| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * PCMCIA high-level CIS access functions |
| * |
| * The initial developer of the original code is David A. Hinds |
| * <dahinds@users.sourceforge.net>. Portions created by David A. Hinds |
| * are Copyright (C) 1999 David A. Hinds. All Rights Reserved. |
| * |
| * Copyright (C) 1999 David A. Hinds |
| * Copyright (C) 2004-2010 Dominik Brodowski |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/module.h> |
| #include <linux/kernel.h> |
| #include <linux/netdevice.h> |
| |
| #include <pcmcia/cisreg.h> |
| #include <pcmcia/cistpl.h> |
| #include <pcmcia/ss.h> |
| #include <pcmcia/ds.h> |
| #include "cs_internal.h" |
| |
| |
| /** |
| * pccard_read_tuple() - internal CIS tuple access |
| * @s: the struct pcmcia_socket where the card is inserted |
| * @function: the device function we loop for |
| * @code: which CIS code shall we look for? |
| * @parse: buffer where the tuple shall be parsed (or NULL, if no parse) |
| * |
| * pccard_read_tuple() reads out one tuple and attempts to parse it |
| */ |
| int pccard_read_tuple(struct pcmcia_socket *s, unsigned int function, |
| cisdata_t code, void *parse) |
| { |
| tuple_t tuple; |
| cisdata_t *buf; |
| int ret; |
| |
| buf = kmalloc(256, GFP_KERNEL); |
| if (buf == NULL) { |
| dev_warn(&s->dev, "no memory to read tuple\n"); |
| return -ENOMEM; |
| } |
| tuple.DesiredTuple = code; |
| tuple.Attributes = 0; |
| if (function == BIND_FN_ALL) |
| tuple.Attributes = TUPLE_RETURN_COMMON; |
| ret = pccard_get_first_tuple(s, function, &tuple); |
| if (ret != 0) |
| goto done; |
| tuple.TupleData = buf; |
| tuple.TupleOffset = 0; |
| tuple.TupleDataMax = 255; |
| ret = pccard_get_tuple_data(s, &tuple); |
| if (ret != 0) |
| goto done; |
| ret = pcmcia_parse_tuple(&tuple, parse); |
| done: |
| kfree(buf); |
| return ret; |
| } |
| |
| |
| /** |
| * pccard_loop_tuple() - loop over tuples in the CIS |
| * @s: the struct pcmcia_socket where the card is inserted |
| * @function: the device function we loop for |
| * @code: which CIS code shall we look for? |
| * @parse: buffer where the tuple shall be parsed (or NULL, if no parse) |
| * @priv_data: private data to be passed to the loop_tuple function. |
| * @loop_tuple: function to call for each CIS entry of type @function. IT |
| * gets passed the raw tuple, the paresed tuple (if @parse is |
| * set) and @priv_data. |
| * |
| * pccard_loop_tuple() loops over all CIS entries of type @function, and |
| * calls the @loop_tuple function for each entry. If the call to @loop_tuple |
| * returns 0, the loop exits. Returns 0 on success or errorcode otherwise. |
| */ |
| int pccard_loop_tuple(struct pcmcia_socket *s, unsigned int function, |
| cisdata_t code, cisparse_t *parse, void *priv_data, |
| int (*loop_tuple) (tuple_t *tuple, |
| cisparse_t *parse, |
| void *priv_data)) |
| { |
| tuple_t tuple; |
| cisdata_t *buf; |
| int ret; |
| |
| buf = kzalloc(256, GFP_KERNEL); |
| if (buf == NULL) { |
| dev_warn(&s->dev, "no memory to read tuple\n"); |
| return -ENOMEM; |
| } |
| |
| tuple.TupleData = buf; |
| tuple.TupleDataMax = 255; |
| tuple.TupleOffset = 0; |
| tuple.DesiredTuple = code; |
| tuple.Attributes = 0; |
| |
| ret = pccard_get_first_tuple(s, function, &tuple); |
| while (!ret) { |
| if (pccard_get_tuple_data(s, &tuple)) |
| goto next_entry; |
| |
| if (parse) |
| if (pcmcia_parse_tuple(&tuple, parse)) |
| goto next_entry; |
| |
| ret = loop_tuple(&tuple, parse, priv_data); |
| if (!ret) |
| break; |
| |
| next_entry: |
