| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Driver for STM32 DMA controller |
| * |
| * Inspired by dma-jz4740.c and tegra20-apb-dma.c |
| * |
| * Copyright (C) M'boumba Cedric Madianga 2015 |
| * Author: M'boumba Cedric Madianga <cedric.madianga@gmail.com> |
| * Pierre-Yves Mordret <pierre-yves.mordret@st.com> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/dmaengine.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/jiffies.h> |
| #include <linux/list.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_dma.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/reset.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| |
| #include "virt-dma.h" |
| |
| #define STM32_DMA_LISR 0x0000 /* DMA Low Int Status Reg */ |
| #define STM32_DMA_HISR 0x0004 /* DMA High Int Status Reg */ |
| #define STM32_DMA_LIFCR 0x0008 /* DMA Low Int Flag Clear Reg */ |
| #define STM32_DMA_HIFCR 0x000c /* DMA High Int Flag Clear Reg */ |
| #define STM32_DMA_TCI BIT(5) /* Transfer Complete Interrupt */ |
| #define STM32_DMA_HTI BIT(4) /* Half Transfer Interrupt */ |
| #define STM32_DMA_TEI BIT(3) /* Transfer Error Interrupt */ |
| #define STM32_DMA_DMEI BIT(2) /* Direct Mode Error Interrupt */ |
| #define STM32_DMA_FEI BIT(0) /* FIFO Error Interrupt */ |
| #define STM32_DMA_MASKI (STM32_DMA_TCI \ |
| | STM32_DMA_TEI \ |
| | STM32_DMA_DMEI \ |
| | STM32_DMA_FEI) |
| |
| /* DMA Stream x Configuration Register */ |
| #define STM32_DMA_SCR(x) (0x0010 + 0x18 * (x)) /* x = 0..7 */ |
| #define STM32_DMA_SCR_REQ(n) ((n & 0x7) << 25) |
| #define STM32_DMA_SCR_MBURST_MASK GENMASK(24, 23) |
| #define STM32_DMA_SCR_MBURST(n) ((n & 0x3) << 23) |
| #define STM32_DMA_SCR_PBURST_MASK GENMASK(22, 21) |
| #define STM32_DMA_SCR_PBURST(n) ((n & 0x3) << 21) |
| #define STM32_DMA_SCR_PL_MASK GENMASK(17, 16) |
| #define STM32_DMA_SCR_PL(n) ((n & 0x3) << 16) |
| #define STM32_DMA_SCR_MSIZE_MASK GENMASK(14, 13) |
| #define STM32_DMA_SCR_MSIZE(n) ((n & 0x3) << 13) |
| #define STM32_DMA_SCR_PSIZE_MASK GENMASK(12, 11) |
| #define STM32_DMA_SCR_PSIZE(n) ((n & 0x3) << 11) |
| #define STM32_DMA_SCR_PSIZE_GET(n) ((n & STM32_DMA_SCR_PSIZE_MASK) >> 11) |
| #define STM32_DMA_SCR_DIR_MASK GENMASK(7, 6) |
| #define STM32_DMA_SCR_DIR(n) ((n & 0x3) << 6) |
| #define STM32_DMA_SCR_CT BIT(19) /* Target in double buffer */ |
| #define STM32_DMA_SCR_DBM BIT(18) /* Double Buffer Mode */ |
| #define STM32_DMA_SCR_PINCOS BIT(15) /* Peripheral inc offset size */ |
| #define STM32_DMA_SCR_MINC BIT(10) /* Memory increment mode */ |
| #define STM32_DMA_SCR_PINC BIT(9) /* Peripheral increment mode */ |
| #define STM32_DMA_SCR_CIRC BIT(8) /* Circular mode */ |
| #define STM32_DMA_SCR_PFCTRL BIT(5) /* Peripheral Flow Controller */ |
| #define STM32_DMA_SCR_TCIE BIT(4) /* Transfer Complete Int Enable |
| */ |
| #define STM32_DMA_SCR_TEIE BIT(2) /* Transfer Error Int Enable */ |
| #define STM32_DMA_SCR_DMEIE BIT(1) /* Direct Mode Err Int Enable */ |
| #define STM32_DMA_SCR_EN BIT(0) /* Stream Enable */ |
| #define STM32_DMA_SCR_CFG_MASK (STM32_DMA_SCR_PINC \ |
| | STM32_DMA_SCR_MINC \ |
| | STM32_DMA_SCR_PINCOS \ |
| | STM32_DMA_SCR_PL_MASK) |
| #define STM32_DMA_SCR_IRQ_MASK (STM32_DMA_SCR_TCIE \ |
| | STM32_DMA_SCR_TEIE \ |
| | STM32_DMA_SCR_DMEIE) |
| |
| /* DMA Stream x number of data register */ |
| #define STM32_DMA_SNDTR(x) (0x0014 + 0x18 * (x)) |
| |
| /* DMA stream peripheral address register */ |
| #define STM32_DMA_SPAR(x) (0x0018 + 0x18 * (x)) |
