|  | /* | 
|  | * Copyright © 2016 Intel Corporation | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a | 
|  | * copy of this software and associated documentation files (the "Software"), | 
|  | * to deal in the Software without restriction, including without limitation | 
|  | * the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | * and/or sell copies of the Software, and to permit persons to whom the | 
|  | * Software is furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice (including the next | 
|  | * paragraph) shall be included in all copies or substantial portions of the | 
|  | * Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING | 
|  | * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS | 
|  | * IN THE SOFTWARE. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <drm/drm_print.h> | 
|  |  | 
|  | #include "intel_device_info.h" | 
|  | #include "i915_drv.h" | 
|  |  | 
|  | #define PLATFORM_NAME(x) [INTEL_##x] = #x | 
|  | static const char * const platform_names[] = { | 
|  | PLATFORM_NAME(I830), | 
|  | PLATFORM_NAME(I845G), | 
|  | PLATFORM_NAME(I85X), | 
|  | PLATFORM_NAME(I865G), | 
|  | PLATFORM_NAME(I915G), | 
|  | PLATFORM_NAME(I915GM), | 
|  | PLATFORM_NAME(I945G), | 
|  | PLATFORM_NAME(I945GM), | 
|  | PLATFORM_NAME(G33), | 
|  | PLATFORM_NAME(PINEVIEW), | 
|  | PLATFORM_NAME(I965G), | 
|  | PLATFORM_NAME(I965GM), | 
|  | PLATFORM_NAME(G45), | 
|  | PLATFORM_NAME(GM45), | 
|  | PLATFORM_NAME(IRONLAKE), | 
|  | PLATFORM_NAME(SANDYBRIDGE), | 
|  | PLATFORM_NAME(IVYBRIDGE), | 
|  | PLATFORM_NAME(VALLEYVIEW), | 
|  | PLATFORM_NAME(HASWELL), | 
|  | PLATFORM_NAME(BROADWELL), | 
|  | PLATFORM_NAME(CHERRYVIEW), | 
|  | PLATFORM_NAME(SKYLAKE), | 
|  | PLATFORM_NAME(BROXTON), | 
|  | PLATFORM_NAME(KABYLAKE), | 
|  | PLATFORM_NAME(GEMINILAKE), | 
|  | PLATFORM_NAME(COFFEELAKE), | 
|  | PLATFORM_NAME(CANNONLAKE), | 
|  | PLATFORM_NAME(ICELAKE), | 
|  | PLATFORM_NAME(ELKHARTLAKE), | 
|  | }; | 
|  | #undef PLATFORM_NAME | 
|  |  | 
|  | const char *intel_platform_name(enum intel_platform platform) | 
|  | { | 
|  | BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS); | 
|  |  | 
|  | if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) || | 
|  | platform_names[platform] == NULL)) | 
|  | return "<unknown>"; | 
|  |  | 
|  | return platform_names[platform]; | 
|  | } | 
|  |  | 
|  | void intel_device_info_dump_flags(const struct intel_device_info *info, | 
|  | struct drm_printer *p) | 
|  | { | 
|  | #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name)); | 
|  | DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG); | 
|  | #undef PRINT_FLAG | 
|  |  | 
|  | #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->display.name)); | 
|  | DEV_INFO_DISPLAY_FOR_EACH_FLAG(PRINT_FLAG); | 
|  | #undef PRINT_FLAG | 
|  | } | 
|  |  | 
|  | static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) | 
|  | { | 
|  | int s; | 
|  |  | 
|  | drm_printf(p, "slice total: %u, mask=%04x\n", | 
|  | hweight8(sseu->slice_mask), sseu->slice_mask); | 
|  | drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu)); | 
|  | for (s = 0; s < sseu->max_slices; s++) { | 
|  | drm_printf(p, "slice%d: %u subslices, mask=%04x\n", | 
|  | s, intel_sseu_subslices_per_slice(sseu, s), | 
|  | sseu->subslice_mask[s]); | 
|  | } | 
|  | drm_printf(p, "EU total: %u\n", sseu->eu_total); | 
|  | drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); | 
|  | drm_printf(p, "has slice power gating: %s\n", | 
|  | yesno(sseu->has_slice_pg)); | 
|  | drm_printf(p, "has subslice power gating: %s\n", | 
|  | yesno(sseu->has_subslice_pg)); | 
|  | drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg)); | 
|  | } | 
|  |  | 
|  | void intel_device_info_dump_runtime(const struct intel_runtime_info *info, | 
|  | struct drm_printer *p) | 
|  | { | 
|  | sseu_dump(&info->sseu, p); | 
|  |  | 
|  | drm_printf(p, "CS timestamp frequency: %u kHz\n", | 
|  | info->cs_timestamp_frequency_khz); | 
|  | } | 
|  |  | 
|  | static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice, | 
|  | int subslice) | 
|  | { | 
|  | int subslice_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); | 
|  | int slice_stride = sseu->max_subslices * subslice_stride; | 
|  |  | 
|  | return slice * slice_stride + subslice * subslice_stride; | 
|  | } | 
|  |  | 
|  | static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, | 
|  | int subslice) | 
|  | { | 
|  | int i, offset = sseu_eu_idx(sseu, slice, subslice); | 
|  | u16 eu_mask = 0; | 
|  |  | 
