| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved. |
| * |
| * Authors: |
| * Alexander Graf <agraf@suse.de> |
| * Kevin Wolf <mail@kevin-wolf.de> |
| * Paul Mackerras <paulus@samba.org> |
| * |
| * Description: |
| * Functions relating to running KVM on Book 3S processors where |
| * we don't have access to hypervisor mode, and we run the guest |
| * in problem state (user mode). |
| * |
| * This file is derived from arch/powerpc/kvm/44x.c, |
| * by Hollis Blanchard <hollisb@us.ibm.com>. |
| */ |
| |
| #include <linux/kvm_host.h> |
| #include <linux/export.h> |
| #include <linux/err.h> |
| #include <linux/slab.h> |
| |
| #include <asm/reg.h> |
| #include <asm/cputable.h> |
| #include <asm/cacheflush.h> |
| #include <linux/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/mmu_context.h> |
| #include <asm/switch_to.h> |
| #include <asm/firmware.h> |
| #include <asm/setup.h> |
| #include <linux/gfp.h> |
| #include <linux/sched.h> |
| #include <linux/vmalloc.h> |
| #include <linux/highmem.h> |
| #include <linux/module.h> |
| #include <linux/miscdevice.h> |
| #include <asm/asm-prototypes.h> |
| #include <asm/tm.h> |
| |
| #include "book3s.h" |
| |
| #define CREATE_TRACE_POINTS |
| #include "trace_pr.h" |
| |
| /* #define EXIT_DEBUG */ |
| /* #define DEBUG_EXT */ |
| |
| static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, |
| ulong msr); |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac); |
| #endif |
| |
| /* Some compatibility defines */ |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| #define MSR_USER32 MSR_USER |
| #define MSR_USER64 MSR_USER |
| #define HW_PAGE_SIZE PAGE_SIZE |
| #define HPTE_R_M _PAGE_COHERENT |
| #endif |
| |
| static bool kvmppc_is_split_real(struct kvm_vcpu *vcpu) |
| { |
| ulong msr = kvmppc_get_msr(vcpu); |
| return (msr & (MSR_IR|MSR_DR)) == MSR_DR; |
| } |
| |
| static void kvmppc_fixup_split_real(struct kvm_vcpu *vcpu) |
| { |
| ulong msr = kvmppc_get_msr(vcpu); |
| ulong pc = kvmppc_get_pc(vcpu); |
| |
| /* We are in DR only split real mode */ |
| if ((msr & (MSR_IR|MSR_DR)) != MSR_DR) |
| return; |
| |
| /* We have not fixed up the guest already */ |
| if (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) |
| return; |
| |
| /* The code is in fixupable address space */ |
| if (pc & SPLIT_HACK_MASK) |
| return; |
| |
| vcpu->arch.hflags |= BOOK3S_HFLAG_SPLIT_HACK; |
| kvmppc_set_pc(vcpu, pc | SPLIT_HACK_OFFS); |
| } |
| |
| void kvmppc_unfixup_split_real(struct kvm_vcpu *vcpu); |
| |
| static void kvmppc_core_vcpu_load_pr(struct kvm_vcpu *vcpu, int cpu) |
| { |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb)); |
| svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max; |
| svcpu->in_use = 0; |
| svcpu_put(svcpu); |
| #endif |
| |
| /* Disable AIL if supported */ |
| if (cpu_has_feature(CPU_FTR_HVMODE) && |
| cpu_has_feature(CPU_FTR_ARCH_207S)) |
| mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) & ~LPCR_AIL); |
| |
| vcpu->cpu = smp_processor_id(); |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| current->thread.kvm_shadow_vcpu = vcpu->arch.shadow_vcpu; |
| #endif |
| |
| if (kvmppc_is_split_real(vcpu)) |
| kvmppc_fixup_split_real(vcpu); |
| |
| kvmppc_restore_tm_pr(vcpu); |
| } |
| |
| static void kvmppc_core_vcpu_put_pr(struct kvm_vcpu *vcpu) |
| { |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| if (svcpu->in_use) { |
| kvmppc_copy_from_svcpu(vcpu); |
| } |
| memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb)); |
| to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max; |
| svcpu_put(svcpu); |
| #endif |
| |
| if (kvmppc_is_split_real(vcpu)) |
| kvmppc_unfixup_split_real(vcpu); |
| |
| kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); |
| kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); |
| kvmppc_save_tm_pr(vcpu); |
| |
| /* Enable AIL if supported */ |
| if (cpu_has_feature(CPU_FTR_HVMODE) && |
| cpu_has_feature(CPU_FTR_ARCH_207S)) |
| mtspr(SPRN_LPCR, mfspr(SPRN_LPCR) | LPCR_AIL_3); |
| |
| vcpu->cpu = -1; |
| } |
| |
| /* Copy data needed by real-mode code from vcpu to shadow vcpu */ |
| void kvmppc_copy_to_svcpu(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| |
| svcpu->gpr[0] = vcpu->arch.regs.gpr[0]; |
| svcpu->gpr[1] = vcpu->arch.regs.gpr[1]; |
| svcpu->gpr[2] = vcpu->arch.regs.gpr[2]; |
| svcpu->gpr[3] = vcpu->arch.regs.gpr[3]; |
| svcpu->gpr[4] = vcpu->arch.regs.gpr[4]; |
| svcpu->gpr[5] = vcpu->arch.regs.gpr[5]; |
| svcpu->gpr[6] = vcpu->arch.regs.gpr[6]; |
| svcpu->gpr[7] = vcpu->arch.regs.gpr[7]; |
| svcpu->gpr[8] = vcpu->arch.regs.gpr[8]; |
| svcpu->gpr[9] = vcpu->arch.regs.gpr[9]; |
| svcpu->gpr[10] = vcpu->arch.regs.gpr[10]; |
| svcpu->gpr[11] = vcpu->arch.regs.gpr[11]; |
| svcpu->gpr[12] = vcpu->arch.regs.gpr[12]; |
| svcpu->gpr[13] = vcpu->arch.regs.gpr[13]; |
| svcpu->cr = vcpu->arch.regs.ccr; |
| svcpu->xer = vcpu->arch.regs.xer; |
| svcpu->ctr = vcpu->arch.regs.ctr; |
| svcpu->lr = vcpu->arch.regs.link; |
| svcpu->pc = vcpu->arch.regs.nip; |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| svcpu->shadow_fscr = vcpu->arch.shadow_fscr; |
| #endif |
| /* |
| * Now also save the current time base value. We use this |
| * to find the guest purr and spurr value. |
| */ |
| vcpu->arch.entry_tb = get_tb(); |
| vcpu->arch.entry_vtb = get_vtb(); |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| vcpu->arch.entry_ic = mfspr(SPRN_IC); |
| svcpu->in_use = true; |
| |
| svcpu_put(svcpu); |
| } |
| |
| static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu) |
| { |
| ulong guest_msr = kvmppc_get_msr(vcpu); |
| ulong smsr = guest_msr; |
| |
| /* Guest MSR values */ |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE | |
| MSR_TM | MSR_TS_MASK; |
| #else |
| smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_LE; |
| #endif |
| /* Process MSR values */ |
| smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE; |
| /* External providers the guest reserved */ |
| smsr |= (guest_msr & vcpu->arch.guest_owned_ext); |
| /* 64-bit Process MSR values */ |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| smsr |= MSR_ISF | MSR_HV; |
| #endif |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * in guest privileged state, we want to fail all TM transactions. |
| * So disable MSR TM bit so that all tbegin. will be able to be |
| * trapped into host. |
| */ |
| if (!(guest_msr & MSR_PR)) |
| smsr &= ~MSR_TM; |
| #endif |
| vcpu->arch.shadow_msr = smsr; |
| } |
| |
| /* Copy data touched by real-mode code from shadow vcpu back to vcpu */ |
| void kvmppc_copy_from_svcpu(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu); |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| ulong old_msr; |
| #endif |
| |
| /* |
| * Maybe we were already preempted and synced the svcpu from |
| * our preempt notifiers. Don't bother touching this svcpu then. |
| */ |
| if (!svcpu->in_use) |
| goto out; |
| |
| vcpu->arch.regs.gpr[0] = svcpu->gpr[0]; |
| vcpu->arch.regs.gpr[1] = svcpu->gpr[1]; |
| vcpu->arch.regs.gpr[2] = svcpu->gpr[2]; |
| vcpu->arch.regs.gpr[3] = svcpu->gpr[3]; |
| vcpu->arch.regs.gpr[4] = svcpu->gpr[4]; |
| vcpu->arch.regs.gpr[5] = svcpu->gpr[5]; |
| vcpu->arch.regs.gpr[6] = svcpu->gpr[6]; |
| vcpu->arch.regs.gpr[7] = svcpu->gpr[7]; |
| vcpu->arch.regs.gpr[8] = svcpu->gpr[8]; |
| vcpu->arch.regs.gpr[9] = svcpu->gpr[9]; |
| vcpu->arch.regs.gpr[10] = svcpu->gpr[10]; |
| vcpu->arch.regs.gpr[11] = svcpu->gpr[11]; |
| vcpu->arch.regs.gpr[12] = svcpu->gpr[12]; |
| vcpu->arch.regs.gpr[13] = svcpu->gpr[13]; |
| vcpu->arch.regs.ccr = svcpu->cr; |