| |
| /* DMA stream x memory 0 address register */ |
| #define STM32_DMA_SM0AR(x) (0x001c + 0x18 * (x)) |
| |
| /* DMA stream x memory 1 address register */ |
| #define STM32_DMA_SM1AR(x) (0x0020 + 0x18 * (x)) |
| |
| /* DMA stream x FIFO control register */ |
| #define STM32_DMA_SFCR(x) (0x0024 + 0x18 * (x)) |
| #define STM32_DMA_SFCR_FTH_MASK GENMASK(1, 0) |
| #define STM32_DMA_SFCR_FTH(n) (n & STM32_DMA_SFCR_FTH_MASK) |
| #define STM32_DMA_SFCR_FEIE BIT(7) /* FIFO error interrupt enable */ |
| #define STM32_DMA_SFCR_DMDIS BIT(2) /* Direct mode disable */ |
| #define STM32_DMA_SFCR_MASK (STM32_DMA_SFCR_FEIE \ |
| | STM32_DMA_SFCR_DMDIS) |
| |
| /* DMA direction */ |
| #define STM32_DMA_DEV_TO_MEM 0x00 |
| #define STM32_DMA_MEM_TO_DEV 0x01 |
| #define STM32_DMA_MEM_TO_MEM 0x02 |
| |
| /* DMA priority level */ |
| #define STM32_DMA_PRIORITY_LOW 0x00 |
| #define STM32_DMA_PRIORITY_MEDIUM 0x01 |
| #define STM32_DMA_PRIORITY_HIGH 0x02 |
| #define STM32_DMA_PRIORITY_VERY_HIGH 0x03 |
| |
| /* DMA FIFO threshold selection */ |
| #define STM32_DMA_FIFO_THRESHOLD_1QUARTERFULL 0x00 |
| #define STM32_DMA_FIFO_THRESHOLD_HALFFULL 0x01 |
| #define STM32_DMA_FIFO_THRESHOLD_3QUARTERSFULL 0x02 |
| #define STM32_DMA_FIFO_THRESHOLD_FULL 0x03 |
| |
| #define STM32_DMA_MAX_DATA_ITEMS 0xffff |
| /* |
| * Valid transfer starts from @0 to @0xFFFE leading to unaligned scatter |
| * gather at boundary. Thus it's safer to round down this value on FIFO |
| * size (16 Bytes) |
| */ |
| #define STM32_DMA_ALIGNED_MAX_DATA_ITEMS \ |
| ALIGN_DOWN(STM32_DMA_MAX_DATA_ITEMS, 16) |
| #define STM32_DMA_MAX_CHANNELS 0x08 |
| #define STM32_DMA_MAX_REQUEST_ID 0x08 |
| #define STM32_DMA_MAX_DATA_PARAM 0x03 |
| #define STM32_DMA_FIFO_SIZE 16 /* FIFO is 16 bytes */ |
| #define STM32_DMA_MIN_BURST 4 |
| #define STM32_DMA_MAX_BURST 16 |
| |
| /* DMA Features */ |
| #define STM32_DMA_THRESHOLD_FTR_MASK GENMASK(1, 0) |
| #define STM32_DMA_THRESHOLD_FTR_GET(n) ((n) & STM32_DMA_THRESHOLD_FTR_MASK) |
| |
| enum stm32_dma_width { |
| STM32_DMA_BYTE, |
| STM32_DMA_HALF_WORD, |
| STM32_DMA_WORD, |
| }; |
| |
| enum stm32_dma_burst_size { |
| STM32_DMA_BURST_SINGLE, |
| STM32_DMA_BURST_INCR4, |
| STM32_DMA_BURST_INCR8, |
| STM32_DMA_BURST_INCR16, |
| }; |
| |
| /** |
| * struct stm32_dma_cfg - STM32 DMA custom configuration |
| * @channel_id: channel ID |
| * @request_line: DMA request |
| * @stream_config: 32bit mask specifying the DMA channel configuration |
| * @features: 32bit mask specifying the DMA Feature list |
| */ |
| struct stm32_dma_cfg { |
| u32 channel_id; |
| u32 request_line; |
| u32 stream_config; |
| u32 features; |
| }; |
| |
| struct stm32_dma_chan_reg { |
| u32 dma_lisr; |
| u32 dma_hisr; |
| u32 dma_lifcr; |
| u32 dma_hifcr; |
| u32 dma_scr; |
| u32 dma_sndtr; |
| u32 dma_spar; |
| u32 dma_sm0ar; |
| u32 dma_sm1ar; |
| u32 dma_sfcr; |
| }; |
| |
| struct stm32_dma_sg_req { |
| u32 len; |
| struct stm32_dma_chan_reg chan_reg; |
| }; |
| |
| struct stm32_dma_desc { |
| struct virt_dma_desc vdesc; |
| bool cyclic; |
| u32 num_sgs; |
| struct stm32_dma_sg_req sg_req[]; |
| }; |
| |
| struct stm32_dma_chan { |
| struct virt_dma_chan vchan; |
| bool config_init; |
| bool busy; |
| u32 id; |
| u32 irq; |
| struct stm32_dma_desc *desc; |
| u32 next_sg; |
| struct dma_slave_config dma_sconfig; |
| struct stm32_dma_chan_reg chan_reg; |
| u32 threshold; |
| u32 mem_burst; |
| u32 mem_width; |
| }; |
| |