|  | for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) { | 
|  | eu_mask |= ((u16)sseu->eu_mask[offset + i]) << | 
|  | (i * BITS_PER_BYTE); | 
|  | } | 
|  |  | 
|  | return eu_mask; | 
|  | } | 
|  |  | 
|  | static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, | 
|  | u16 eu_mask) | 
|  | { | 
|  | int i, offset = sseu_eu_idx(sseu, slice, subslice); | 
|  |  | 
|  | for (i = 0; i < GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); i++) { | 
|  | sseu->eu_mask[offset + i] = | 
|  | (eu_mask >> (BITS_PER_BYTE * i)) & 0xff; | 
|  | } | 
|  | } | 
|  |  | 
|  | void intel_device_info_dump_topology(const struct sseu_dev_info *sseu, | 
|  | struct drm_printer *p) | 
|  | { | 
|  | int s, ss; | 
|  |  | 
|  | if (sseu->max_slices == 0) { | 
|  | drm_printf(p, "Unavailable\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (s = 0; s < sseu->max_slices; s++) { | 
|  | drm_printf(p, "slice%d: %u subslice(s) (0x%hhx):\n", | 
|  | s, intel_sseu_subslices_per_slice(sseu, s), | 
|  | sseu->subslice_mask[s]); | 
|  |  | 
|  | for (ss = 0; ss < sseu->max_subslices; ss++) { | 
|  | u16 enabled_eus = sseu_get_eus(sseu, s, ss); | 
|  |  | 
|  | drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", | 
|  | ss, hweight16(enabled_eus), enabled_eus); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static u16 compute_eu_total(const struct sseu_dev_info *sseu) | 
|  | { | 
|  | u16 i, total = 0; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++) | 
|  | total += hweight8(sseu->eu_mask[i]); | 
|  |  | 
|  | return total; | 
|  | } | 
|  |  | 
|  | static void gen11_sseu_info_init(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; | 
|  | u8 s_en; | 
|  | u32 ss_en, ss_en_mask; | 
|  | u8 eu_en; | 
|  | int s; | 
|  |  | 
|  | if (IS_ELKHARTLAKE(dev_priv)) { | 
|  | sseu->max_slices = 1; | 
|  | sseu->max_subslices = 4; | 
|  | sseu->max_eus_per_subslice = 8; | 
|  | } else { | 
|  | sseu->max_slices = 1; | 
|  | sseu->max_subslices = 8; | 
|  | sseu->max_eus_per_subslice = 8; | 
|  | } | 
|  |  | 
|  | s_en = I915_READ(GEN11_GT_SLICE_ENABLE) & GEN11_GT_S_ENA_MASK; | 
|  | ss_en = ~I915_READ(GEN11_GT_SUBSLICE_DISABLE); | 
|  | ss_en_mask = BIT(sseu->max_subslices) - 1; | 
|  | eu_en = ~(I915_READ(GEN11_EU_DISABLE) & GEN11_EU_DIS_MASK); | 
|  |  | 
|  | for (s = 0; s < sseu->max_slices; s++) { | 
|  | if (s_en & BIT(s)) { | 
|  | int ss_idx = sseu->max_subslices * s; | 
|  | int ss; | 
|  |  | 
|  | sseu->slice_mask |= BIT(s); | 
|  | sseu->subslice_mask[s] = (ss_en >> ss_idx) & ss_en_mask; | 
|  | for (ss = 0; ss < sseu->max_subslices; ss++) { | 
|  | if (sseu->subslice_mask[s] & BIT(ss)) | 
|  | sseu_set_eus(sseu, s, ss, eu_en); | 
|  | } | 
|  | } | 
|  | } | 
|  | sseu->eu_per_subslice = hweight8(eu_en); | 
|  | sseu->eu_total = compute_eu_total(sseu); | 
|  |  | 
|  | /* ICL has no power gating restrictions. */ | 
|  | sseu->has_slice_pg = 1; | 
|  | sseu->has_subslice_pg = 1; | 
|  | sseu->has_eu_pg = 1; | 
|  | } | 
|  |  | 
|  | static void gen10_sseu_info_init(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; | 
|  | const u32 fuse2 = I915_READ(GEN8_FUSE2); | 
|  | int s, ss; | 
|  | const int eu_mask = 0xff; | 
|  | u32 subslice_mask, eu_en; | 
|  |  | 
|  | sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >> | 
|  | GEN10_F2_S_ENA_SHIFT; | 
|  | sseu->max_slices = 6; | 
|  | sseu->max_subslices = 4; | 
|  | sseu->max_eus_per_subslice = 8; | 
|  |  | 
|  | subslice_mask = (1 << 4) - 1; | 
|  | subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >> | 
|  | GEN10_F2_SS_DIS_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Slice0 can have up to 3 subslices, but there are only 2 in | 
|  | * slice1/2. | 
|  | */ | 
|  | sseu->subslice_mask[0] = subslice_mask; | 
|  | for (s = 1; s < sseu->max_slices; s++) | 
|  | sseu->subslice_mask[s] = subslice_mask & 0x3; | 
|  |  | 
|  | /* Slice0 */ | 
|  | eu_en = ~I915_READ(GEN8_EU_DISABLE0); | 
|  | for (ss = 0; ss < sseu->max_subslices; ss++) | 
|  | sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask); | 
|  | /* Slice1 */ | 
|  | sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask); | 
|  | eu_en = ~I915_READ(GEN8_EU_DISABLE1); | 
|  | sseu_set_eus(sseu, 1, 1, eu_en & eu_mask); | 
|  | /* Slice2 */ | 
|  | sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask); | 
|  | sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask); | 
|  | /* Slice3 */ | 
|  | sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask); | 
|  | eu_en = ~I915_READ(GEN8_EU_DISABLE2); | 
|  | sseu_set_eus(sseu, 3, 1, eu_en & eu_mask); | 