| vcpu->arch.regs.xer = svcpu->xer; |
| vcpu->arch.regs.ctr = svcpu->ctr; |
| vcpu->arch.regs.link = svcpu->lr; |
| vcpu->arch.regs.nip = svcpu->pc; |
| vcpu->arch.shadow_srr1 = svcpu->shadow_srr1; |
| vcpu->arch.fault_dar = svcpu->fault_dar; |
| vcpu->arch.fault_dsisr = svcpu->fault_dsisr; |
| vcpu->arch.last_inst = svcpu->last_inst; |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| vcpu->arch.shadow_fscr = svcpu->shadow_fscr; |
| #endif |
| /* |
| * Update purr and spurr using time base on exit. |
| */ |
| vcpu->arch.purr += get_tb() - vcpu->arch.entry_tb; |
| vcpu->arch.spurr += get_tb() - vcpu->arch.entry_tb; |
| to_book3s(vcpu)->vtb += get_vtb() - vcpu->arch.entry_vtb; |
| if (cpu_has_feature(CPU_FTR_ARCH_207S)) |
| vcpu->arch.ic += mfspr(SPRN_IC) - vcpu->arch.entry_ic; |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* |
| * Unlike other MSR bits, MSR[TS]bits can be changed at guest without |
| * notifying host: |
| * modified by unprivileged instructions like "tbegin"/"tend"/ |
| * "tresume"/"tsuspend" in PR KVM guest. |
| * |
| * It is necessary to sync here to calculate a correct shadow_msr. |
| * |
| * privileged guest's tbegin will be failed at present. So we |
| * only take care of problem state guest. |
| */ |
| old_msr = kvmppc_get_msr(vcpu); |
| if (unlikely((old_msr & MSR_PR) && |
| (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)) != |
| (old_msr & (MSR_TS_MASK)))) { |
| old_msr &= ~(MSR_TS_MASK); |
| old_msr |= (vcpu->arch.shadow_srr1 & (MSR_TS_MASK)); |
| kvmppc_set_msr_fast(vcpu, old_msr); |
| kvmppc_recalc_shadow_msr(vcpu); |
| } |
| #endif |
| |
| svcpu->in_use = false; |
| |
| out: |
| svcpu_put(svcpu); |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| void kvmppc_save_tm_sprs(struct kvm_vcpu *vcpu) |
| { |
| tm_enable(); |
| vcpu->arch.tfhar = mfspr(SPRN_TFHAR); |
| vcpu->arch.texasr = mfspr(SPRN_TEXASR); |
| vcpu->arch.tfiar = mfspr(SPRN_TFIAR); |
| tm_disable(); |
| } |
| |
| void kvmppc_restore_tm_sprs(struct kvm_vcpu *vcpu) |
| { |
| tm_enable(); |
| mtspr(SPRN_TFHAR, vcpu->arch.tfhar); |
| mtspr(SPRN_TEXASR, vcpu->arch.texasr); |
| mtspr(SPRN_TFIAR, vcpu->arch.tfiar); |
| tm_disable(); |
| } |
| |
| /* loadup math bits which is enabled at kvmppc_get_msr() but not enabled at |
| * hardware. |
| */ |
| static void kvmppc_handle_lost_math_exts(struct kvm_vcpu *vcpu) |
| { |
| ulong exit_nr; |
| ulong ext_diff = (kvmppc_get_msr(vcpu) & ~vcpu->arch.guest_owned_ext) & |
| (MSR_FP | MSR_VEC | MSR_VSX); |
| |
| if (!ext_diff) |
| return; |
| |
| if (ext_diff == MSR_FP) |
| exit_nr = BOOK3S_INTERRUPT_FP_UNAVAIL; |
| else if (ext_diff == MSR_VEC) |
| exit_nr = BOOK3S_INTERRUPT_ALTIVEC; |
| else |
| exit_nr = BOOK3S_INTERRUPT_VSX; |
| |
| kvmppc_handle_ext(vcpu, exit_nr, ext_diff); |
| } |
| |
| void kvmppc_save_tm_pr(struct kvm_vcpu *vcpu) |
| { |
| if (!(MSR_TM_ACTIVE(kvmppc_get_msr(vcpu)))) { |
| kvmppc_save_tm_sprs(vcpu); |
| return; |
| } |
| |
| kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); |
| kvmppc_giveup_ext(vcpu, MSR_VSX); |
| |
| preempt_disable(); |
| _kvmppc_save_tm_pr(vcpu, mfmsr()); |
| preempt_enable(); |
| } |
| |
| void kvmppc_restore_tm_pr(struct kvm_vcpu *vcpu) |
| { |
| if (!MSR_TM_ACTIVE(kvmppc_get_msr(vcpu))) { |
| kvmppc_restore_tm_sprs(vcpu); |
| if (kvmppc_get_msr(vcpu) & MSR_TM) { |
| kvmppc_handle_lost_math_exts(vcpu); |
| if (vcpu->arch.fscr & FSCR_TAR) |
| kvmppc_handle_fac(vcpu, FSCR_TAR_LG); |
| } |
| return; |
| } |
| |
| preempt_disable(); |
| _kvmppc_restore_tm_pr(vcpu, kvmppc_get_msr(vcpu)); |
| preempt_enable(); |
| |
| if (kvmppc_get_msr(vcpu) & MSR_TM) { |
| kvmppc_handle_lost_math_exts(vcpu); |
| if (vcpu->arch.fscr & FSCR_TAR) |
| kvmppc_handle_fac(vcpu, FSCR_TAR_LG); |
| } |
| } |
| #endif |
| |
| static int kvmppc_core_check_requests_pr(struct kvm_vcpu *vcpu) |
| { |
| int r = 1; /* Indicate we want to get back into the guest */ |
| |
| /* We misuse TLB_FLUSH to indicate that we want to clear |
| all shadow cache entries */ |
| if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) |
| kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| |
| return r; |
| } |
| |
| /************* MMU Notifiers *************/ |
| static void do_kvm_unmap_hva(struct kvm *kvm, unsigned long start, |
| unsigned long end) |
| { |
| long i; |
| struct kvm_vcpu *vcpu; |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| |
| slots = kvm_memslots(kvm); |
| kvm_for_each_memslot(memslot, slots) { |
| unsigned long hva_start, hva_end; |
| gfn_t gfn, gfn_end; |
| |
| hva_start = max(start, memslot->userspace_addr); |
| hva_end = min(end, memslot->userspace_addr + |
| (memslot->npages << PAGE_SHIFT)); |
| if (hva_start >= hva_end) |
| continue; |
| /* |
| * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| * {gfn, gfn+1, ..., gfn_end-1}. |
| */ |
| gfn = hva_to_gfn_memslot(hva_start, memslot); |
| gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| kvm_for_each_vcpu(i, vcpu, kvm) |
| kvmppc_mmu_pte_pflush(vcpu, gfn << PAGE_SHIFT, |
| gfn_end << PAGE_SHIFT); |
| } |
| } |
| |
| static int kvm_unmap_hva_range_pr(struct kvm *kvm, unsigned long start, |
| unsigned long end) |
| { |
| do_kvm_unmap_hva(kvm, start, end); |
| |
| return 0; |
| } |
| |
| static int kvm_age_hva_pr(struct kvm *kvm, unsigned long start, |
| unsigned long end) |
| { |
| /* XXX could be more clever ;) */ |
| return 0; |
| } |
| |
| static int kvm_test_age_hva_pr(struct kvm *kvm, unsigned long hva) |
| { |
| /* XXX could be more clever ;) */ |
| return 0; |
| } |
| |
| static void kvm_set_spte_hva_pr(struct kvm *kvm, unsigned long hva, pte_t pte) |
| { |
| /* The page will get remapped properly on its next fault */ |
| do_kvm_unmap_hva(kvm, hva, hva + PAGE_SIZE); |
| } |
| |
| /*****************************************/ |
| |
| static void kvmppc_set_msr_pr(struct kvm_vcpu *vcpu, u64 msr) |
| { |
| ulong old_msr; |
| |
| /* For PAPR guest, make sure MSR reflects guest mode */ |
| if (vcpu->arch.papr_enabled) |
| msr = (msr & ~MSR_HV) | MSR_ME; |
| |
| #ifdef EXIT_DEBUG |
| printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr); |
| #endif |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* We should never target guest MSR to TS=10 && PR=0, |
| * since we always fail transaction for guest privilege |
| * state. |
| */ |
| if (!(msr & MSR_PR) && MSR_TM_TRANSACTIONAL(msr)) |
| kvmppc_emulate_tabort(vcpu, |
| TM_CAUSE_KVM_FAC_UNAV | TM_CAUSE_PERSISTENT); |
| #endif |
| |
| old_msr = kvmppc_get_msr(vcpu); |
| msr &= to_book3s(vcpu)->msr_mask; |
| kvmppc_set_msr_fast(vcpu, msr); |
| kvmppc_recalc_shadow_msr(vcpu); |
| |
| if (msr & MSR_POW) { |
| if (!vcpu->arch.pending_exceptions) { |
| kvm_vcpu_block(vcpu); |
| kvm_clear_request(KVM_REQ_UNHALT, vcpu); |
| vcpu->stat.halt_wakeup++; |
| |
| /* Unset POW bit after we woke up */ |
| msr &= ~MSR_POW; |
| kvmppc_set_msr_fast(vcpu, msr); |
| } |
| } |
| |
| if (kvmppc_is_split_real(vcpu)) |
| kvmppc_fixup_split_real(vcpu); |
| else |
| kvmppc_unfixup_split_real(vcpu); |
| |
| if ((kvmppc_get_msr(vcpu) & (MSR_PR|MSR_IR|MSR_DR)) != |
| (old_msr & (MSR_PR|MSR_IR|MSR_DR))) { |
| kvmppc_mmu_flush_segments(vcpu); |
| kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); |
| |
| /* Preload magic page segment when in kernel mode */ |
| if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) { |
| struct kvm_vcpu_arch *a = &vcpu->arch; |
| |
| if (msr & MSR_DR) |
| kvmppc_mmu_map_segment(vcpu, a->magic_page_ea); |
| else |
| kvmppc_mmu_map_segment(vcpu, a->magic_page_pa); |
| } |
| } |