| struct stm32_dma_device { |
| struct dma_device ddev; |
| void __iomem *base; |
| struct clk *clk; |
| struct reset_control *rst; |
| bool mem2mem; |
| struct stm32_dma_chan chan[STM32_DMA_MAX_CHANNELS]; |
| }; |
| |
| static struct stm32_dma_device *stm32_dma_get_dev(struct stm32_dma_chan *chan) |
| { |
| return container_of(chan->vchan.chan.device, struct stm32_dma_device, |
| ddev); |
| } |
| |
| static struct stm32_dma_chan *to_stm32_dma_chan(struct dma_chan *c) |
| { |
| return container_of(c, struct stm32_dma_chan, vchan.chan); |
| } |
| |
| static struct stm32_dma_desc *to_stm32_dma_desc(struct virt_dma_desc *vdesc) |
| { |
| return container_of(vdesc, struct stm32_dma_desc, vdesc); |
| } |
| |
| static struct device *chan2dev(struct stm32_dma_chan *chan) |
| { |
| return &chan->vchan.chan.dev->device; |
| } |
| |
| static u32 stm32_dma_read(struct stm32_dma_device *dmadev, u32 reg) |
| { |
| return readl_relaxed(dmadev->base + reg); |
| } |
| |
| static void stm32_dma_write(struct stm32_dma_device *dmadev, u32 reg, u32 val) |
| { |
| writel_relaxed(val, dmadev->base + reg); |
| } |
| |
| static struct stm32_dma_desc *stm32_dma_alloc_desc(u32 num_sgs) |
| { |
| return kzalloc(sizeof(struct stm32_dma_desc) + |
| sizeof(struct stm32_dma_sg_req) * num_sgs, GFP_NOWAIT); |
| } |
| |
| static int stm32_dma_get_width(struct stm32_dma_chan *chan, |
| enum dma_slave_buswidth width) |
| { |
| switch (width) { |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| return STM32_DMA_BYTE; |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| return STM32_DMA_HALF_WORD; |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| return STM32_DMA_WORD; |
| default: |
| dev_err(chan2dev(chan), "Dma bus width not supported\n"); |
| return -EINVAL; |
| } |
| } |
| |
| static enum dma_slave_buswidth stm32_dma_get_max_width(u32 buf_len, |
| u32 threshold) |
| { |
| enum dma_slave_buswidth max_width; |
| |
| if (threshold == STM32_DMA_FIFO_THRESHOLD_FULL) |
| max_width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| else |
| max_width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| |
| while ((buf_len < max_width || buf_len % max_width) && |
| max_width > DMA_SLAVE_BUSWIDTH_1_BYTE) |
| max_width = max_width >> 1; |
| |
| return max_width; |
| } |
| |
| static bool stm32_dma_fifo_threshold_is_allowed(u32 burst, u32 threshold, |
| enum dma_slave_buswidth width) |
| { |
| u32 remaining; |
| |
| if (width != DMA_SLAVE_BUSWIDTH_UNDEFINED) { |
| if (burst != 0) { |
| /* |
| * If number of beats fit in several whole bursts |
| * this configuration is allowed. |
| */ |
| remaining = ((STM32_DMA_FIFO_SIZE / width) * |
| (threshold + 1) / 4) % burst; |
| |
| if (remaining == 0) |
| return true; |
| } else { |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| static bool stm32_dma_is_burst_possible(u32 buf_len, u32 threshold) |
| { |
| /* |
| * Buffer or period length has to be aligned on FIFO depth. |
| * Otherwise bytes may be stuck within FIFO at buffer or period |
| * length. |
| */ |
| return ((buf_len % ((threshold + 1) * 4)) == 0); |
| } |
| |
| static u32 stm32_dma_get_best_burst(u32 buf_len, u32 max_burst, u32 threshold, |
| enum dma_slave_buswidth width) |
| { |
| u32 best_burst = max_burst; |
| |
| if (best_burst == 1 || !stm32_dma_is_burst_possible(buf_len, threshold)) |
| return 0; |
| |
| while ((buf_len < best_burst * width && best_burst > 1) || |