|  | /* Slice4 */ | 
|  | sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask); | 
|  | sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask); | 
|  | /* Slice5 */ | 
|  | sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask); | 
|  | eu_en = ~I915_READ(GEN10_EU_DISABLE3); | 
|  | sseu_set_eus(sseu, 5, 1, eu_en & eu_mask); | 
|  |  | 
|  | /* Do a second pass where we mark the subslices disabled if all their | 
|  | * eus are off. | 
|  | */ | 
|  | for (s = 0; s < sseu->max_slices; s++) { | 
|  | for (ss = 0; ss < sseu->max_subslices; ss++) { | 
|  | if (sseu_get_eus(sseu, s, ss) == 0) | 
|  | sseu->subslice_mask[s] &= ~BIT(ss); | 
|  | } | 
|  | } | 
|  |  | 
|  | sseu->eu_total = compute_eu_total(sseu); | 
|  |  | 
|  | /* | 
|  | * CNL is expected to always have a uniform distribution | 
|  | * of EU across subslices with the exception that any one | 
|  | * EU in any one subslice may be fused off for die | 
|  | * recovery. | 
|  | */ | 
|  | sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? | 
|  | DIV_ROUND_UP(sseu->eu_total, | 
|  | intel_sseu_subslice_total(sseu)) : | 
|  | 0; | 
|  |  | 
|  | /* No restrictions on Power Gating */ | 
|  | sseu->has_slice_pg = 1; | 
|  | sseu->has_subslice_pg = 1; | 
|  | sseu->has_eu_pg = 1; | 
|  | } | 
|  |  | 
|  | static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; | 
|  | u32 fuse; | 
|  |  | 
|  | fuse = I915_READ(CHV_FUSE_GT); | 
|  |  | 
|  | sseu->slice_mask = BIT(0); | 
|  | sseu->max_slices = 1; | 
|  | sseu->max_subslices = 2; | 
|  | sseu->max_eus_per_subslice = 8; | 
|  |  | 
|  | if (!(fuse & CHV_FGT_DISABLE_SS0)) { | 
|  | u8 disabled_mask = | 
|  | ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> | 
|  | CHV_FGT_EU_DIS_SS0_R0_SHIFT) | | 
|  | (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> | 
|  | CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); | 
|  |  | 
|  | sseu->subslice_mask[0] |= BIT(0); | 
|  | sseu_set_eus(sseu, 0, 0, ~disabled_mask); | 
|  | } | 
|  |  | 
|  | if (!(fuse & CHV_FGT_DISABLE_SS1)) { | 
|  | u8 disabled_mask = | 
|  | ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> | 
|  | CHV_FGT_EU_DIS_SS1_R0_SHIFT) | | 
|  | (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> | 
|  | CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); | 
|  |  | 
|  | sseu->subslice_mask[0] |= BIT(1); | 
|  | sseu_set_eus(sseu, 0, 1, ~disabled_mask); | 
|  | } | 
|  |  | 
|  | sseu->eu_total = compute_eu_total(sseu); | 
|  |  | 
|  | /* | 
|  | * CHV expected to always have a uniform distribution of EU | 
|  | * across subslices. | 
|  | */ | 
|  | sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? | 
|  | sseu->eu_total / | 
|  | intel_sseu_subslice_total(sseu) : | 
|  | 0; | 
|  | /* | 
|  | * CHV supports subslice power gating on devices with more than | 
|  | * one subslice, and supports EU power gating on devices with | 
|  | * more than one EU pair per subslice. | 
|  | */ | 
|  | sseu->has_slice_pg = 0; | 
|  | sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; | 
|  | sseu->has_eu_pg = (sseu->eu_per_subslice > 2); | 
|  | } | 
|  |  | 
|  | static void gen9_sseu_info_init(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct intel_device_info *info = mkwrite_device_info(dev_priv); | 
|  | struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; | 
|  | int s, ss; | 
|  | u32 fuse2, eu_disable, subslice_mask; | 
|  | const u8 eu_mask = 0xff; | 
|  |  | 
|  | fuse2 = I915_READ(GEN8_FUSE2); | 
|  | sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; | 
|  |  | 
|  | /* BXT has a single slice and at most 3 subslices. */ | 
|  | sseu->max_slices = IS_GEN9_LP(dev_priv) ? 1 : 3; | 
|  | sseu->max_subslices = IS_GEN9_LP(dev_priv) ? 3 : 4; | 
|  | sseu->max_eus_per_subslice = 8; | 
|  |  | 
|  | /* | 
|  | * The subslice disable field is global, i.e. it applies | 
|  | * to each of the enabled slices. | 
|  | */ | 
|  | subslice_mask = (1 << sseu->max_subslices) - 1; | 
|  | subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> | 
|  | GEN9_F2_SS_DIS_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Iterate through enabled slices and subslices to | 
|  | * count the total enabled EU. | 
|  | */ | 
|  | for (s = 0; s < sseu->max_slices; s++) { | 
|  | if (!(sseu->slice_mask & BIT(s))) | 
|  | /* skip disabled slice */ | 
|  | continue; | 
|  |  | 
|  | sseu->subslice_mask[s] = subslice_mask; | 
|  |  | 
|  | eu_disable = I915_READ(GEN9_EU_DISABLE(s)); | 
|  | for (ss = 0; ss < sseu->max_subslices; ss++) { | 