| |
| /* |
| * When switching from 32 to 64-bit, we may have a stale 32-bit |
| * magic page around, we need to flush it. Typically 32-bit magic |
| * page will be instantiated when calling into RTAS. Note: We |
| * assume that such transition only happens while in kernel mode, |
| * ie, we never transition from user 32-bit to kernel 64-bit with |
| * a 32-bit magic page around. |
| */ |
| if (vcpu->arch.magic_page_pa && |
| !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) { |
| /* going from RTAS to normal kernel code */ |
| kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa, |
| ~0xFFFUL); |
| } |
| |
| /* Preload FPU if it's enabled */ |
| if (kvmppc_get_msr(vcpu) & MSR_FP) |
| kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| if (kvmppc_get_msr(vcpu) & MSR_TM) |
| kvmppc_handle_lost_math_exts(vcpu); |
| #endif |
| } |
| |
| void kvmppc_set_pvr_pr(struct kvm_vcpu *vcpu, u32 pvr) |
| { |
| u32 host_pvr; |
| |
| vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB; |
| vcpu->arch.pvr = pvr; |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if ((pvr >= 0x330000) && (pvr < 0x70330000)) { |
| kvmppc_mmu_book3s_64_init(vcpu); |
| if (!to_book3s(vcpu)->hior_explicit) |
| to_book3s(vcpu)->hior = 0xfff00000; |
| to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL; |
| vcpu->arch.cpu_type = KVM_CPU_3S_64; |
| } else |
| #endif |
| { |
| kvmppc_mmu_book3s_32_init(vcpu); |
| if (!to_book3s(vcpu)->hior_explicit) |
| to_book3s(vcpu)->hior = 0; |
| to_book3s(vcpu)->msr_mask = 0xffffffffULL; |
| vcpu->arch.cpu_type = KVM_CPU_3S_32; |
| } |
| |
| kvmppc_sanity_check(vcpu); |
| |
| /* If we are in hypervisor level on 970, we can tell the CPU to |
| * treat DCBZ as 32 bytes store */ |
| vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32; |
| if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) && |
| !strcmp(cur_cpu_spec->platform, "ppc970")) |
| vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; |
| |
| /* Cell performs badly if MSR_FEx are set. So let's hope nobody |
| really needs them in a VM on Cell and force disable them. */ |
| if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be")) |
| to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1); |
| |
| /* |
| * If they're asking for POWER6 or later, set the flag |
| * indicating that we can do multiple large page sizes |
| * and 1TB segments. |
| * Also set the flag that indicates that tlbie has the large |
| * page bit in the RB operand instead of the instruction. |
| */ |
| switch (PVR_VER(pvr)) { |
| case PVR_POWER6: |
| case PVR_POWER7: |
| case PVR_POWER7p: |
| case PVR_POWER8: |
| case PVR_POWER8E: |
| case PVR_POWER8NVL: |
| case PVR_POWER9: |
| vcpu->arch.hflags |= BOOK3S_HFLAG_MULTI_PGSIZE | |
| BOOK3S_HFLAG_NEW_TLBIE; |
| break; |
| } |
| |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| /* 32 bit Book3S always has 32 byte dcbz */ |
| vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32; |
| #endif |
| |
| /* On some CPUs we can execute paired single operations natively */ |
| asm ( "mfpvr %0" : "=r"(host_pvr)); |
| switch (host_pvr) { |
| case 0x00080200: /* lonestar 2.0 */ |
| case 0x00088202: /* lonestar 2.2 */ |
| case 0x70000100: /* gekko 1.0 */ |
| case 0x00080100: /* gekko 2.0 */ |
| case 0x00083203: /* gekko 2.3a */ |
| case 0x00083213: /* gekko 2.3b */ |
| case 0x00083204: /* gekko 2.4 */ |
| case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */ |
| case 0x00087200: /* broadway */ |
| vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS; |
| /* Enable HID2.PSE - in case we need it later */ |
| mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29)); |
| } |
| } |
| |
| /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To |
| * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to |
| * emulate 32 bytes dcbz length. |
| * |
| * The Book3s_64 inventors also realized this case and implemented a special bit |
| * in the HID5 register, which is a hypervisor ressource. Thus we can't use it. |
| * |
| * My approach here is to patch the dcbz instruction on executing pages. |
| */ |
| static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte) |
| { |
| struct page *hpage; |
| u64 hpage_offset; |
| u32 *page; |
| int i; |
| |
| hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT); |
| if (is_error_page(hpage)) |
| return; |
| |
| hpage_offset = pte->raddr & ~PAGE_MASK; |
| hpage_offset &= ~0xFFFULL; |
| hpage_offset /= 4; |
| |
| get_page(hpage); |
| page = kmap_atomic(hpage); |
| |
| /* patch dcbz into reserved instruction, so we trap */ |
| for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++) |
| if ((be32_to_cpu(page[i]) & 0xff0007ff) == INS_DCBZ) |
| page[i] &= cpu_to_be32(0xfffffff7); |
| |
| kunmap_atomic(page); |
| put_page(hpage); |
| } |
| |
| static bool kvmppc_visible_gpa(struct kvm_vcpu *vcpu, gpa_t gpa) |
| { |
| ulong mp_pa = vcpu->arch.magic_page_pa; |
| |
| if (!(kvmppc_get_msr(vcpu) & MSR_SF)) |
| mp_pa = (uint32_t)mp_pa; |
| |
| gpa &= ~0xFFFULL; |
| if (unlikely(mp_pa) && unlikely((mp_pa & KVM_PAM) == (gpa & KVM_PAM))) { |
| return true; |
| } |
| |
| return kvm_is_visible_gfn(vcpu->kvm, gpa >> PAGE_SHIFT); |
| } |
| |
| int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| ulong eaddr, int vec) |
| { |
| bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE); |
| bool iswrite = false; |
| int r = RESUME_GUEST; |
| int relocated; |
| int page_found = 0; |
| struct kvmppc_pte pte = { 0 }; |
| bool dr = (kvmppc_get_msr(vcpu) & MSR_DR) ? true : false; |
| bool ir = (kvmppc_get_msr(vcpu) & MSR_IR) ? true : false; |
| u64 vsid; |
| |
| relocated = data ? dr : ir; |
| if (data && (vcpu->arch.fault_dsisr & DSISR_ISSTORE)) |
| iswrite = true; |
| |
| /* Resolve real address if translation turned on */ |
| if (relocated) { |
| page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data, iswrite); |
| } else { |
| pte.may_execute = true; |
| pte.may_read = true; |
| pte.may_write = true; |
| pte.raddr = eaddr & KVM_PAM; |
| pte.eaddr = eaddr; |
| pte.vpage = eaddr >> 12; |
| pte.page_size = MMU_PAGE_64K; |
| pte.wimg = HPTE_R_M; |
| } |
| |
| switch (kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) { |
| case 0: |
| pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12)); |
| break; |
| case MSR_DR: |
| if (!data && |
| (vcpu->arch.hflags & BOOK3S_HFLAG_SPLIT_HACK) && |
| ((pte.raddr & SPLIT_HACK_MASK) == SPLIT_HACK_OFFS)) |
| pte.raddr &= ~SPLIT_HACK_MASK; |
| /* fall through */ |
| case MSR_IR: |
| vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid); |
| |
| if ((kvmppc_get_msr(vcpu) & (MSR_DR|MSR_IR)) == MSR_DR) |
| pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12)); |
| else |
| pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12)); |
| pte.vpage |= vsid; |
| |
| if (vsid == -1) |
| page_found = -EINVAL; |
| break; |
| } |
| |
| if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { |
| /* |
| * If we do the dcbz hack, we have to NX on every execution, |
| * so we can patch the executing code. This renders our guest |
| * NX-less. |
| */ |
| pte.may_execute = !data; |
| } |
| |
| if (page_found == -ENOENT || page_found == -EPERM) { |
| /* Page not found in guest PTE entries, or protection fault */ |
| u64 flags; |
| |
| if (page_found == -EPERM) |
| flags = DSISR_PROTFAULT; |
| else |
| flags = DSISR_NOHPTE; |
| if (data) { |
| flags |= vcpu->arch.fault_dsisr & DSISR_ISSTORE; |
| kvmppc_core_queue_data_storage(vcpu, eaddr, flags); |
| } else { |
| kvmppc_core_queue_inst_storage(vcpu, flags); |
| } |