| !stm32_dma_fifo_threshold_is_allowed(best_burst, threshold, |
| width)) { |
| if (best_burst > STM32_DMA_MIN_BURST) |
| best_burst = best_burst >> 1; |
| else |
| best_burst = 0; |
| } |
| |
| return best_burst; |
| } |
| |
| static int stm32_dma_get_burst(struct stm32_dma_chan *chan, u32 maxburst) |
| { |
| switch (maxburst) { |
| case 0: |
| case 1: |
| return STM32_DMA_BURST_SINGLE; |
| case 4: |
| return STM32_DMA_BURST_INCR4; |
| case 8: |
| return STM32_DMA_BURST_INCR8; |
| case 16: |
| return STM32_DMA_BURST_INCR16; |
| default: |
| dev_err(chan2dev(chan), "Dma burst size not supported\n"); |
| return -EINVAL; |
| } |
| } |
| |
| static void stm32_dma_set_fifo_config(struct stm32_dma_chan *chan, |
| u32 src_burst, u32 dst_burst) |
| { |
| chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_MASK; |
| chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_DMEIE; |
| |
| if (!src_burst && !dst_burst) { |
| /* Using direct mode */ |
| chan->chan_reg.dma_scr |= STM32_DMA_SCR_DMEIE; |
| } else { |
| /* Using FIFO mode */ |
| chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; |
| } |
| } |
| |
| static int stm32_dma_slave_config(struct dma_chan *c, |
| struct dma_slave_config *config) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| |
| memcpy(&chan->dma_sconfig, config, sizeof(*config)); |
| |
| chan->config_init = true; |
| |
| return 0; |
| } |
| |
| static u32 stm32_dma_irq_status(struct stm32_dma_chan *chan) |
| { |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| u32 flags, dma_isr; |
| |
| /* |
| * Read "flags" from DMA_xISR register corresponding to the selected |
| * DMA channel at the correct bit offset inside that register. |
| * |
| * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. |
| * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. |
| */ |
| |
| if (chan->id & 4) |
| dma_isr = stm32_dma_read(dmadev, STM32_DMA_HISR); |
| else |
| dma_isr = stm32_dma_read(dmadev, STM32_DMA_LISR); |
| |
| flags = dma_isr >> (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); |
| |
| return flags & STM32_DMA_MASKI; |
| } |
| |
| static void stm32_dma_irq_clear(struct stm32_dma_chan *chan, u32 flags) |
| { |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| u32 dma_ifcr; |
| |
| /* |
| * Write "flags" to the DMA_xIFCR register corresponding to the selected |
| * DMA channel at the correct bit offset inside that register. |
| * |
| * If (ch % 4) is 2 or 3, left shift the mask by 16 bits. |
| * If (ch % 4) is 1 or 3, additionally left shift the mask by 6 bits. |
| */ |
| flags &= STM32_DMA_MASKI; |
| dma_ifcr = flags << (((chan->id & 2) << 3) | ((chan->id & 1) * 6)); |
| |
| if (chan->id & 4) |
| stm32_dma_write(dmadev, STM32_DMA_HIFCR, dma_ifcr); |
| else |
| stm32_dma_write(dmadev, STM32_DMA_LIFCR, dma_ifcr); |
| } |
| |
| static int stm32_dma_disable_chan(struct stm32_dma_chan *chan) |
| { |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| unsigned long timeout = jiffies + msecs_to_jiffies(5000); |
| u32 dma_scr, id; |
| |
| id = chan->id; |
| dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); |
| |
| if (dma_scr & STM32_DMA_SCR_EN) { |
| dma_scr &= ~STM32_DMA_SCR_EN; |
| stm32_dma_write(dmadev, STM32_DMA_SCR(id), dma_scr); |
| |
| do { |
| dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); |
| dma_scr &= STM32_DMA_SCR_EN; |
| if (!dma_scr) |
| break; |
| |
| if (time_after_eq(jiffies, timeout)) { |
| dev_err(chan2dev(chan), "%s: timeout!\n", |
| __func__); |