|  | int eu_per_ss; | 
|  | u8 eu_disabled_mask; | 
|  |  | 
|  | if (!(sseu->subslice_mask[s] & BIT(ss))) | 
|  | /* skip disabled subslice */ | 
|  | continue; | 
|  |  | 
|  | eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; | 
|  |  | 
|  | sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); | 
|  |  | 
|  | eu_per_ss = sseu->max_eus_per_subslice - | 
|  | hweight8(eu_disabled_mask); | 
|  |  | 
|  | /* | 
|  | * Record which subslice(s) has(have) 7 EUs. we | 
|  | * can tune the hash used to spread work among | 
|  | * subslices if they are unbalanced. | 
|  | */ | 
|  | if (eu_per_ss == 7) | 
|  | sseu->subslice_7eu[s] |= BIT(ss); | 
|  | } | 
|  | } | 
|  |  | 
|  | sseu->eu_total = compute_eu_total(sseu); | 
|  |  | 
|  | /* | 
|  | * SKL is expected to always have a uniform distribution | 
|  | * of EU across subslices with the exception that any one | 
|  | * EU in any one subslice may be fused off for die | 
|  | * recovery. BXT is expected to be perfectly uniform in EU | 
|  | * distribution. | 
|  | */ | 
|  | sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? | 
|  | DIV_ROUND_UP(sseu->eu_total, | 
|  | intel_sseu_subslice_total(sseu)) : | 
|  | 0; | 
|  | /* | 
|  | * SKL+ supports slice power gating on devices with more than | 
|  | * one slice, and supports EU power gating on devices with | 
|  | * more than one EU pair per subslice. BXT+ supports subslice | 
|  | * power gating on devices with more than one subslice, and | 
|  | * supports EU power gating on devices with more than one EU | 
|  | * pair per subslice. | 
|  | */ | 
|  | sseu->has_slice_pg = | 
|  | !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1; | 
|  | sseu->has_subslice_pg = | 
|  | IS_GEN9_LP(dev_priv) && intel_sseu_subslice_total(sseu) > 1; | 
|  | sseu->has_eu_pg = sseu->eu_per_subslice > 2; | 
|  |  | 
|  | if (IS_GEN9_LP(dev_priv)) { | 
|  | #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss))) | 
|  | info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3; | 
|  |  | 
|  | sseu->min_eu_in_pool = 0; | 
|  | if (info->has_pooled_eu) { | 
|  | if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) | 
|  | sseu->min_eu_in_pool = 3; | 
|  | else if (IS_SS_DISABLED(1)) | 
|  | sseu->min_eu_in_pool = 6; | 
|  | else | 
|  | sseu->min_eu_in_pool = 9; | 
|  | } | 
|  | #undef IS_SS_DISABLED | 
|  | } | 
|  | } | 
|  |  | 
|  | static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; | 
|  | int s, ss; | 
|  | u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ | 
|  |  | 
|  | fuse2 = I915_READ(GEN8_FUSE2); | 
|  | sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; | 
|  | sseu->max_slices = 3; | 
|  | sseu->max_subslices = 3; | 
|  | sseu->max_eus_per_subslice = 8; | 
|  |  | 
|  | /* | 
|  | * The subslice disable field is global, i.e. it applies | 
|  | * to each of the enabled slices. | 
|  | */ | 
|  | subslice_mask = GENMASK(sseu->max_subslices - 1, 0); | 
|  | subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> | 
|  | GEN8_F2_SS_DIS_SHIFT); | 
|  |  | 
|  | eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK; | 
|  | eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) | | 
|  | ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) << | 
|  | (32 - GEN8_EU_DIS0_S1_SHIFT)); | 
|  | eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) | | 
|  | ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) << | 
|  | (32 - GEN8_EU_DIS1_S2_SHIFT)); | 
|  |  | 
|  | /* | 
|  | * Iterate through enabled slices and subslices to | 
|  | * count the total enabled EU. | 
|  | */ | 
|  | for (s = 0; s < sseu->max_slices; s++) { | 
|  | if (!(sseu->slice_mask & BIT(s))) | 
|  | /* skip disabled slice */ | 
|  | continue; | 
|  |  | 
|  | sseu->subslice_mask[s] = subslice_mask; | 
|  |  | 
|  | for (ss = 0; ss < sseu->max_subslices; ss++) { | 
|  | u8 eu_disabled_mask; | 
|  | u32 n_disabled; | 
|  |  | 
|  | if (!(sseu->subslice_mask[s] & BIT(ss))) | 
|  | /* skip disabled subslice */ | 
|  | continue; | 
|  |  | 
|  | eu_disabled_mask = | 
|  | eu_disable[s] >> (ss * sseu->max_eus_per_subslice); | 
|  |  | 
|  | sseu_set_eus(sseu, s, ss, ~eu_disabled_mask); | 
|  |  | 
|  | n_disabled = hweight8(eu_disabled_mask); | 
|  |  | 
|  | /* | 
|  | * Record which subslices have 7 EUs. | 
|  | */ | 
|  | if (sseu->max_eus_per_subslice - n_disabled == 7) | 
|  | sseu->subslice_7eu[s] |= 1 << ss; | 
|  | } | 
|  | } | 
|  |  | 
|  | sseu->eu_total = compute_eu_total(sseu); | 
|  |  | 
|  | /* | 
|  | * BDW is expected to always have a uniform distribution of EU across | 