| } else if (page_found == -EINVAL) { |
| /* Page not found in guest SLB */ |
| kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); |
| kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80); |
| } else if (kvmppc_visible_gpa(vcpu, pte.raddr)) { |
| if (data && !(vcpu->arch.fault_dsisr & DSISR_NOHPTE)) { |
| /* |
| * There is already a host HPTE there, presumably |
| * a read-only one for a page the guest thinks |
| * is writable, so get rid of it first. |
| */ |
| kvmppc_mmu_unmap_page(vcpu, &pte); |
| } |
| /* The guest's PTE is not mapped yet. Map on the host */ |
| if (kvmppc_mmu_map_page(vcpu, &pte, iswrite) == -EIO) { |
| /* Exit KVM if mapping failed */ |
| run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| return RESUME_HOST; |
| } |
| if (data) |
| vcpu->stat.sp_storage++; |
| else if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) |
| kvmppc_patch_dcbz(vcpu, &pte); |
| } else { |
| /* MMIO */ |
| vcpu->stat.mmio_exits++; |
| vcpu->arch.paddr_accessed = pte.raddr; |
| vcpu->arch.vaddr_accessed = pte.eaddr; |
| r = kvmppc_emulate_mmio(run, vcpu); |
| if ( r == RESUME_HOST_NV ) |
| r = RESUME_HOST; |
| } |
| |
| return r; |
| } |
| |
| /* Give up external provider (FPU, Altivec, VSX) */ |
| void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr) |
| { |
| struct thread_struct *t = ¤t->thread; |
| |
| /* |
| * VSX instructions can access FP and vector registers, so if |
| * we are giving up VSX, make sure we give up FP and VMX as well. |
| */ |
| if (msr & MSR_VSX) |
| msr |= MSR_FP | MSR_VEC; |
| |
| msr &= vcpu->arch.guest_owned_ext; |
| if (!msr) |
| return; |
| |
| #ifdef DEBUG_EXT |
| printk(KERN_INFO "Giving up ext 0x%lx\n", msr); |
| #endif |
| |
| if (msr & MSR_FP) { |
| /* |
| * Note that on CPUs with VSX, giveup_fpu stores |
| * both the traditional FP registers and the added VSX |
| * registers into thread.fp_state.fpr[]. |
| */ |
| if (t->regs->msr & MSR_FP) |
| giveup_fpu(current); |
| t->fp_save_area = NULL; |
| } |
| |
| #ifdef CONFIG_ALTIVEC |
| if (msr & MSR_VEC) { |
| if (current->thread.regs->msr & MSR_VEC) |
| giveup_altivec(current); |
| t->vr_save_area = NULL; |
| } |
| #endif |
| |
| vcpu->arch.guest_owned_ext &= ~(msr | MSR_VSX); |
| kvmppc_recalc_shadow_msr(vcpu); |
| } |
| |
| /* Give up facility (TAR / EBB / DSCR) */ |
| void kvmppc_giveup_fac(struct kvm_vcpu *vcpu, ulong fac) |
| { |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (!(vcpu->arch.shadow_fscr & (1ULL << fac))) { |
| /* Facility not available to the guest, ignore giveup request*/ |
| return; |
| } |
| |
| switch (fac) { |
| case FSCR_TAR_LG: |
| vcpu->arch.tar = mfspr(SPRN_TAR); |
| mtspr(SPRN_TAR, current->thread.tar); |
| vcpu->arch.shadow_fscr &= ~FSCR_TAR; |
| break; |
| } |
| #endif |
| } |
| |
| /* Handle external providers (FPU, Altivec, VSX) */ |
| static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr, |
| ulong msr) |
| { |
| struct thread_struct *t = ¤t->thread; |
| |
| /* When we have paired singles, we emulate in software */ |
| if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) |
| return RESUME_GUEST; |
| |
| if (!(kvmppc_get_msr(vcpu) & msr)) { |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| return RESUME_GUEST; |
| } |
| |
| if (msr == MSR_VSX) { |
| /* No VSX? Give an illegal instruction interrupt */ |
| #ifdef CONFIG_VSX |
| if (!cpu_has_feature(CPU_FTR_VSX)) |
| #endif |
| { |
| kvmppc_core_queue_program(vcpu, SRR1_PROGILL); |
| return RESUME_GUEST; |
| } |
| |
| /* |
| * We have to load up all the FP and VMX registers before |
| * we can let the guest use VSX instructions. |
| */ |
| msr = MSR_FP | MSR_VEC | MSR_VSX; |
| } |
| |
| /* See if we already own all the ext(s) needed */ |
| msr &= ~vcpu->arch.guest_owned_ext; |
| if (!msr) |
| return RESUME_GUEST; |
| |
| #ifdef DEBUG_EXT |
| printk(KERN_INFO "Loading up ext 0x%lx\n", msr); |
| #endif |
| |
| if (msr & MSR_FP) { |
| preempt_disable(); |
| enable_kernel_fp(); |
| load_fp_state(&vcpu->arch.fp); |
| disable_kernel_fp(); |
| t->fp_save_area = &vcpu->arch.fp; |
| preempt_enable(); |
| } |
| |
| if (msr & MSR_VEC) { |
| #ifdef CONFIG_ALTIVEC |
| preempt_disable(); |
| enable_kernel_altivec(); |
| load_vr_state(&vcpu->arch.vr); |
| disable_kernel_altivec(); |
| t->vr_save_area = &vcpu->arch.vr; |
| preempt_enable(); |
| #endif |
| } |
| |
| t->regs->msr |= msr; |
| vcpu->arch.guest_owned_ext |= msr; |
| kvmppc_recalc_shadow_msr(vcpu); |
| |
| return RESUME_GUEST; |
| } |
| |
| /* |
| * Kernel code using FP or VMX could have flushed guest state to |
| * the thread_struct; if so, get it back now. |
| */ |
| static void kvmppc_handle_lost_ext(struct kvm_vcpu *vcpu) |
| { |
| unsigned long lost_ext; |
| |
| lost_ext = vcpu->arch.guest_owned_ext & ~current->thread.regs->msr; |
| if (!lost_ext) |
| return; |
| |
| if (lost_ext & MSR_FP) { |
| preempt_disable(); |
| enable_kernel_fp(); |
| load_fp_state(&vcpu->arch.fp); |
| disable_kernel_fp(); |
| preempt_enable(); |
| } |
| #ifdef CONFIG_ALTIVEC |
| if (lost_ext & MSR_VEC) { |
| preempt_disable(); |
| enable_kernel_altivec(); |
| load_vr_state(&vcpu->arch.vr); |
| disable_kernel_altivec(); |
| preempt_enable(); |
| } |
| #endif |
| current->thread.regs->msr |= lost_ext; |
| } |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| |
| void kvmppc_trigger_fac_interrupt(struct kvm_vcpu *vcpu, ulong fac) |
| { |
| /* Inject the Interrupt Cause field and trigger a guest interrupt */ |
| vcpu->arch.fscr &= ~(0xffULL << 56); |
| vcpu->arch.fscr |= (fac << 56); |
| kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FAC_UNAVAIL); |
| } |
| |
| static void kvmppc_emulate_fac(struct kvm_vcpu *vcpu, ulong fac) |
| { |
| enum emulation_result er = EMULATE_FAIL; |
| |
| if (!(kvmppc_get_msr(vcpu) & MSR_PR)) |
| er = kvmppc_emulate_instruction(vcpu->run, vcpu); |
| |
| if ((er != EMULATE_DONE) && (er != EMULATE_AGAIN)) { |
| /* Couldn't emulate, trigger interrupt in guest */ |
| kvmppc_trigger_fac_interrupt(vcpu, fac); |
| } |
| } |
| |
| /* Enable facilities (TAR, EBB, DSCR) for the guest */ |
| static int kvmppc_handle_fac(struct kvm_vcpu *vcpu, ulong fac) |
| { |
| bool guest_fac_enabled; |
| BUG_ON(!cpu_has_feature(CPU_FTR_ARCH_207S)); |
| |
| /* |
| * Not every facility is enabled by FSCR bits, check whether the |
| * guest has this facility enabled at all. |
| */ |
| switch (fac) { |
| case FSCR_TAR_LG: |
| case FSCR_EBB_LG: |
| guest_fac_enabled = (vcpu->arch.fscr & (1ULL << fac)); |
| break; |
| case FSCR_TM_LG: |
| guest_fac_enabled = kvmppc_get_msr(vcpu) & MSR_TM; |
| break; |
| default: |
| guest_fac_enabled = false; |
| break; |
| } |
| |
| if (!guest_fac_enabled) { |
| /* Facility not enabled by the guest */ |
| kvmppc_trigger_fac_interrupt(vcpu, fac); |
| return RESUME_GUEST; |
| } |
| |
| switch (fac) { |
| case FSCR_TAR_LG: |
| /* TAR switching isn't lazy in Linux yet */ |
| current->thread.tar = mfspr(SPRN_TAR); |
| mtspr(SPRN_TAR, vcpu->arch.tar); |
| vcpu->arch.shadow_fscr |= FSCR_TAR; |
| break; |
| default: |
| kvmppc_emulate_fac(vcpu, fac); |
| break; |
| } |
| |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| /* Since we disabled MSR_TM at privilege state, the mfspr instruction |
| * for TM spr can trigger TM fac unavailable. In this case, the |
| * emulation is handled by kvmppc_emulate_fac(), which invokes |
| * kvmppc_emulate_mfspr() finally. But note the mfspr can include |
| * RT for NV registers. So it need to restore those NV reg to reflect |
| * the update. |
| */ |
| if ((fac == FSCR_TM_LG) && !(kvmppc_get_msr(vcpu) & MSR_PR)) |