| ret = pccard_get_next_tuple(s, function, &tuple); |
| } |
| |
| kfree(buf); |
| return ret; |
| } |
| |
| |
| /** |
| * pcmcia_io_cfg_data_width() - convert cfgtable to data path width parameter |
| */ |
| static int pcmcia_io_cfg_data_width(unsigned int flags) |
| { |
| if (!(flags & CISTPL_IO_8BIT)) |
| return IO_DATA_PATH_WIDTH_16; |
| if (!(flags & CISTPL_IO_16BIT)) |
| return IO_DATA_PATH_WIDTH_8; |
| return IO_DATA_PATH_WIDTH_AUTO; |
| } |
| |
| |
| struct pcmcia_cfg_mem { |
| struct pcmcia_device *p_dev; |
| int (*conf_check) (struct pcmcia_device *p_dev, void *priv_data); |
| void *priv_data; |
| cisparse_t parse; |
| cistpl_cftable_entry_t dflt; |
| }; |
| |
| /** |
| * pcmcia_do_loop_config() - internal helper for pcmcia_loop_config() |
| * |
| * pcmcia_do_loop_config() is the internal callback for the call from |
| * pcmcia_loop_config() to pccard_loop_tuple(). Data is transferred |
| * by a struct pcmcia_cfg_mem. |
| */ |
| static int pcmcia_do_loop_config(tuple_t *tuple, cisparse_t *parse, void *priv) |
| { |
| struct pcmcia_cfg_mem *cfg_mem = priv; |
| struct pcmcia_device *p_dev = cfg_mem->p_dev; |
| cistpl_cftable_entry_t *cfg = &parse->cftable_entry; |
| cistpl_cftable_entry_t *dflt = &cfg_mem->dflt; |
| unsigned int flags = p_dev->config_flags; |
| unsigned int vcc = p_dev->socket->socket.Vcc; |
| |
| dev_dbg(&p_dev->dev, "testing configuration %x, autoconf %x\n", |
| cfg->index, flags); |
| |
| /* default values */ |
| cfg_mem->p_dev->config_index = cfg->index; |
| if (cfg->flags & CISTPL_CFTABLE_DEFAULT) |
| cfg_mem->dflt = *cfg; |
| |
| /* check for matching Vcc? */ |
| if (flags & CONF_AUTO_CHECK_VCC) { |
| if (cfg->vcc.present & (1 << CISTPL_POWER_VNOM)) { |
| if (vcc != cfg->vcc.param[CISTPL_POWER_VNOM] / 10000) |
| return -ENODEV; |
| } else if (dflt->vcc.present & (1 << CISTPL_POWER_VNOM)) { |
| if (vcc != dflt->vcc.param[CISTPL_POWER_VNOM] / 10000) |
| return -ENODEV; |
| } |
| } |
| |
| /* set Vpp? */ |
| if (flags & CONF_AUTO_SET_VPP) { |
| if (cfg->vpp1.present & (1 << CISTPL_POWER_VNOM)) |
| p_dev->vpp = cfg->vpp1.param[CISTPL_POWER_VNOM] / 10000; |
| else if (dflt->vpp1.present & (1 << CISTPL_POWER_VNOM)) |
| p_dev->vpp = |
| dflt->vpp1.param[CISTPL_POWER_VNOM] / 10000; |
| } |
| |
| /* enable audio? */ |
| if ((flags & CONF_AUTO_AUDIO) && (cfg->flags & CISTPL_CFTABLE_AUDIO)) |
| p_dev->config_flags |= CONF_ENABLE_SPKR; |
| |
| |
| /* IO window settings? */ |
| if (flags & CONF_AUTO_SET_IO) { |
| cistpl_io_t *io = (cfg->io.nwin) ? &cfg->io : &dflt->io; |
| int i = 0; |
| |
| p_dev->resource[0]->start = p_dev->resource[0]->end = 0; |
| p_dev->resource[1]->start = p_dev->resource[1]->end = 0; |
| if (io->nwin == 0) |
| return -ENODEV; |
| |
| p_dev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH; |
| p_dev->resource[0]->flags |= |
| pcmcia_io_cfg_data_width(io->flags); |
| if (io->nwin > 1) { |
| /* For multifunction cards, by convention, we |
| * configure the network function with window 0, |
| * and serial with window 1 */ |
| i = (io->win[1].len > io->win[0].len); |
| p_dev->resource[1]->flags = p_dev->resource[0]->flags; |
| p_dev->resource[1]->start = io->win[1-i].base; |
| p_dev->resource[1]->end = io->win[1-i].len; |
| } |
| p_dev->resource[0]->start = io->win[i].base; |
| p_dev->resource[0]->end = io->win[i].len; |
| p_dev->io_lines = io->flags & CISTPL_IO_LINES_MASK; |
| } |
| |
| /* MEM window settings? */ |
| if (flags & CONF_AUTO_SET_IOMEM) { |
| /* so far, we only set one memory window */ |