| return -EBUSY; |
| } |
| cond_resched(); |
| } while (1); |
| } |
| |
| return 0; |
| } |
| |
| static void stm32_dma_stop(struct stm32_dma_chan *chan) |
| { |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| u32 dma_scr, dma_sfcr, status; |
| int ret; |
| |
| /* Disable interrupts */ |
| dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); |
| dma_scr &= ~STM32_DMA_SCR_IRQ_MASK; |
| stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), dma_scr); |
| dma_sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); |
| dma_sfcr &= ~STM32_DMA_SFCR_FEIE; |
| stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), dma_sfcr); |
| |
| /* Disable DMA */ |
| ret = stm32_dma_disable_chan(chan); |
| if (ret < 0) |
| return; |
| |
| /* Clear interrupt status if it is there */ |
| status = stm32_dma_irq_status(chan); |
| if (status) { |
| dev_dbg(chan2dev(chan), "%s(): clearing interrupt: 0x%08x\n", |
| __func__, status); |
| stm32_dma_irq_clear(chan, status); |
| } |
| |
| chan->busy = false; |
| } |
| |
| static int stm32_dma_terminate_all(struct dma_chan *c) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| |
| if (chan->busy) { |
| stm32_dma_stop(chan); |
| chan->desc = NULL; |
| } |
| |
| vchan_get_all_descriptors(&chan->vchan, &head); |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| vchan_dma_desc_free_list(&chan->vchan, &head); |
| |
| return 0; |
| } |
| |
| static void stm32_dma_synchronize(struct dma_chan *c) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| |
| vchan_synchronize(&chan->vchan); |
| } |
| |
| static void stm32_dma_dump_reg(struct stm32_dma_chan *chan) |
| { |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| u32 scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); |
| u32 ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); |
| u32 spar = stm32_dma_read(dmadev, STM32_DMA_SPAR(chan->id)); |
| u32 sm0ar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(chan->id)); |
| u32 sm1ar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(chan->id)); |
| u32 sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); |
| |
| dev_dbg(chan2dev(chan), "SCR: 0x%08x\n", scr); |
| dev_dbg(chan2dev(chan), "NDTR: 0x%08x\n", ndtr); |
| dev_dbg(chan2dev(chan), "SPAR: 0x%08x\n", spar); |
| dev_dbg(chan2dev(chan), "SM0AR: 0x%08x\n", sm0ar); |
| dev_dbg(chan2dev(chan), "SM1AR: 0x%08x\n", sm1ar); |
| dev_dbg(chan2dev(chan), "SFCR: 0x%08x\n", sfcr); |
| } |
| |
| static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan); |
| |
| static void stm32_dma_start_transfer(struct stm32_dma_chan *chan) |
| { |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| struct virt_dma_desc *vdesc; |
| struct stm32_dma_sg_req *sg_req; |
| struct stm32_dma_chan_reg *reg; |
| u32 status; |
| int ret; |
| |
| ret = stm32_dma_disable_chan(chan); |
| if (ret < 0) |
| return; |
| |
| if (!chan->desc) { |
| vdesc = vchan_next_desc(&chan->vchan); |
| if (!vdesc) |
| return; |
| |
| chan->desc = to_stm32_dma_desc(vdesc); |
| chan->next_sg = 0; |
| } |
| |
| if (chan->next_sg == chan->desc->num_sgs) |
| chan->next_sg = 0; |
| |
| sg_req = &chan->desc->sg_req[chan->next_sg]; |
| reg = &sg_req->chan_reg; |
| |
| stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); |
| stm32_dma_write(dmadev, STM32_DMA_SPAR(chan->id), reg->dma_spar); |
| stm32_dma_write(dmadev, STM32_DMA_SM0AR(chan->id), reg->dma_sm0ar); |
| stm32_dma_write(dmadev, STM32_DMA_SFCR(chan->id), reg->dma_sfcr); |