| return RESUME_GUEST_NV; |
| #endif |
| |
| return RESUME_GUEST; |
| } |
| |
| void kvmppc_set_fscr(struct kvm_vcpu *vcpu, u64 fscr) |
| { |
| if ((vcpu->arch.fscr & FSCR_TAR) && !(fscr & FSCR_TAR)) { |
| /* TAR got dropped, drop it in shadow too */ |
| kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); |
| } else if (!(vcpu->arch.fscr & FSCR_TAR) && (fscr & FSCR_TAR)) { |
| vcpu->arch.fscr = fscr; |
| kvmppc_handle_fac(vcpu, FSCR_TAR_LG); |
| return; |
| } |
| |
| vcpu->arch.fscr = fscr; |
| } |
| #endif |
| |
| static void kvmppc_setup_debug(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| u64 msr = kvmppc_get_msr(vcpu); |
| |
| kvmppc_set_msr(vcpu, msr | MSR_SE); |
| } |
| } |
| |
| static void kvmppc_clear_debug(struct kvm_vcpu *vcpu) |
| { |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| u64 msr = kvmppc_get_msr(vcpu); |
| |
| kvmppc_set_msr(vcpu, msr & ~MSR_SE); |
| } |
| } |
| |
| static int kvmppc_exit_pr_progint(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| unsigned int exit_nr) |
| { |
| enum emulation_result er; |
| ulong flags; |
| u32 last_inst; |
| int emul, r; |
| |
| /* |
| * shadow_srr1 only contains valid flags if we came here via a program |
| * exception. The other exceptions (emulation assist, FP unavailable, |
| * etc.) do not provide flags in SRR1, so use an illegal-instruction |
| * exception when injecting a program interrupt into the guest. |
| */ |
| if (exit_nr == BOOK3S_INTERRUPT_PROGRAM) |
| flags = vcpu->arch.shadow_srr1 & 0x1f0000ull; |
| else |
| flags = SRR1_PROGILL; |
| |
| emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); |
| if (emul != EMULATE_DONE) |
| return RESUME_GUEST; |
| |
| if (kvmppc_get_msr(vcpu) & MSR_PR) { |
| #ifdef EXIT_DEBUG |
| pr_info("Userspace triggered 0x700 exception at\n 0x%lx (0x%x)\n", |
| kvmppc_get_pc(vcpu), last_inst); |
| #endif |
| if ((last_inst & 0xff0007ff) != (INS_DCBZ & 0xfffffff7)) { |
| kvmppc_core_queue_program(vcpu, flags); |
| return RESUME_GUEST; |
| } |
| } |
| |
| vcpu->stat.emulated_inst_exits++; |
| er = kvmppc_emulate_instruction(run, vcpu); |
| switch (er) { |
| case EMULATE_DONE: |
| r = RESUME_GUEST_NV; |
| break; |
| case EMULATE_AGAIN: |
| r = RESUME_GUEST; |
| break; |
| case EMULATE_FAIL: |
| pr_crit("%s: emulation at %lx failed (%08x)\n", |
| __func__, kvmppc_get_pc(vcpu), last_inst); |
| kvmppc_core_queue_program(vcpu, flags); |
| r = RESUME_GUEST; |
| break; |
| case EMULATE_DO_MMIO: |
| run->exit_reason = KVM_EXIT_MMIO; |
| r = RESUME_HOST_NV; |
| break; |
| case EMULATE_EXIT_USER: |
| r = RESUME_HOST_NV; |
| break; |
| default: |
| BUG(); |
| } |
| |
| return r; |
| } |
| |
| int kvmppc_handle_exit_pr(struct kvm_run *run, struct kvm_vcpu *vcpu, |
| unsigned int exit_nr) |
| { |
| int r = RESUME_HOST; |
| int s; |
| |
| vcpu->stat.sum_exits++; |
| |
| run->exit_reason = KVM_EXIT_UNKNOWN; |
| run->ready_for_interrupt_injection = 1; |
| |
| /* We get here with MSR.EE=1 */ |
| |
| trace_kvm_exit(exit_nr, vcpu); |
| guest_exit(); |
| |
| switch (exit_nr) { |
| case BOOK3S_INTERRUPT_INST_STORAGE: |
| { |
| ulong shadow_srr1 = vcpu->arch.shadow_srr1; |
| vcpu->stat.pf_instruc++; |
| |
| if (kvmppc_is_split_real(vcpu)) |
| kvmppc_fixup_split_real(vcpu); |
| |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| /* We set segments as unused segments when invalidating them. So |
| * treat the respective fault as segment fault. */ |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu; |
| u32 sr; |
| |
| svcpu = svcpu_get(vcpu); |
| sr = svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT]; |
| svcpu_put(svcpu); |
| if (sr == SR_INVALID) { |
| kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)); |
| r = RESUME_GUEST; |
| break; |
| } |
| } |
| #endif |
| |
| /* only care about PTEG not found errors, but leave NX alone */ |
| if (shadow_srr1 & 0x40000000) { |
| int idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| vcpu->stat.sp_instruc++; |
| } else if (vcpu->arch.mmu.is_dcbz32(vcpu) && |
| (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) { |
| /* |
| * XXX If we do the dcbz hack we use the NX bit to flush&patch the page, |
| * so we can't use the NX bit inside the guest. Let's cross our fingers, |
| * that no guest that needs the dcbz hack does NX. |
| */ |
| kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL); |
| r = RESUME_GUEST; |
| } else { |
| kvmppc_core_queue_inst_storage(vcpu, |
| shadow_srr1 & 0x58000000); |
| r = RESUME_GUEST; |
| } |
| break; |
| } |
| case BOOK3S_INTERRUPT_DATA_STORAGE: |
| { |
| ulong dar = kvmppc_get_fault_dar(vcpu); |
| u32 fault_dsisr = vcpu->arch.fault_dsisr; |
| vcpu->stat.pf_storage++; |
| |
| #ifdef CONFIG_PPC_BOOK3S_32 |
| /* We set segments as unused segments when invalidating them. So |
| * treat the respective fault as segment fault. */ |
| { |
| struct kvmppc_book3s_shadow_vcpu *svcpu; |
| u32 sr; |
| |
| svcpu = svcpu_get(vcpu); |
| sr = svcpu->sr[dar >> SID_SHIFT]; |
| svcpu_put(svcpu); |
| if (sr == SR_INVALID) { |
| kvmppc_mmu_map_segment(vcpu, dar); |
| r = RESUME_GUEST; |
| break; |
| } |
| } |
| #endif |
| |
| /* |
| * We need to handle missing shadow PTEs, and |
| * protection faults due to us mapping a page read-only |
| * when the guest thinks it is writable. |
| */ |
| if (fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT)) { |
| int idx = srcu_read_lock(&vcpu->kvm->srcu); |
| r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr); |
| srcu_read_unlock(&vcpu->kvm->srcu, idx); |
| } else { |
| kvmppc_core_queue_data_storage(vcpu, dar, fault_dsisr); |
| r = RESUME_GUEST; |
| } |
| break; |
| } |
| case BOOK3S_INTERRUPT_DATA_SEGMENT: |
| if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) { |
| kvmppc_set_dar(vcpu, kvmppc_get_fault_dar(vcpu)); |
| kvmppc_book3s_queue_irqprio(vcpu, |
| BOOK3S_INTERRUPT_DATA_SEGMENT); |
| } |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_INST_SEGMENT: |
| if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) { |
| kvmppc_book3s_queue_irqprio(vcpu, |
| BOOK3S_INTERRUPT_INST_SEGMENT); |
| } |
| r = RESUME_GUEST; |
| break; |
| /* We're good on these - the host merely wanted to get our attention */ |
| case BOOK3S_INTERRUPT_DECREMENTER: |
| case BOOK3S_INTERRUPT_HV_DECREMENTER: |
| case BOOK3S_INTERRUPT_DOORBELL: |
| case BOOK3S_INTERRUPT_H_DOORBELL: |
| vcpu->stat.dec_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_EXTERNAL: |
| case BOOK3S_INTERRUPT_EXTERNAL_HV: |
| case BOOK3S_INTERRUPT_H_VIRT: |
| vcpu->stat.ext_intr_exits++; |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_HMI: |
| case BOOK3S_INTERRUPT_PERFMON: |
| case BOOK3S_INTERRUPT_SYSTEM_RESET: |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_PROGRAM: |
| case BOOK3S_INTERRUPT_H_EMUL_ASSIST: |
| r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); |
| break; |
| case BOOK3S_INTERRUPT_SYSCALL: |
| { |
| u32 last_sc; |
| int emul; |
| |
| /* Get last sc for papr */ |
| if (vcpu->arch.papr_enabled) { |
| /* The sc instuction points SRR0 to the next inst */ |
| emul = kvmppc_get_last_inst(vcpu, INST_SC, &last_sc); |
| if (emul != EMULATE_DONE) { |
| kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) - 4); |
| r = RESUME_GUEST; |
| break; |
| } |
| } |
| |
| if (vcpu->arch.papr_enabled && |
| (last_sc == 0x44000022) && |
| !(kvmppc_get_msr(vcpu) & MSR_PR)) { |
| /* SC 1 papr hypercalls */ |
| ulong cmd = kvmppc_get_gpr(vcpu, 3); |
| int i; |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) { |
| r = RESUME_GUEST; |
| break; |