|  | * subslices with the exception that any one EU in any one subslice may | 
|  | * be fused off for die recovery. | 
|  | */ | 
|  | sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? | 
|  | DIV_ROUND_UP(sseu->eu_total, | 
|  | intel_sseu_subslice_total(sseu)) : | 
|  | 0; | 
|  |  | 
|  | /* | 
|  | * BDW supports slice power gating on devices with more than | 
|  | * one slice. | 
|  | */ | 
|  | sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; | 
|  | sseu->has_subslice_pg = 0; | 
|  | sseu->has_eu_pg = 0; | 
|  | } | 
|  |  | 
|  | static void haswell_sseu_info_init(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu; | 
|  | u32 fuse1; | 
|  | int s, ss; | 
|  |  | 
|  | /* | 
|  | * There isn't a register to tell us how many slices/subslices. We | 
|  | * work off the PCI-ids here. | 
|  | */ | 
|  | switch (INTEL_INFO(dev_priv)->gt) { | 
|  | default: | 
|  | MISSING_CASE(INTEL_INFO(dev_priv)->gt); | 
|  | /* fall through */ | 
|  | case 1: | 
|  | sseu->slice_mask = BIT(0); | 
|  | sseu->subslice_mask[0] = BIT(0); | 
|  | break; | 
|  | case 2: | 
|  | sseu->slice_mask = BIT(0); | 
|  | sseu->subslice_mask[0] = BIT(0) | BIT(1); | 
|  | break; | 
|  | case 3: | 
|  | sseu->slice_mask = BIT(0) | BIT(1); | 
|  | sseu->subslice_mask[0] = BIT(0) | BIT(1); | 
|  | sseu->subslice_mask[1] = BIT(0) | BIT(1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | sseu->max_slices = hweight8(sseu->slice_mask); | 
|  | sseu->max_subslices = hweight8(sseu->subslice_mask[0]); | 
|  |  | 
|  | fuse1 = I915_READ(HSW_PAVP_FUSE1); | 
|  | switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) { | 
|  | default: | 
|  | MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >> | 
|  | HSW_F1_EU_DIS_SHIFT); | 
|  | /* fall through */ | 
|  | case HSW_F1_EU_DIS_10EUS: | 
|  | sseu->eu_per_subslice = 10; | 
|  | break; | 
|  | case HSW_F1_EU_DIS_8EUS: | 
|  | sseu->eu_per_subslice = 8; | 
|  | break; | 
|  | case HSW_F1_EU_DIS_6EUS: | 
|  | sseu->eu_per_subslice = 6; | 
|  | break; | 
|  | } | 
|  | sseu->max_eus_per_subslice = sseu->eu_per_subslice; | 
|  |  | 
|  | for (s = 0; s < sseu->max_slices; s++) { | 
|  | for (ss = 0; ss < sseu->max_subslices; ss++) { | 
|  | sseu_set_eus(sseu, s, ss, | 
|  | (1UL << sseu->eu_per_subslice) - 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | sseu->eu_total = compute_eu_total(sseu); | 
|  |  | 
|  | /* No powergating for you. */ | 
|  | sseu->has_slice_pg = 0; | 
|  | sseu->has_subslice_pg = 0; | 
|  | sseu->has_eu_pg = 0; | 
|  | } | 
|  |  | 
|  | static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE); | 
|  | u32 base_freq, frac_freq; | 
|  |  | 
|  | base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >> | 
|  | GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1; | 
|  | base_freq *= 1000; | 
|  |  | 
|  | frac_freq = ((ts_override & | 
|  | GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >> | 
|  | GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT); | 
|  | frac_freq = 1000 / (frac_freq + 1); | 
|  |  | 
|  | return base_freq + frac_freq; | 
|  | } | 
|  |  | 
|  | static u32 gen10_get_crystal_clock_freq(struct drm_i915_private *dev_priv, | 
|  | u32 rpm_config_reg) | 
|  | { | 
|  | u32 f19_2_mhz = 19200; | 
|  | u32 f24_mhz = 24000; | 
|  | u32 crystal_clock = (rpm_config_reg & | 
|  | GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> | 
|  | GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; | 
|  |  | 
|  | switch (crystal_clock) { | 
|  | case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: | 
|  | return f19_2_mhz; | 
|  | case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: | 
|  | return f24_mhz; | 
|  | default: | 
|  | MISSING_CASE(crystal_clock); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 gen11_get_crystal_clock_freq(struct drm_i915_private *dev_priv, | 
|  | u32 rpm_config_reg) | 
|  | { | 
|  | u32 f19_2_mhz = 19200; | 
|  | u32 f24_mhz = 24000; | 
|  | u32 f25_mhz = 25000; | 
|  | u32 f38_4_mhz = 38400; | 
|  | u32 crystal_clock = (rpm_config_reg & | 
|  | GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >> | 
|  | GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT; | 
|  |  | 
|  | switch (crystal_clock) { | 
|  | case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ: | 
|  | return f24_mhz; | 
|  | case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ: | 
|  | return f19_2_mhz; | 
|  | case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ: | 
|  | return f38_4_mhz; | 
|  | case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ: | 