| cistpl_mem_t *mem = (cfg->mem.nwin) ? &cfg->mem : &dflt->mem; |
| |
| p_dev->resource[2]->start = p_dev->resource[2]->end = 0; |
| if (mem->nwin == 0) |
| return -ENODEV; |
| |
| p_dev->resource[2]->start = mem->win[0].host_addr; |
| p_dev->resource[2]->end = mem->win[0].len; |
| if (p_dev->resource[2]->end < 0x1000) |
| p_dev->resource[2]->end = 0x1000; |
| p_dev->card_addr = mem->win[0].card_addr; |
| } |
| |
| dev_dbg(&p_dev->dev, |
| "checking configuration %x: %pr %pr %pr (%d lines)\n", |
| p_dev->config_index, p_dev->resource[0], p_dev->resource[1], |
| p_dev->resource[2], p_dev->io_lines); |
| |
| return cfg_mem->conf_check(p_dev, cfg_mem->priv_data); |
| } |
| |
| /** |
| * pcmcia_loop_config() - loop over configuration options |
| * @p_dev: the struct pcmcia_device which we need to loop for. |
| * @conf_check: function to call for each configuration option. |
| * It gets passed the struct pcmcia_device and private data |
| * being passed to pcmcia_loop_config() |
| * @priv_data: private data to be passed to the conf_check function. |
| * |
| * pcmcia_loop_config() loops over all configuration options, and calls |
| * the driver-specific conf_check() for each one, checking whether |
| * it is a valid one. Returns 0 on success or errorcode otherwise. |
| */ |
| int pcmcia_loop_config(struct pcmcia_device *p_dev, |
| int (*conf_check) (struct pcmcia_device *p_dev, |
| void *priv_data), |
| void *priv_data) |
| { |
| struct pcmcia_cfg_mem *cfg_mem; |
| int ret; |
| |
| cfg_mem = kzalloc(sizeof(struct pcmcia_cfg_mem), GFP_KERNEL); |
| if (cfg_mem == NULL) |
| return -ENOMEM; |
| |
| cfg_mem->p_dev = p_dev; |
| cfg_mem->conf_check = conf_check; |
| cfg_mem->priv_data = priv_data; |
| |
| ret = pccard_loop_tuple(p_dev->socket, p_dev->func, |
| CISTPL_CFTABLE_ENTRY, &cfg_mem->parse, |
| cfg_mem, pcmcia_do_loop_config); |
| |
| kfree(cfg_mem); |
| return ret; |
| } |
| EXPORT_SYMBOL(pcmcia_loop_config); |
| |
| |
| struct pcmcia_loop_mem { |
| struct pcmcia_device *p_dev; |
| void *priv_data; |
| int (*loop_tuple) (struct pcmcia_device *p_dev, |
| tuple_t *tuple, |
| void *priv_data); |
| }; |
| |
| /** |
| * pcmcia_do_loop_tuple() - internal helper for pcmcia_loop_config() |
| * |
| * pcmcia_do_loop_tuple() is the internal callback for the call from |
| * pcmcia_loop_tuple() to pccard_loop_tuple(). Data is transferred |
| * by a struct pcmcia_cfg_mem. |
| */ |
| static int pcmcia_do_loop_tuple(tuple_t *tuple, cisparse_t *parse, void *priv) |
| { |
| struct pcmcia_loop_mem *loop = priv; |
| |
| return loop->loop_tuple(loop->p_dev, tuple, loop->priv_data); |
| }; |
| |
| /** |
| * pcmcia_loop_tuple() - loop over tuples in the CIS |
| * @p_dev: the struct pcmcia_device which we need to loop for. |
| * @code: which CIS code shall we look for? |
| * @priv_data: private data to be passed to the loop_tuple function. |
| * @loop_tuple: function to call for each CIS entry of type @function. IT |
| * gets passed the raw tuple and @priv_data. |
| * |
| * pcmcia_loop_tuple() loops over all CIS entries of type @function, and |
| * calls the @loop_tuple function for each entry. If the call to @loop_tuple |
| * returns 0, the loop exits. Returns 0 on success or errorcode otherwise. |
| */ |
| int pcmcia_loop_tuple(struct pcmcia_device *p_dev, cisdata_t code, |
| int (*loop_tuple) (struct pcmcia_device *p_dev, |
| tuple_t *tuple, |
| void *priv_data), |
| void *priv_data) |
| { |
| struct pcmcia_loop_mem loop = { |
| .p_dev = p_dev, |
| .loop_tuple = loop_tuple, |