| } |
| #endif |
| |
| run->papr_hcall.nr = cmd; |
| for (i = 0; i < 9; ++i) { |
| ulong gpr = kvmppc_get_gpr(vcpu, 4 + i); |
| run->papr_hcall.args[i] = gpr; |
| } |
| run->exit_reason = KVM_EXIT_PAPR_HCALL; |
| vcpu->arch.hcall_needed = 1; |
| r = RESUME_HOST; |
| } else if (vcpu->arch.osi_enabled && |
| (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) && |
| (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) { |
| /* MOL hypercalls */ |
| u64 *gprs = run->osi.gprs; |
| int i; |
| |
| run->exit_reason = KVM_EXIT_OSI; |
| for (i = 0; i < 32; i++) |
| gprs[i] = kvmppc_get_gpr(vcpu, i); |
| vcpu->arch.osi_needed = 1; |
| r = RESUME_HOST_NV; |
| } else if (!(kvmppc_get_msr(vcpu) & MSR_PR) && |
| (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) { |
| /* KVM PV hypercalls */ |
| kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu)); |
| r = RESUME_GUEST; |
| } else { |
| /* Guest syscalls */ |
| vcpu->stat.syscall_exits++; |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| r = RESUME_GUEST; |
| } |
| break; |
| } |
| case BOOK3S_INTERRUPT_FP_UNAVAIL: |
| case BOOK3S_INTERRUPT_ALTIVEC: |
| case BOOK3S_INTERRUPT_VSX: |
| { |
| int ext_msr = 0; |
| int emul; |
| u32 last_inst; |
| |
| if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE) { |
| /* Do paired single instruction emulation */ |
| emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, |
| &last_inst); |
| if (emul == EMULATE_DONE) |
| r = kvmppc_exit_pr_progint(run, vcpu, exit_nr); |
| else |
| r = RESUME_GUEST; |
| |
| break; |
| } |
| |
| /* Enable external provider */ |
| switch (exit_nr) { |
| case BOOK3S_INTERRUPT_FP_UNAVAIL: |
| ext_msr = MSR_FP; |
| break; |
| |
| case BOOK3S_INTERRUPT_ALTIVEC: |
| ext_msr = MSR_VEC; |
| break; |
| |
| case BOOK3S_INTERRUPT_VSX: |
| ext_msr = MSR_VSX; |
| break; |
| } |
| |
| r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr); |
| break; |
| } |
| case BOOK3S_INTERRUPT_ALIGNMENT: |
| { |
| u32 last_inst; |
| int emul = kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst); |
| |
| if (emul == EMULATE_DONE) { |
| u32 dsisr; |
| u64 dar; |
| |
| dsisr = kvmppc_alignment_dsisr(vcpu, last_inst); |
| dar = kvmppc_alignment_dar(vcpu, last_inst); |
| |
| kvmppc_set_dsisr(vcpu, dsisr); |
| kvmppc_set_dar(vcpu, dar); |
| |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| } |
| r = RESUME_GUEST; |
| break; |
| } |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| case BOOK3S_INTERRUPT_FAC_UNAVAIL: |
| r = kvmppc_handle_fac(vcpu, vcpu->arch.shadow_fscr >> 56); |
| break; |
| #endif |
| case BOOK3S_INTERRUPT_MACHINE_CHECK: |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| r = RESUME_GUEST; |
| break; |
| case BOOK3S_INTERRUPT_TRACE: |
| if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
| run->exit_reason = KVM_EXIT_DEBUG; |
| r = RESUME_HOST; |
| } else { |
| kvmppc_book3s_queue_irqprio(vcpu, exit_nr); |
| r = RESUME_GUEST; |
| } |
| break; |
| default: |
| { |
| ulong shadow_srr1 = vcpu->arch.shadow_srr1; |
| /* Ugh - bork here! What did we get? */ |
| printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n", |
| exit_nr, kvmppc_get_pc(vcpu), shadow_srr1); |
| r = RESUME_HOST; |
| BUG(); |
| break; |
| } |
| } |
| |
| if (!(r & RESUME_HOST)) { |
| /* To avoid clobbering exit_reason, only check for signals if |
| * we aren't already exiting to userspace for some other |
| * reason. */ |
| |
| /* |
| * Interrupts could be timers for the guest which we have to |
| * inject again, so let's postpone them until we're in the guest |
| * and if we really did time things so badly, then we just exit |
| * again due to a host external interrupt. |
| */ |
| s = kvmppc_prepare_to_enter(vcpu); |
| if (s <= 0) |
| r = s; |
| else { |
| /* interrupts now hard-disabled */ |
| kvmppc_fix_ee_before_entry(); |
| } |
| |
| kvmppc_handle_lost_ext(vcpu); |
| } |
| |
| trace_kvm_book3s_reenter(r, vcpu); |
| |
| return r; |
| } |
| |
| static int kvm_arch_vcpu_ioctl_get_sregs_pr(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
| int i; |
| |
| sregs->pvr = vcpu->arch.pvr; |
| |
| sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1; |
| if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { |
| for (i = 0; i < 64; i++) { |
| sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i; |
| sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv; |
| } |
| } else { |
| for (i = 0; i < 16; i++) |
| sregs->u.s.ppc32.sr[i] = kvmppc_get_sr(vcpu, i); |
| |
| for (i = 0; i < 8; i++) { |
| sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw; |
| sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_arch_vcpu_ioctl_set_sregs_pr(struct kvm_vcpu *vcpu, |
| struct kvm_sregs *sregs) |
| { |
| struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu); |
| int i; |
| |
| kvmppc_set_pvr_pr(vcpu, sregs->pvr); |
| |
| vcpu3s->sdr1 = sregs->u.s.sdr1; |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) { |
| /* Flush all SLB entries */ |
| vcpu->arch.mmu.slbmte(vcpu, 0, 0); |
| vcpu->arch.mmu.slbia(vcpu); |
| |
| for (i = 0; i < 64; i++) { |
| u64 rb = sregs->u.s.ppc64.slb[i].slbe; |
| u64 rs = sregs->u.s.ppc64.slb[i].slbv; |
| |
| if (rb & SLB_ESID_V) |
| vcpu->arch.mmu.slbmte(vcpu, rs, rb); |
| } |
| } else |
| #endif |
| { |
| for (i = 0; i < 16; i++) { |
| vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]); |
| } |
| for (i = 0; i < 8; i++) { |
| kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false, |
| (u32)sregs->u.s.ppc32.ibat[i]); |
| kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true, |
| (u32)(sregs->u.s.ppc32.ibat[i] >> 32)); |
| kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false, |
| (u32)sregs->u.s.ppc32.dbat[i]); |
| kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true, |
| (u32)(sregs->u.s.ppc32.dbat[i] >> 32)); |
| } |
| } |
| |
| /* Flush the MMU after messing with the segments */ |
| kvmppc_mmu_pte_flush(vcpu, 0, 0); |
| |
| return 0; |
| } |
| |
| static int kvmppc_get_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, |
| union kvmppc_one_reg *val) |
| { |
| int r = 0; |
| |
| switch (id) { |
| case KVM_REG_PPC_DEBUG_INST: |
| *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT); |
| break; |
| case KVM_REG_PPC_HIOR: |
| *val = get_reg_val(id, to_book3s(vcpu)->hior); |
| break; |
| case KVM_REG_PPC_VTB: |
| *val = get_reg_val(id, to_book3s(vcpu)->vtb); |
| break; |
| case KVM_REG_PPC_LPCR: |
| case KVM_REG_PPC_LPCR_64: |
| /* |
| * We are only interested in the LPCR_ILE bit |
| */ |
| if (vcpu->arch.intr_msr & MSR_LE) |
| *val = get_reg_val(id, LPCR_ILE); |
| else |
| *val = get_reg_val(id, 0); |
| break; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| case KVM_REG_PPC_TFHAR: |
| *val = get_reg_val(id, vcpu->arch.tfhar); |
| break; |
| case KVM_REG_PPC_TFIAR: |
| *val = get_reg_val(id, vcpu->arch.tfiar); |
| break; |
| case KVM_REG_PPC_TEXASR: |
| *val = get_reg_val(id, vcpu->arch.texasr); |
| break; |
| case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: |
| *val = get_reg_val(id, |
| vcpu->arch.gpr_tm[id-KVM_REG_PPC_TM_GPR0]); |
| break; |
| case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: |
| { |
| int i, j; |
| |
| i = id - KVM_REG_PPC_TM_VSR0; |
| if (i < 32) |
| for (j = 0; j < TS_FPRWIDTH; j++) |
| val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j]; |
| else { |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| val->vval = vcpu->arch.vr_tm.vr[i-32]; |
| else |
| r = -ENXIO; |
| } |
| break; |
| } |
| case KVM_REG_PPC_TM_CR: |
| *val = get_reg_val(id, vcpu->arch.cr_tm); |