|  | return f25_mhz; | 
|  | default: | 
|  | MISSING_CASE(crystal_clock); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | u32 f12_5_mhz = 12500; | 
|  | u32 f19_2_mhz = 19200; | 
|  | u32 f24_mhz = 24000; | 
|  |  | 
|  | if (INTEL_GEN(dev_priv) <= 4) { | 
|  | /* PRMs say: | 
|  | * | 
|  | *     "The value in this register increments once every 16 | 
|  | *      hclks." (through the “Clocking Configuration” | 
|  | *      (“CLKCFG”) MCHBAR register) | 
|  | */ | 
|  | return dev_priv->rawclk_freq / 16; | 
|  | } else if (INTEL_GEN(dev_priv) <= 8) { | 
|  | /* PRMs say: | 
|  | * | 
|  | *     "The PCU TSC counts 10ns increments; this timestamp | 
|  | *      reflects bits 38:3 of the TSC (i.e. 80ns granularity, | 
|  | *      rolling over every 1.5 hours). | 
|  | */ | 
|  | return f12_5_mhz; | 
|  | } else if (INTEL_GEN(dev_priv) <= 9) { | 
|  | u32 ctc_reg = I915_READ(CTC_MODE); | 
|  | u32 freq = 0; | 
|  |  | 
|  | if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { | 
|  | freq = read_reference_ts_freq(dev_priv); | 
|  | } else { | 
|  | freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz; | 
|  |  | 
|  | /* Now figure out how the command stream's timestamp | 
|  | * register increments from this frequency (it might | 
|  | * increment only every few clock cycle). | 
|  | */ | 
|  | freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >> | 
|  | CTC_SHIFT_PARAMETER_SHIFT); | 
|  | } | 
|  |  | 
|  | return freq; | 
|  | } else if (INTEL_GEN(dev_priv) <= 11) { | 
|  | u32 ctc_reg = I915_READ(CTC_MODE); | 
|  | u32 freq = 0; | 
|  |  | 
|  | /* First figure out the reference frequency. There are 2 ways | 
|  | * we can compute the frequency, either through the | 
|  | * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE | 
|  | * tells us which one we should use. | 
|  | */ | 
|  | if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) { | 
|  | freq = read_reference_ts_freq(dev_priv); | 
|  | } else { | 
|  | u32 rpm_config_reg = I915_READ(RPM_CONFIG0); | 
|  |  | 
|  | if (INTEL_GEN(dev_priv) <= 10) | 
|  | freq = gen10_get_crystal_clock_freq(dev_priv, | 
|  | rpm_config_reg); | 
|  | else | 
|  | freq = gen11_get_crystal_clock_freq(dev_priv, | 
|  | rpm_config_reg); | 
|  |  | 
|  | /* Now figure out how the command stream's timestamp | 
|  | * register increments from this frequency (it might | 
|  | * increment only every few clock cycle). | 
|  | */ | 
|  | freq >>= 3 - ((rpm_config_reg & | 
|  | GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> | 
|  | GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT); | 
|  | } | 
|  |  | 
|  | return freq; | 
|  | } | 
|  |  | 
|  | MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #undef INTEL_VGA_DEVICE | 
|  | #define INTEL_VGA_DEVICE(id, info) (id) | 
|  |  | 
|  | static const u16 subplatform_ult_ids[] = { | 
|  | INTEL_HSW_ULT_GT1_IDS(0), | 
|  | INTEL_HSW_ULT_GT2_IDS(0), | 
|  | INTEL_HSW_ULT_GT3_IDS(0), | 
|  | INTEL_BDW_ULT_GT1_IDS(0), | 
|  | INTEL_BDW_ULT_GT2_IDS(0), | 
|  | INTEL_BDW_ULT_GT3_IDS(0), | 
|  | INTEL_BDW_ULT_RSVD_IDS(0), | 
|  | INTEL_SKL_ULT_GT1_IDS(0), | 
|  | INTEL_SKL_ULT_GT2_IDS(0), | 
|  | INTEL_SKL_ULT_GT3_IDS(0), | 
|  | INTEL_KBL_ULT_GT1_IDS(0), | 
|  | INTEL_KBL_ULT_GT2_IDS(0), | 
|  | INTEL_KBL_ULT_GT3_IDS(0), | 
|  | INTEL_CFL_U_GT2_IDS(0), | 
|  | INTEL_CFL_U_GT3_IDS(0), | 
|  | INTEL_WHL_U_GT1_IDS(0), | 
|  | INTEL_WHL_U_GT2_IDS(0), | 
|  | INTEL_WHL_U_GT3_IDS(0), | 
|  | }; | 
|  |  | 
|  | static const u16 subplatform_ulx_ids[] = { | 
|  | INTEL_HSW_ULX_GT1_IDS(0), | 
|  | INTEL_HSW_ULX_GT2_IDS(0), | 
|  | INTEL_BDW_ULX_GT1_IDS(0), | 
|  | INTEL_BDW_ULX_GT2_IDS(0), | 
|  | INTEL_BDW_ULX_GT3_IDS(0), | 
|  | INTEL_BDW_ULX_RSVD_IDS(0), | 
|  | INTEL_SKL_ULX_GT1_IDS(0), | 
|  | INTEL_SKL_ULX_GT2_IDS(0), | 
|  | INTEL_KBL_ULX_GT1_IDS(0), | 
|  | INTEL_KBL_ULX_GT2_IDS(0), | 
|  | INTEL_AML_KBL_GT2_IDS(0), | 
|  | INTEL_AML_CFL_GT2_IDS(0), | 
|  | }; | 
|  |  | 
|  | static const u16 subplatform_portf_ids[] = { | 
|  | INTEL_CNL_PORT_F_IDS(0), | 
|  | INTEL_ICL_PORT_F_IDS(0), | 
|  | }; | 
|  |  | 
|  | static bool find_devid(u16 id, const u16 *p, unsigned int num) | 
|  | { | 
|  | for (; num; num--, p++) { | 
|  | if (*p == id) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void intel_device_info_subplatform_init(struct drm_i915_private *i915) | 
|  | { | 
|  | const struct intel_device_info *info = INTEL_INFO(i915); | 
|  | const struct intel_runtime_info *rinfo = RUNTIME_INFO(i915); | 
