETY: `ptr` is valid because it's either NULL or comes from a previous call to
// `krealloc_aligned`. We also verified that the type is not a ZST.
let new_ptr = unsafe { super::allocator::krealloc_aligned(ptr.cast(), layout, flags) };
if new_ptr.is_null() {
// SAFETY: We are just rebuilding the existing `Vec` with no changes.
unsafe { rebuild(self, old_ptr, len, cap) };
Err(AllocError)
} else {
// SAFETY: `ptr` has been reallocated with the layout for `new_cap` elements. New cap
// is greater than `cap`, so it continues to be >= `len`.
unsafe { rebuild(self, new_ptr.cast::<T>(), len, new_cap) };
Ok(())
}
}
}
#[cfg(not(any(test, testlib)))]
fn destructure<T>(v: &mut Vec<T>) -> (*mut T, usize, usize) {
let mut tmp = Vec::new();
core::mem::swap(&mut tmp, v);
let mut tmp = core::mem::ManuallyDrop::new(tmp);
let len = tmp.len();
let cap = tmp.capacity();
(tmp.as_mut_ptr(), len, cap)
}
/// Rebuilds a `Vec` from a pointer, length, and capacity.
///
/// # Safety
///
/// The same as [`Vec::from_raw_parts`].
#[cfg(not(any(test, testlib)))]
unsafe fn rebuild<T>(v: &mut Vec<T>, ptr: *mut T, len: usize, cap: usize) {
// SAFETY: The safety requirements from this function satisfy those of `from_raw_parts`.
let mut tmp = unsafe { Vec::from_raw_parts(ptr, len, cap) };
core::mem::swap(&mut tmp, v);
}