| break; |
| case KVM_REG_PPC_TM_XER: |
| *val = get_reg_val(id, vcpu->arch.xer_tm); |
| break; |
| case KVM_REG_PPC_TM_LR: |
| *val = get_reg_val(id, vcpu->arch.lr_tm); |
| break; |
| case KVM_REG_PPC_TM_CTR: |
| *val = get_reg_val(id, vcpu->arch.ctr_tm); |
| break; |
| case KVM_REG_PPC_TM_FPSCR: |
| *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr); |
| break; |
| case KVM_REG_PPC_TM_AMR: |
| *val = get_reg_val(id, vcpu->arch.amr_tm); |
| break; |
| case KVM_REG_PPC_TM_PPR: |
| *val = get_reg_val(id, vcpu->arch.ppr_tm); |
| break; |
| case KVM_REG_PPC_TM_VRSAVE: |
| *val = get_reg_val(id, vcpu->arch.vrsave_tm); |
| break; |
| case KVM_REG_PPC_TM_VSCR: |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]); |
| else |
| r = -ENXIO; |
| break; |
| case KVM_REG_PPC_TM_DSCR: |
| *val = get_reg_val(id, vcpu->arch.dscr_tm); |
| break; |
| case KVM_REG_PPC_TM_TAR: |
| *val = get_reg_val(id, vcpu->arch.tar_tm); |
| break; |
| #endif |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static void kvmppc_set_lpcr_pr(struct kvm_vcpu *vcpu, u64 new_lpcr) |
| { |
| if (new_lpcr & LPCR_ILE) |
| vcpu->arch.intr_msr |= MSR_LE; |
| else |
| vcpu->arch.intr_msr &= ~MSR_LE; |
| } |
| |
| static int kvmppc_set_one_reg_pr(struct kvm_vcpu *vcpu, u64 id, |
| union kvmppc_one_reg *val) |
| { |
| int r = 0; |
| |
| switch (id) { |
| case KVM_REG_PPC_HIOR: |
| to_book3s(vcpu)->hior = set_reg_val(id, *val); |
| to_book3s(vcpu)->hior_explicit = true; |
| break; |
| case KVM_REG_PPC_VTB: |
| to_book3s(vcpu)->vtb = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_LPCR: |
| case KVM_REG_PPC_LPCR_64: |
| kvmppc_set_lpcr_pr(vcpu, set_reg_val(id, *val)); |
| break; |
| #ifdef CONFIG_PPC_TRANSACTIONAL_MEM |
| case KVM_REG_PPC_TFHAR: |
| vcpu->arch.tfhar = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TFIAR: |
| vcpu->arch.tfiar = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TEXASR: |
| vcpu->arch.texasr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31: |
| vcpu->arch.gpr_tm[id - KVM_REG_PPC_TM_GPR0] = |
| set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63: |
| { |
| int i, j; |
| |
| i = id - KVM_REG_PPC_TM_VSR0; |
| if (i < 32) |
| for (j = 0; j < TS_FPRWIDTH; j++) |
| vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j]; |
| else |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| vcpu->arch.vr_tm.vr[i-32] = val->vval; |
| else |
| r = -ENXIO; |
| break; |
| } |
| case KVM_REG_PPC_TM_CR: |
| vcpu->arch.cr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_XER: |
| vcpu->arch.xer_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_LR: |
| vcpu->arch.lr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_CTR: |
| vcpu->arch.ctr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_FPSCR: |
| vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_AMR: |
| vcpu->arch.amr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_PPR: |
| vcpu->arch.ppr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_VRSAVE: |
| vcpu->arch.vrsave_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_VSCR: |
| if (cpu_has_feature(CPU_FTR_ALTIVEC)) |
| vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val); |
| else |
| r = -ENXIO; |
| break; |
| case KVM_REG_PPC_TM_DSCR: |
| vcpu->arch.dscr_tm = set_reg_val(id, *val); |
| break; |
| case KVM_REG_PPC_TM_TAR: |
| vcpu->arch.tar_tm = set_reg_val(id, *val); |
| break; |
| #endif |
| default: |
| r = -EINVAL; |
| break; |
| } |
| |
| return r; |
| } |
| |
| static struct kvm_vcpu *kvmppc_core_vcpu_create_pr(struct kvm *kvm, |
| unsigned int id) |
| { |
| struct kvmppc_vcpu_book3s *vcpu_book3s; |
| struct kvm_vcpu *vcpu; |
| int err = -ENOMEM; |
| unsigned long p; |
| |
| vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); |
| if (!vcpu) |
| goto out; |
| |
| vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s)); |
| if (!vcpu_book3s) |
| goto free_vcpu; |
| vcpu->arch.book3s = vcpu_book3s; |
| |
| #ifdef CONFIG_KVM_BOOK3S_32_HANDLER |
| vcpu->arch.shadow_vcpu = |
| kzalloc(sizeof(*vcpu->arch.shadow_vcpu), GFP_KERNEL); |
| if (!vcpu->arch.shadow_vcpu) |
| goto free_vcpu3s; |
| #endif |
| |
| err = kvm_vcpu_init(vcpu, kvm, id); |
| if (err) |
| goto free_shadow_vcpu; |
| |
| err = -ENOMEM; |
| p = __get_free_page(GFP_KERNEL|__GFP_ZERO); |
| if (!p) |
| goto uninit_vcpu; |
| vcpu->arch.shared = (void *)p; |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| /* Always start the shared struct in native endian mode */ |
| #ifdef __BIG_ENDIAN__ |
| vcpu->arch.shared_big_endian = true; |
| #else |
| vcpu->arch.shared_big_endian = false; |
| #endif |
| |
| /* |
| * Default to the same as the host if we're on sufficiently |
| * recent machine that we have 1TB segments; |
| * otherwise default to PPC970FX. |
| */ |
| vcpu->arch.pvr = 0x3C0301; |
| if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) |
| vcpu->arch.pvr = mfspr(SPRN_PVR); |
| vcpu->arch.intr_msr = MSR_SF; |
| #else |
| /* default to book3s_32 (750) */ |
| vcpu->arch.pvr = 0x84202; |
| #endif |
| kvmppc_set_pvr_pr(vcpu, vcpu->arch.pvr); |
| vcpu->arch.slb_nr = 64; |
| |
| vcpu->arch.shadow_msr = MSR_USER64 & ~MSR_LE; |
| |
| err = kvmppc_mmu_init(vcpu); |
| if (err < 0) |
| goto uninit_vcpu; |
| |
| return vcpu; |
| |
| uninit_vcpu: |
| kvm_vcpu_uninit(vcpu); |
| free_shadow_vcpu: |
| #ifdef CONFIG_KVM_BOOK3S_32_HANDLER |
| kfree(vcpu->arch.shadow_vcpu); |
| free_vcpu3s: |
| #endif |
| vfree(vcpu_book3s); |
| free_vcpu: |
| kmem_cache_free(kvm_vcpu_cache, vcpu); |
| out: |
| return ERR_PTR(err); |
| } |
| |
| static void kvmppc_core_vcpu_free_pr(struct kvm_vcpu *vcpu) |
| { |
| struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu); |
| |
| free_page((unsigned long)vcpu->arch.shared & PAGE_MASK); |
| kvm_vcpu_uninit(vcpu); |
| #ifdef CONFIG_KVM_BOOK3S_32_HANDLER |
| kfree(vcpu->arch.shadow_vcpu); |
| #endif |
| vfree(vcpu_book3s); |
| kmem_cache_free(kvm_vcpu_cache, vcpu); |
| } |
| |
| static int kvmppc_vcpu_run_pr(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) |
| { |
| int ret; |
| #ifdef CONFIG_ALTIVEC |
| unsigned long uninitialized_var(vrsave); |
| #endif |
| |
| /* Check if we can run the vcpu at all */ |
| if (!vcpu->arch.sane) { |
| kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| kvmppc_setup_debug(vcpu); |
| |
| /* |
| * Interrupts could be timers for the guest which we have to inject |
| * again, so let's postpone them until we're in the guest and if we |
| * really did time things so badly, then we just exit again due to |
| * a host external interrupt. |
| */ |
| ret = kvmppc_prepare_to_enter(vcpu); |
| if (ret <= 0) |
| goto out; |
| /* interrupts now hard-disabled */ |
| |
| /* Save FPU, Altivec and VSX state */ |
| giveup_all(current); |
| |
| /* Preload FPU if it's enabled */ |
| if (kvmppc_get_msr(vcpu) & MSR_FP) |
| kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP); |
| |
| kvmppc_fix_ee_before_entry(); |
| |
| ret = __kvmppc_vcpu_run(kvm_run, vcpu); |
| |
| kvmppc_clear_debug(vcpu); |
| |
| /* No need for guest_exit. It's done in handle_exit. |
| We also get here with interrupts enabled. */ |
| |
| /* Make sure we save the guest FPU/Altivec/VSX state */ |
| kvmppc_giveup_ext(vcpu, MSR_FP | MSR_VEC | MSR_VSX); |
| |
| /* Make sure we save the guest TAR/EBB/DSCR state */ |
| kvmppc_giveup_fac(vcpu, FSCR_TAR_LG); |
| |
| out: |
| vcpu->mode = OUTSIDE_GUEST_MODE; |
| return ret; |
| } |
| |
| /* |
| * Get (and clear) the dirty memory log for a memory slot. |
| */ |
| static int kvm_vm_ioctl_get_dirty_log_pr(struct kvm *kvm, |