| .priv_data = priv_data}; |
| |
| return pccard_loop_tuple(p_dev->socket, p_dev->func, code, NULL, |
| &loop, pcmcia_do_loop_tuple); |
| } |
| EXPORT_SYMBOL(pcmcia_loop_tuple); |
| |
| |
| struct pcmcia_loop_get { |
| size_t len; |
| cisdata_t **buf; |
| }; |
| |
| /** |
| * pcmcia_do_get_tuple() - internal helper for pcmcia_get_tuple() |
| * |
| * pcmcia_do_get_tuple() is the internal callback for the call from |
| * pcmcia_get_tuple() to pcmcia_loop_tuple(). As we're only interested in |
| * the first tuple, return 0 unconditionally. Create a memory buffer large |
| * enough to hold the content of the tuple, and fill it with the tuple data. |
| * The caller is responsible to free the buffer. |
| */ |
| static int pcmcia_do_get_tuple(struct pcmcia_device *p_dev, tuple_t *tuple, |
| void *priv) |
| { |
| struct pcmcia_loop_get *get = priv; |
| |
| *get->buf = kzalloc(tuple->TupleDataLen, GFP_KERNEL); |
| if (*get->buf) { |
| get->len = tuple->TupleDataLen; |
| memcpy(*get->buf, tuple->TupleData, tuple->TupleDataLen); |
| } else |
| dev_dbg(&p_dev->dev, "do_get_tuple: out of memory\n"); |
| return 0; |
| } |
| |
| /** |
| * pcmcia_get_tuple() - get first tuple from CIS |
| * @p_dev: the struct pcmcia_device which we need to loop for. |
| * @code: which CIS code shall we look for? |
| * @buf: pointer to store the buffer to. |
| * |
| * pcmcia_get_tuple() gets the content of the first CIS entry of type @code. |
| * It returns the buffer length (or zero). The caller is responsible to free |
| * the buffer passed in @buf. |
| */ |
| size_t pcmcia_get_tuple(struct pcmcia_device *p_dev, cisdata_t code, |
| unsigned char **buf) |
| { |
| struct pcmcia_loop_get get = { |
| .len = 0, |
| .buf = buf, |
| }; |
| |
| *get.buf = NULL; |
| pcmcia_loop_tuple(p_dev, code, pcmcia_do_get_tuple, &get); |
| |
| return get.len; |
| } |
| EXPORT_SYMBOL(pcmcia_get_tuple); |
| |
| |
| /** |
| * pcmcia_do_get_mac() - internal helper for pcmcia_get_mac_from_cis() |
| * |
| * pcmcia_do_get_mac() is the internal callback for the call from |
| * pcmcia_get_mac_from_cis() to pcmcia_loop_tuple(). We check whether the |
| * tuple contains a proper LAN_NODE_ID of length 6, and copy the data |
| * to struct net_device->dev_addr[i]. |
| */ |
| static int pcmcia_do_get_mac(struct pcmcia_device *p_dev, tuple_t *tuple, |
| void *priv) |
| { |
| struct net_device *dev = priv; |
| int i; |
| |
| if (tuple->TupleData[0] != CISTPL_FUNCE_LAN_NODE_ID) |
| return -EINVAL; |
| if (tuple->TupleDataLen < ETH_ALEN + 2) { |
| dev_warn(&p_dev->dev, "Invalid CIS tuple length for " |
| "LAN_NODE_ID\n"); |
| return -EINVAL; |
| } |
| |
| if (tuple->TupleData[1] != ETH_ALEN) { |
| dev_warn(&p_dev->dev, "Invalid header for LAN_NODE_ID\n"); |
| return -EINVAL; |
| } |
| for (i = 0; i < 6; i++) |
| dev->dev_addr[i] = tuple->TupleData[i+2]; |
| return 0; |
| } |
| |
| /** |
| * pcmcia_get_mac_from_cis() - read out MAC address from CISTPL_FUNCE |
| * @p_dev: the struct pcmcia_device for which we want the address. |
| * @dev: a properly prepared struct net_device to store the info to. |
| * |
| * pcmcia_get_mac_from_cis() reads out the hardware MAC address from |
| * CISTPL_FUNCE and stores it into struct net_device *dev->dev_addr which |
| * must be set up properly by the driver (see examples!). |
| */ |
| int pcmcia_get_mac_from_cis(struct pcmcia_device *p_dev, struct net_device *dev) |
| { |
| return pcmcia_loop_tuple(p_dev, CISTPL_FUNCE, pcmcia_do_get_mac, dev); |
| } |
| EXPORT_SYMBOL(pcmcia_get_mac_from_cis); |
| |