| stm32_dma_write(dmadev, STM32_DMA_SM1AR(chan->id), reg->dma_sm1ar); |
| stm32_dma_write(dmadev, STM32_DMA_SNDTR(chan->id), reg->dma_sndtr); |
| |
| chan->next_sg++; |
| |
| /* Clear interrupt status if it is there */ |
| status = stm32_dma_irq_status(chan); |
| if (status) |
| stm32_dma_irq_clear(chan, status); |
| |
| if (chan->desc->cyclic) |
| stm32_dma_configure_next_sg(chan); |
| |
| stm32_dma_dump_reg(chan); |
| |
| /* Start DMA */ |
| reg->dma_scr |= STM32_DMA_SCR_EN; |
| stm32_dma_write(dmadev, STM32_DMA_SCR(chan->id), reg->dma_scr); |
| |
| chan->busy = true; |
| |
| dev_dbg(chan2dev(chan), "vchan %pK: started\n", &chan->vchan); |
| } |
| |
| static void stm32_dma_configure_next_sg(struct stm32_dma_chan *chan) |
| { |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| struct stm32_dma_sg_req *sg_req; |
| u32 dma_scr, dma_sm0ar, dma_sm1ar, id; |
| |
| id = chan->id; |
| dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); |
| |
| if (dma_scr & STM32_DMA_SCR_DBM) { |
| if (chan->next_sg == chan->desc->num_sgs) |
| chan->next_sg = 0; |
| |
| sg_req = &chan->desc->sg_req[chan->next_sg]; |
| |
| if (dma_scr & STM32_DMA_SCR_CT) { |
| dma_sm0ar = sg_req->chan_reg.dma_sm0ar; |
| stm32_dma_write(dmadev, STM32_DMA_SM0AR(id), dma_sm0ar); |
| dev_dbg(chan2dev(chan), "CT=1 <=> SM0AR: 0x%08x\n", |
| stm32_dma_read(dmadev, STM32_DMA_SM0AR(id))); |
| } else { |
| dma_sm1ar = sg_req->chan_reg.dma_sm1ar; |
| stm32_dma_write(dmadev, STM32_DMA_SM1AR(id), dma_sm1ar); |
| dev_dbg(chan2dev(chan), "CT=0 <=> SM1AR: 0x%08x\n", |
| stm32_dma_read(dmadev, STM32_DMA_SM1AR(id))); |
| } |
| } |
| } |
| |
| static void stm32_dma_handle_chan_done(struct stm32_dma_chan *chan) |
| { |
| if (chan->desc) { |
| if (chan->desc->cyclic) { |
| vchan_cyclic_callback(&chan->desc->vdesc); |
| chan->next_sg++; |
| stm32_dma_configure_next_sg(chan); |
| } else { |
| chan->busy = false; |
| if (chan->next_sg == chan->desc->num_sgs) { |
| list_del(&chan->desc->vdesc.node); |
| vchan_cookie_complete(&chan->desc->vdesc); |
| chan->desc = NULL; |
| } |
| stm32_dma_start_transfer(chan); |
| } |
| } |
| } |
| |
| static irqreturn_t stm32_dma_chan_irq(int irq, void *devid) |
| { |
| struct stm32_dma_chan *chan = devid; |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| u32 status, scr, sfcr; |
| |
| spin_lock(&chan->vchan.lock); |
| |
| status = stm32_dma_irq_status(chan); |
| scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); |
| sfcr = stm32_dma_read(dmadev, STM32_DMA_SFCR(chan->id)); |
| |
| if (status & STM32_DMA_TCI) { |
| stm32_dma_irq_clear(chan, STM32_DMA_TCI); |
| if (scr & STM32_DMA_SCR_TCIE) |
| stm32_dma_handle_chan_done(chan); |
| status &= ~STM32_DMA_TCI; |
| } |
| if (status & STM32_DMA_HTI) { |
| stm32_dma_irq_clear(chan, STM32_DMA_HTI); |
| status &= ~STM32_DMA_HTI; |
| } |
| if (status & STM32_DMA_FEI) { |
| stm32_dma_irq_clear(chan, STM32_DMA_FEI); |
| status &= ~STM32_DMA_FEI; |
| if (sfcr & STM32_DMA_SFCR_FEIE) { |
| if (!(scr & STM32_DMA_SCR_EN)) |
| dev_err(chan2dev(chan), "FIFO Error\n"); |
| else |
| dev_dbg(chan2dev(chan), "FIFO over/underrun\n"); |
| } |
| } |
| if (status) { |
| stm32_dma_irq_clear(chan, status); |
| dev_err(chan2dev(chan), "DMA error: status=0x%08x\n", status); |
| if (!(scr & STM32_DMA_SCR_EN)) |
| dev_err(chan2dev(chan), "chan disabled by HW\n"); |
| } |
| |