|  | const unsigned int pi = __platform_mask_index(rinfo, info->platform); | 
|  | const unsigned int pb = __platform_mask_bit(rinfo, info->platform); | 
|  | u16 devid = INTEL_DEVID(i915); | 
|  | u32 mask = 0; | 
|  |  | 
|  | /* Make sure IS_<platform> checks are working. */ | 
|  | RUNTIME_INFO(i915)->platform_mask[pi] = BIT(pb); | 
|  |  | 
|  | /* Find and mark subplatform bits based on the PCI device id. */ | 
|  | if (find_devid(devid, subplatform_ult_ids, | 
|  | ARRAY_SIZE(subplatform_ult_ids))) { | 
|  | mask = BIT(INTEL_SUBPLATFORM_ULT); | 
|  | } else if (find_devid(devid, subplatform_ulx_ids, | 
|  | ARRAY_SIZE(subplatform_ulx_ids))) { | 
|  | mask = BIT(INTEL_SUBPLATFORM_ULX); | 
|  | if (IS_HASWELL(i915) || IS_BROADWELL(i915)) { | 
|  | /* ULX machines are also considered ULT. */ | 
|  | mask |= BIT(INTEL_SUBPLATFORM_ULT); | 
|  | } | 
|  | } else if (find_devid(devid, subplatform_portf_ids, | 
|  | ARRAY_SIZE(subplatform_portf_ids))) { | 
|  | mask = BIT(INTEL_SUBPLATFORM_PORTF); | 
|  | } | 
|  |  | 
|  | GEM_BUG_ON(mask & ~INTEL_SUBPLATFORM_BITS); | 
|  |  | 
|  | RUNTIME_INFO(i915)->platform_mask[pi] |= mask; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * intel_device_info_runtime_init - initialize runtime info | 
|  | * @dev_priv: the i915 device | 
|  | * | 
|  | * Determine various intel_device_info fields at runtime. | 
|  | * | 
|  | * Use it when either: | 
|  | *   - it's judged too laborious to fill n static structures with the limit | 
|  | *     when a simple if statement does the job, | 
|  | *   - run-time checks (eg read fuse/strap registers) are needed. | 
|  | * | 
|  | * This function needs to be called: | 
|  | *   - after the MMIO has been setup as we are reading registers, | 
|  | *   - after the PCH has been detected, | 
|  | *   - before the first usage of the fields it can tweak. | 
|  | */ | 
|  | void intel_device_info_runtime_init(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct intel_device_info *info = mkwrite_device_info(dev_priv); | 
|  | struct intel_runtime_info *runtime = RUNTIME_INFO(dev_priv); | 
|  | enum pipe pipe; | 
|  |  | 
|  | if (INTEL_GEN(dev_priv) >= 10) { | 
|  | for_each_pipe(dev_priv, pipe) | 
|  | runtime->num_scalers[pipe] = 2; | 
|  | } else if (IS_GEN(dev_priv, 9)) { | 
|  | runtime->num_scalers[PIPE_A] = 2; | 
|  | runtime->num_scalers[PIPE_B] = 2; | 
|  | runtime->num_scalers[PIPE_C] = 1; | 
|  | } | 
|  |  | 
|  | BUILD_BUG_ON(BITS_PER_TYPE(intel_engine_mask_t) < I915_NUM_ENGINES); | 
|  |  | 
|  | if (INTEL_GEN(dev_priv) >= 11) | 
|  | for_each_pipe(dev_priv, pipe) | 
|  | runtime->num_sprites[pipe] = 6; | 
|  | else if (IS_GEN(dev_priv, 10) || IS_GEMINILAKE(dev_priv)) | 
|  | for_each_pipe(dev_priv, pipe) | 
|  | runtime->num_sprites[pipe] = 3; | 
|  | else if (IS_BROXTON(dev_priv)) { | 
|  | /* | 
|  | * Skylake and Broxton currently don't expose the topmost plane as its | 
|  | * use is exclusive with the legacy cursor and we only want to expose | 
|  | * one of those, not both. Until we can safely expose the topmost plane | 
|  | * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported, | 
|  | * we don't expose the topmost plane at all to prevent ABI breakage | 
|  | * down the line. | 
|  | */ | 
|  |  | 
|  | runtime->num_sprites[PIPE_A] = 2; | 
|  | runtime->num_sprites[PIPE_B] = 2; | 
|  | runtime->num_sprites[PIPE_C] = 1; | 
|  | } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) { | 
|  | for_each_pipe(dev_priv, pipe) | 
|  | runtime->num_sprites[pipe] = 2; | 
|  | } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) { | 
|  | for_each_pipe(dev_priv, pipe) | 
|  | runtime->num_sprites[pipe] = 1; | 
|  | } | 
|  |  | 
|  | if (i915_modparams.disable_display) { | 
|  | DRM_INFO("Display disabled (module parameter)\n"); | 
|  | info->num_pipes = 0; | 
|  | } else if (HAS_DISPLAY(dev_priv) && | 
|  | (IS_GEN_RANGE(dev_priv, 7, 8)) && | 
|  | HAS_PCH_SPLIT(dev_priv)) { | 
|  | u32 fuse_strap = I915_READ(FUSE_STRAP); | 
|  | u32 sfuse_strap = I915_READ(SFUSE_STRAP); | 
|  |  | 
|  | /* | 
|  | * SFUSE_STRAP is supposed to have a bit signalling the display | 
|  | * is fused off. Unfortunately it seems that, at least in | 
|  | * certain cases, fused off display means that PCH display | 
|  | * reads don't land anywhere. In that case, we read 0s. | 
|  | * | 
|  | * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK | 
|  | * should be set when taking over after the firmware. | 
|  | */ | 
|  | if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE || | 
|  | sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED || | 
