| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef __KVM_X86_MMU_H |
| #define __KVM_X86_MMU_H |
| |
| #include <linux/kvm_host.h> |
| #include "kvm_cache_regs.h" |
| |
| #define PT64_PT_BITS 9 |
| #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) |
| #define PT32_PT_BITS 10 |
| #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) |
| |
| #define PT_WRITABLE_SHIFT 1 |
| #define PT_USER_SHIFT 2 |
| |
| #define PT_PRESENT_MASK (1ULL << 0) |
| #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) |
| #define PT_USER_MASK (1ULL << PT_USER_SHIFT) |
| #define PT_PWT_MASK (1ULL << 3) |
| #define PT_PCD_MASK (1ULL << 4) |
| #define PT_ACCESSED_SHIFT 5 |
| #define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT) |
| #define PT_DIRTY_SHIFT 6 |
| #define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT) |
| #define PT_PAGE_SIZE_SHIFT 7 |
| #define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT) |
| #define PT_PAT_MASK (1ULL << 7) |
| #define PT_GLOBAL_MASK (1ULL << 8) |
| #define PT64_NX_SHIFT 63 |
| #define PT64_NX_MASK (1ULL << PT64_NX_SHIFT) |
| |
| #define PT_PAT_SHIFT 7 |
| #define PT_DIR_PAT_SHIFT 12 |
| #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) |
| |
| #define PT32_DIR_PSE36_SIZE 4 |
| #define PT32_DIR_PSE36_SHIFT 13 |
| #define PT32_DIR_PSE36_MASK \ |
| (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) |
| |
| #define PT64_ROOT_5LEVEL 5 |
| #define PT64_ROOT_4LEVEL 4 |
| #define PT32_ROOT_LEVEL 2 |
| #define PT32E_ROOT_LEVEL 3 |
| |
| static inline u64 rsvd_bits(int s, int e) |
| { |
| if (e < s) |
| return 0; |
| |
| return ((1ULL << (e - s + 1)) - 1) << s; |
| } |
| |
| void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask); |
| |
| void |
| reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context); |
| |
| void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots); |
| void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu); |
| void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly, |
| bool accessed_dirty, gpa_t new_eptp); |
| bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu); |
| int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, |
| u64 fault_address, char *insn, int insn_len); |
| |
| static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm) |
| { |
| if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages) |
| return kvm->arch.n_max_mmu_pages - |
| kvm->arch.n_used_mmu_pages; |
| |
| return 0; |
| } |
| |
| static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) |
| { |
| if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE)) |
| return 0; |
| |
| return kvm_mmu_load(vcpu); |
| } |
| |
| static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3) |
| { |
| BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0); |
| |
| return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE) |
| ? cr3 & X86_CR3_PCID_MASK |
| : 0; |
| } |
| |
| static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) |
| { |
| return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu)); |
| } |
| |
| static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu) |
| { |
| if (VALID_PAGE(vcpu->arch.mmu->root_hpa)) |
| vcpu->arch.mmu->set_cr3(vcpu, vcpu->arch.mmu->root_hpa | |
| kvm_get_active_pcid(vcpu)); |
| } |
| |
| /* |
| * Currently, we have two sorts of write-protection, a) the first one |
| * write-protects guest page to sync the guest modification, b) another one is |
| * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences |
| * between these two sorts are: |
| * 1) the first case clears SPTE_MMU_WRITEABLE bit. |
| * 2) the first case requires flushing tlb immediately avoiding corrupting |
| * shadow page table between all vcpus so it should be in the protection of |
| * mmu-lock. And the another case does not need to flush tlb until returning |
| * the dirty bitmap to userspace since it only write-protects the page |
| * logged in the bitmap, that means the page in the dirty bitmap is not |
| * missed, so it can flush tlb out of mmu-lock. |
| * |
| * So, there is the problem: the first case can meet the corrupted tlb caused |
| * by another case which write-protects pages but without flush tlb |
| * immediately. In order to making the first case be aware this problem we let |
| * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit |
| * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit. |
| * |
| * Anyway, whenever a spte is updated (only permission and status bits are |
| * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes |
| * readonly, if that happens, we need to flush tlb. Fortunately, |
| * mmu_spte_update() has already handled it perfectly. |
| * |
| * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK: |
| * - if we want to see if it has writable tlb entry or if the spte can be |
| * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most |
| * case, otherwise |
| * - if we fix page fault on the spte or do write-protection by dirty logging, |
| * check PT_WRITABLE_MASK. |
| * |
| * TODO: introduce APIs to split these two cases. |
| */ |
| static inline int is_writable_pte(unsigned long pte) |
| { |
| return pte & PT_WRITABLE_MASK; |
| } |
| |
| static inline bool is_write_protection(struct kvm_vcpu *vcpu) |
| { |
| return kvm_read_cr0_bits(vcpu, X86_CR0_WP); |
| } |
| |
| /* |
| * Check if a given access (described through the I/D, W/R and U/S bits of a |
| * page fault error code pfec) causes a permission fault with the given PTE |
| * access rights (in ACC_* format). |
| * |
| * Return zero if the access does not fault; return the page fault error code |
| * if the access faults. |
| */ |
| static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, |
| unsigned pte_access, unsigned pte_pkey, |
| unsigned pfec) |
| { |
| int cpl = kvm_x86_ops->get_cpl(vcpu); |
| unsigned long rflags = kvm_x86_ops->get_rflags(vcpu); |
| |
| /* |
| * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1. |
| * |
| * If CPL = 3, SMAP applies to all supervisor-mode data accesses |
| * (these are implicit supervisor accesses) regardless of the value |
| * of EFLAGS.AC. |
| * |
| * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving |
| * the result in X86_EFLAGS_AC. We then insert it in place of |
| * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec, |
| * but it will be one in index if SMAP checks are being overridden. |
| * It is important to keep this branchless. |
| */ |
| unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC); |
| int index = (pfec >> 1) + |
| (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1)); |
| bool fault = (mmu->permissions[index] >> pte_access) & 1; |
| u32 errcode = PFERR_PRESENT_MASK; |
| |
| WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK)); |
| if (unlikely(mmu->pkru_mask)) { |
| u32 pkru_bits, offset; |
| |
| /* |
| * PKRU defines 32 bits, there are 16 domains and 2 |
| * attribute bits per domain in pkru. pte_pkey is the |
| * index of the protection domain, so pte_pkey * 2 is |
| * is the index of the first bit for the domain. |
| */ |
| pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3; |
| |
| /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */ |
| offset = (pfec & ~1) + |
| ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT)); |
| |
| pkru_bits &= mmu->pkru_mask >> offset; |
| errcode |= -pkru_bits & PFERR_PK_MASK; |
| fault |= (pkru_bits != 0); |
| } |
| |
| return -(u32)fault & errcode; |
| } |
| |
| void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); |
| |
| void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); |
| void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn); |
| bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm, |
| struct kvm_memory_slot *slot, u64 gfn); |
| int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); |
| #endif |