| spin_unlock(&chan->vchan.lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void stm32_dma_issue_pending(struct dma_chan *c) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| if (vchan_issue_pending(&chan->vchan) && !chan->desc && !chan->busy) { |
| dev_dbg(chan2dev(chan), "vchan %pK: issued\n", &chan->vchan); |
| stm32_dma_start_transfer(chan); |
| |
| } |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| } |
| |
| static int stm32_dma_set_xfer_param(struct stm32_dma_chan *chan, |
| enum dma_transfer_direction direction, |
| enum dma_slave_buswidth *buswidth, |
| u32 buf_len) |
| { |
| enum dma_slave_buswidth src_addr_width, dst_addr_width; |
| int src_bus_width, dst_bus_width; |
| int src_burst_size, dst_burst_size; |
| u32 src_maxburst, dst_maxburst, src_best_burst, dst_best_burst; |
| u32 dma_scr, threshold; |
| |
| src_addr_width = chan->dma_sconfig.src_addr_width; |
| dst_addr_width = chan->dma_sconfig.dst_addr_width; |
| src_maxburst = chan->dma_sconfig.src_maxburst; |
| dst_maxburst = chan->dma_sconfig.dst_maxburst; |
| threshold = chan->threshold; |
| |
| switch (direction) { |
| case DMA_MEM_TO_DEV: |
| /* Set device data size */ |
| dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); |
| if (dst_bus_width < 0) |
| return dst_bus_width; |
| |
| /* Set device burst size */ |
| dst_best_burst = stm32_dma_get_best_burst(buf_len, |
| dst_maxburst, |
| threshold, |
| dst_addr_width); |
| |
| dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); |
| if (dst_burst_size < 0) |
| return dst_burst_size; |
| |
| /* Set memory data size */ |
| src_addr_width = stm32_dma_get_max_width(buf_len, threshold); |
| chan->mem_width = src_addr_width; |
| src_bus_width = stm32_dma_get_width(chan, src_addr_width); |
| if (src_bus_width < 0) |
| return src_bus_width; |
| |
| /* Set memory burst size */ |
| src_maxburst = STM32_DMA_MAX_BURST; |
| src_best_burst = stm32_dma_get_best_burst(buf_len, |
| src_maxburst, |
| threshold, |
| src_addr_width); |
| src_burst_size = stm32_dma_get_burst(chan, src_best_burst); |
| if (src_burst_size < 0) |
| return src_burst_size; |
| |
| dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_DEV) | |
| STM32_DMA_SCR_PSIZE(dst_bus_width) | |
| STM32_DMA_SCR_MSIZE(src_bus_width) | |
| STM32_DMA_SCR_PBURST(dst_burst_size) | |
| STM32_DMA_SCR_MBURST(src_burst_size); |
| |
| /* Set FIFO threshold */ |
| chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; |
| chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); |
| |
| /* Set peripheral address */ |
| chan->chan_reg.dma_spar = chan->dma_sconfig.dst_addr; |
| *buswidth = dst_addr_width; |
| break; |
| |
| case DMA_DEV_TO_MEM: |
| /* Set device data size */ |
| src_bus_width = stm32_dma_get_width(chan, src_addr_width); |
| if (src_bus_width < 0) |
| return src_bus_width; |
| |
| /* Set device burst size */ |
| src_best_burst = stm32_dma_get_best_burst(buf_len, |
| src_maxburst, |
| threshold, |
| src_addr_width); |
| chan->mem_burst = src_best_burst; |
| src_burst_size = stm32_dma_get_burst(chan, src_best_burst); |
| if (src_burst_size < 0) |
| return src_burst_size; |
| |
| /* Set memory data size */ |
| dst_addr_width = stm32_dma_get_max_width(buf_len, threshold); |
| chan->mem_width = dst_addr_width; |
| dst_bus_width = stm32_dma_get_width(chan, dst_addr_width); |
| if (dst_bus_width < 0) |
| return dst_bus_width; |
| |
| /* Set memory burst size */ |
| dst_maxburst = STM32_DMA_MAX_BURST; |
| dst_best_burst = stm32_dma_get_best_burst(buf_len, |
| dst_maxburst, |
| threshold, |