|  | (HAS_PCH_CPT(dev_priv) && | 
|  | !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) { | 
|  | DRM_INFO("Display fused off, disabling\n"); | 
|  | info->num_pipes = 0; | 
|  | } else if (fuse_strap & IVB_PIPE_C_DISABLE) { | 
|  | DRM_INFO("PipeC fused off\n"); | 
|  | info->num_pipes -= 1; | 
|  | } | 
|  | } else if (HAS_DISPLAY(dev_priv) && INTEL_GEN(dev_priv) >= 9) { | 
|  | u32 dfsm = I915_READ(SKL_DFSM); | 
|  | u8 disabled_mask = 0; | 
|  | bool invalid; | 
|  | int num_bits; | 
|  |  | 
|  | if (dfsm & SKL_DFSM_PIPE_A_DISABLE) | 
|  | disabled_mask |= BIT(PIPE_A); | 
|  | if (dfsm & SKL_DFSM_PIPE_B_DISABLE) | 
|  | disabled_mask |= BIT(PIPE_B); | 
|  | if (dfsm & SKL_DFSM_PIPE_C_DISABLE) | 
|  | disabled_mask |= BIT(PIPE_C); | 
|  |  | 
|  | num_bits = hweight8(disabled_mask); | 
|  |  | 
|  | switch (disabled_mask) { | 
|  | case BIT(PIPE_A): | 
|  | case BIT(PIPE_B): | 
|  | case BIT(PIPE_A) | BIT(PIPE_B): | 
|  | case BIT(PIPE_A) | BIT(PIPE_C): | 
|  | invalid = true; | 
|  | break; | 
|  | default: | 
|  | invalid = false; | 
|  | } | 
|  |  | 
|  | if (num_bits > info->num_pipes || invalid) | 
|  | DRM_ERROR("invalid pipe fuse configuration: 0x%x\n", | 
|  | disabled_mask); | 
|  | else | 
|  | info->num_pipes -= num_bits; | 
|  | } | 
|  |  | 
|  | /* Initialize slice/subslice/EU info */ | 
|  | if (IS_HASWELL(dev_priv)) | 
|  | haswell_sseu_info_init(dev_priv); | 
|  | else if (IS_CHERRYVIEW(dev_priv)) | 
|  | cherryview_sseu_info_init(dev_priv); | 
|  | else if (IS_BROADWELL(dev_priv)) | 
|  | broadwell_sseu_info_init(dev_priv); | 
|  | else if (IS_GEN(dev_priv, 9)) | 
|  | gen9_sseu_info_init(dev_priv); | 
|  | else if (IS_GEN(dev_priv, 10)) | 
|  | gen10_sseu_info_init(dev_priv); | 
|  | else if (INTEL_GEN(dev_priv) >= 11) | 
|  | gen11_sseu_info_init(dev_priv); | 
|  |  | 
|  | if (IS_GEN(dev_priv, 6) && intel_vtd_active()) { | 
|  | DRM_INFO("Disabling ppGTT for VT-d support\n"); | 
|  | info->ppgtt_type = INTEL_PPGTT_NONE; | 
|  | } | 
|  |  | 
|  | /* Initialize command stream timestamp frequency */ | 
|  | runtime->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv); | 
|  | } | 
|  |  | 
|  | void intel_driver_caps_print(const struct intel_driver_caps *caps, | 
|  | struct drm_printer *p) | 
|  | { | 
|  | drm_printf(p, "Has logical contexts? %s\n", | 
|  | yesno(caps->has_logical_contexts)); | 
|  | drm_printf(p, "scheduler: %x\n", caps->scheduler); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine which engines are fused off in our particular hardware. Since the | 
|  | * fuse register is in the blitter powerwell, we need forcewake to be ready at | 
|  | * this point (but later we need to prune the forcewake domains for engines that | 
|  | * are indeed fused off). | 
|  | */ | 
|  | void intel_device_info_init_mmio(struct drm_i915_private *dev_priv) | 
|  | { | 
|  | struct intel_device_info *info = mkwrite_device_info(dev_priv); | 
|  | unsigned int logical_vdbox = 0; | 
|  | unsigned int i; | 
|  | u32 media_fuse; | 
|  | u16 vdbox_mask; | 
|  | u16 vebox_mask; | 
|  |  | 
|  | if (INTEL_GEN(dev_priv) < 11) | 
|  | return; | 
|  |  | 
|  | media_fuse = ~I915_READ(GEN11_GT_VEBOX_VDBOX_DISABLE); | 
|  |  | 
|  | vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; | 
|  | vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> | 
|  | GEN11_GT_VEBOX_DISABLE_SHIFT; | 
|  |  | 
|  | for (i = 0; i < I915_MAX_VCS; i++) { | 
|  | if (!HAS_ENGINE(dev_priv, _VCS(i))) | 
|  | continue; | 
|  |  | 
|  | if (!(BIT(i) & vdbox_mask)) { | 
|  | info->engine_mask &= ~BIT(_VCS(i)); | 
|  | DRM_DEBUG_DRIVER("vcs%u fused off\n", i); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In Gen11, only even numbered logical VDBOXes are | 
|  | * hooked up to an SFC (Scaler & Format Converter) unit. | 
|  | */ | 
|  | if (logical_vdbox++ % 2 == 0) | 
|  | RUNTIME_INFO(dev_priv)->vdbox_sfc_access |= BIT(i); | 
|  | } | 
|  | DRM_DEBUG_DRIVER("vdbox enable: %04x, instances: %04lx\n", | 
|  | vdbox_mask, VDBOX_MASK(dev_priv)); | 
|  | GEM_BUG_ON(vdbox_mask != VDBOX_MASK(dev_priv)); | 
|  |  | 
|  | for (i = 0; i < I915_MAX_VECS; i++) { | 
|  | if (!HAS_ENGINE(dev_priv, _VECS(i))) | 
|  | continue; | 
|  |  | 
|  | if (!(BIT(i) & vebox_mask)) { | 
|  | info->engine_mask &= ~BIT(_VECS(i)); | 
|  | DRM_DEBUG_DRIVER("vecs%u fused off\n", i); | 
|  | } | 
|  | } | 
|  | DRM_DEBUG_DRIVER("vebox enable: %04x, instances: %04lx\n", | 
|  | vebox_mask, VEBOX_MASK(dev_priv)); | 
|  | GEM_BUG_ON(vebox_mask != VEBOX_MASK(dev_priv)); | 
|  | } |