| struct kvm_dirty_log *log) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| struct kvm_vcpu *vcpu; |
| ulong ga, ga_end; |
| int is_dirty = 0; |
| int r; |
| unsigned long n; |
| |
| mutex_lock(&kvm->slots_lock); |
| |
| r = kvm_get_dirty_log(kvm, log, &is_dirty); |
| if (r) |
| goto out; |
| |
| /* If nothing is dirty, don't bother messing with page tables. */ |
| if (is_dirty) { |
| slots = kvm_memslots(kvm); |
| memslot = id_to_memslot(slots, log->slot); |
| |
| ga = memslot->base_gfn << PAGE_SHIFT; |
| ga_end = ga + (memslot->npages << PAGE_SHIFT); |
| |
| kvm_for_each_vcpu(n, vcpu, kvm) |
| kvmppc_mmu_pte_pflush(vcpu, ga, ga_end); |
| |
| n = kvm_dirty_bitmap_bytes(memslot); |
| memset(memslot->dirty_bitmap, 0, n); |
| } |
| |
| r = 0; |
| out: |
| mutex_unlock(&kvm->slots_lock); |
| return r; |
| } |
| |
| static void kvmppc_core_flush_memslot_pr(struct kvm *kvm, |
| struct kvm_memory_slot *memslot) |
| { |
| return; |
| } |
| |
| static int kvmppc_core_prepare_memory_region_pr(struct kvm *kvm, |
| struct kvm_memory_slot *memslot, |
| const struct kvm_userspace_memory_region *mem) |
| { |
| return 0; |
| } |
| |
| static void kvmppc_core_commit_memory_region_pr(struct kvm *kvm, |
| const struct kvm_userspace_memory_region *mem, |
| const struct kvm_memory_slot *old, |
| const struct kvm_memory_slot *new, |
| enum kvm_mr_change change) |
| { |
| return; |
| } |
| |
| static void kvmppc_core_free_memslot_pr(struct kvm_memory_slot *free, |
| struct kvm_memory_slot *dont) |
| { |
| return; |
| } |
| |
| static int kvmppc_core_create_memslot_pr(struct kvm_memory_slot *slot, |
| unsigned long npages) |
| { |
| return 0; |
| } |
| |
| |
| #ifdef CONFIG_PPC64 |
| static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, |
| struct kvm_ppc_smmu_info *info) |
| { |
| long int i; |
| struct kvm_vcpu *vcpu; |
| |
| info->flags = 0; |
| |
| /* SLB is always 64 entries */ |
| info->slb_size = 64; |
| |
| /* Standard 4k base page size segment */ |
| info->sps[0].page_shift = 12; |
| info->sps[0].slb_enc = 0; |
| info->sps[0].enc[0].page_shift = 12; |
| info->sps[0].enc[0].pte_enc = 0; |
| |
| /* |
| * 64k large page size. |
| * We only want to put this in if the CPUs we're emulating |
| * support it, but unfortunately we don't have a vcpu easily |
| * to hand here to test. Just pick the first vcpu, and if |
| * that doesn't exist yet, report the minimum capability, |
| * i.e., no 64k pages. |
| * 1T segment support goes along with 64k pages. |
| */ |
| i = 1; |
| vcpu = kvm_get_vcpu(kvm, 0); |
| if (vcpu && (vcpu->arch.hflags & BOOK3S_HFLAG_MULTI_PGSIZE)) { |
| info->flags = KVM_PPC_1T_SEGMENTS; |
| info->sps[i].page_shift = 16; |
| info->sps[i].slb_enc = SLB_VSID_L | SLB_VSID_LP_01; |
| info->sps[i].enc[0].page_shift = 16; |
| info->sps[i].enc[0].pte_enc = 1; |
| ++i; |
| } |
| |
| /* Standard 16M large page size segment */ |
| info->sps[i].page_shift = 24; |
| info->sps[i].slb_enc = SLB_VSID_L; |
| info->sps[i].enc[0].page_shift = 24; |
| info->sps[i].enc[0].pte_enc = 0; |
| |
| return 0; |
| } |
| |
| static int kvm_configure_mmu_pr(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg) |
| { |
| if (!cpu_has_feature(CPU_FTR_ARCH_300)) |
| return -ENODEV; |
| /* Require flags and process table base and size to all be zero. */ |
| if (cfg->flags || cfg->process_table) |
| return -EINVAL; |
| return 0; |
| } |
| |
| #else |
| static int kvm_vm_ioctl_get_smmu_info_pr(struct kvm *kvm, |
| struct kvm_ppc_smmu_info *info) |
| { |
| /* We should not get called */ |
| BUG(); |
| } |
| #endif /* CONFIG_PPC64 */ |
| |
| static unsigned int kvm_global_user_count = 0; |
| static DEFINE_SPINLOCK(kvm_global_user_count_lock); |
| |
| static int kvmppc_core_init_vm_pr(struct kvm *kvm) |
| { |
| mutex_init(&kvm->arch.hpt_mutex); |
| |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| /* Start out with the default set of hcalls enabled */ |
| kvmppc_pr_init_default_hcalls(kvm); |
| #endif |
| |
| if (firmware_has_feature(FW_FEATURE_SET_MODE)) { |
| spin_lock(&kvm_global_user_count_lock); |
| if (++kvm_global_user_count == 1) |
| pseries_disable_reloc_on_exc(); |
| spin_unlock(&kvm_global_user_count_lock); |
| } |
| return 0; |
| } |
| |
| static void kvmppc_core_destroy_vm_pr(struct kvm *kvm) |
| { |
| #ifdef CONFIG_PPC64 |
| WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables)); |
| #endif |
| |
| if (firmware_has_feature(FW_FEATURE_SET_MODE)) { |
| spin_lock(&kvm_global_user_count_lock); |
| BUG_ON(kvm_global_user_count == 0); |
| if (--kvm_global_user_count == 0) |
| pseries_enable_reloc_on_exc(); |
| spin_unlock(&kvm_global_user_count_lock); |
| } |
| } |
| |
| static int kvmppc_core_check_processor_compat_pr(void) |
| { |
| /* |
| * PR KVM can work on POWER9 inside a guest partition |
| * running in HPT mode. It can't work if we are using |
| * radix translation (because radix provides no way for |
| * a process to have unique translations in quadrant 3). |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled()) |
| return -EIO; |
| return 0; |
| } |
| |
| static long kvm_arch_vm_ioctl_pr(struct file *filp, |
| unsigned int ioctl, unsigned long arg) |
| { |
| return -ENOTTY; |
| } |
| |
| static struct kvmppc_ops kvm_ops_pr = { |
| .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_pr, |
| .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_pr, |
| .get_one_reg = kvmppc_get_one_reg_pr, |
| .set_one_reg = kvmppc_set_one_reg_pr, |
| .vcpu_load = kvmppc_core_vcpu_load_pr, |
| .vcpu_put = kvmppc_core_vcpu_put_pr, |
| .set_msr = kvmppc_set_msr_pr, |
| .vcpu_run = kvmppc_vcpu_run_pr, |
| .vcpu_create = kvmppc_core_vcpu_create_pr, |
| .vcpu_free = kvmppc_core_vcpu_free_pr, |
| .check_requests = kvmppc_core_check_requests_pr, |
| .get_dirty_log = kvm_vm_ioctl_get_dirty_log_pr, |
| .flush_memslot = kvmppc_core_flush_memslot_pr, |
| .prepare_memory_region = kvmppc_core_prepare_memory_region_pr, |
| .commit_memory_region = kvmppc_core_commit_memory_region_pr, |
| .unmap_hva_range = kvm_unmap_hva_range_pr, |
| .age_hva = kvm_age_hva_pr, |
| .test_age_hva = kvm_test_age_hva_pr, |
| .set_spte_hva = kvm_set_spte_hva_pr, |
| .mmu_destroy = kvmppc_mmu_destroy_pr, |
| .free_memslot = kvmppc_core_free_memslot_pr, |
| .create_memslot = kvmppc_core_create_memslot_pr, |
| .init_vm = kvmppc_core_init_vm_pr, |
| .destroy_vm = kvmppc_core_destroy_vm_pr, |
| .get_smmu_info = kvm_vm_ioctl_get_smmu_info_pr, |
| .emulate_op = kvmppc_core_emulate_op_pr, |
| .emulate_mtspr = kvmppc_core_emulate_mtspr_pr, |
| .emulate_mfspr = kvmppc_core_emulate_mfspr_pr, |
| .fast_vcpu_kick = kvm_vcpu_kick, |
| .arch_vm_ioctl = kvm_arch_vm_ioctl_pr, |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| .hcall_implemented = kvmppc_hcall_impl_pr, |
| .configure_mmu = kvm_configure_mmu_pr, |
| #endif |
| .giveup_ext = kvmppc_giveup_ext, |
| }; |
| |
| |
| int kvmppc_book3s_init_pr(void) |
| { |
| int r; |
| |
| r = kvmppc_core_check_processor_compat_pr(); |
| if (r < 0) |
| return r; |
| |
| kvm_ops_pr.owner = THIS_MODULE; |
| kvmppc_pr_ops = &kvm_ops_pr; |
| |
| r = kvmppc_mmu_hpte_sysinit(); |
| return r; |
| } |
| |
| void kvmppc_book3s_exit_pr(void) |
| { |
| kvmppc_pr_ops = NULL; |
| kvmppc_mmu_hpte_sysexit(); |
| } |
| |
| /* |
| * We only support separate modules for book3s 64 |
| */ |
| #ifdef CONFIG_PPC_BOOK3S_64 |
| |
| module_init(kvmppc_book3s_init_pr); |
| module_exit(kvmppc_book3s_exit_pr); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS_MISCDEV(KVM_MINOR); |
| MODULE_ALIAS("devname:kvm"); |
| #endif |