| dst_addr_width); |
| chan->mem_burst = dst_best_burst; |
| dst_burst_size = stm32_dma_get_burst(chan, dst_best_burst); |
| if (dst_burst_size < 0) |
| return dst_burst_size; |
| |
| dma_scr = STM32_DMA_SCR_DIR(STM32_DMA_DEV_TO_MEM) | |
| STM32_DMA_SCR_PSIZE(src_bus_width) | |
| STM32_DMA_SCR_MSIZE(dst_bus_width) | |
| STM32_DMA_SCR_PBURST(src_burst_size) | |
| STM32_DMA_SCR_MBURST(dst_burst_size); |
| |
| /* Set FIFO threshold */ |
| chan->chan_reg.dma_sfcr &= ~STM32_DMA_SFCR_FTH_MASK; |
| chan->chan_reg.dma_sfcr |= STM32_DMA_SFCR_FTH(threshold); |
| |
| /* Set peripheral address */ |
| chan->chan_reg.dma_spar = chan->dma_sconfig.src_addr; |
| *buswidth = chan->dma_sconfig.src_addr_width; |
| break; |
| |
| default: |
| dev_err(chan2dev(chan), "Dma direction is not supported\n"); |
| return -EINVAL; |
| } |
| |
| stm32_dma_set_fifo_config(chan, src_best_burst, dst_best_burst); |
| |
| /* Set DMA control register */ |
| chan->chan_reg.dma_scr &= ~(STM32_DMA_SCR_DIR_MASK | |
| STM32_DMA_SCR_PSIZE_MASK | STM32_DMA_SCR_MSIZE_MASK | |
| STM32_DMA_SCR_PBURST_MASK | STM32_DMA_SCR_MBURST_MASK); |
| chan->chan_reg.dma_scr |= dma_scr; |
| |
| return 0; |
| } |
| |
| static void stm32_dma_clear_reg(struct stm32_dma_chan_reg *regs) |
| { |
| memset(regs, 0, sizeof(struct stm32_dma_chan_reg)); |
| } |
| |
| static struct dma_async_tx_descriptor *stm32_dma_prep_slave_sg( |
| struct dma_chan *c, struct scatterlist *sgl, |
| u32 sg_len, enum dma_transfer_direction direction, |
| unsigned long flags, void *context) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| struct stm32_dma_desc *desc; |
| struct scatterlist *sg; |
| enum dma_slave_buswidth buswidth; |
| u32 nb_data_items; |
| int i, ret; |
| |
| if (!chan->config_init) { |
| dev_err(chan2dev(chan), "dma channel is not configured\n"); |
| return NULL; |
| } |
| |
| if (sg_len < 1) { |
| dev_err(chan2dev(chan), "Invalid segment length %d\n", sg_len); |
| return NULL; |
| } |
| |
| desc = stm32_dma_alloc_desc(sg_len); |
| if (!desc) |
| return NULL; |
| |
| /* Set peripheral flow controller */ |
| if (chan->dma_sconfig.device_fc) |
| chan->chan_reg.dma_scr |= STM32_DMA_SCR_PFCTRL; |
| else |
| chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; |
| |
| for_each_sg(sgl, sg, sg_len, i) { |
| ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, |
| sg_dma_len(sg)); |
| if (ret < 0) |
| goto err; |
| |
| desc->sg_req[i].len = sg_dma_len(sg); |
| |
| nb_data_items = desc->sg_req[i].len / buswidth; |
| if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { |
| dev_err(chan2dev(chan), "nb items not supported\n"); |
| goto err; |
| } |
| |
| stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); |
| desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; |
| desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; |
| desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; |
| desc->sg_req[i].chan_reg.dma_sm0ar = sg_dma_address(sg); |
| desc->sg_req[i].chan_reg.dma_sm1ar = sg_dma_address(sg); |
| desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; |
| } |
| |
| desc->num_sgs = sg_len; |
| desc->cyclic = false; |
| |
| return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| |
| err: |
| kfree(desc); |
| return NULL; |
| } |
| |
| static struct dma_async_tx_descriptor *stm32_dma_prep_dma_cyclic( |
| struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| struct stm32_dma_desc *desc; |
| enum dma_slave_buswidth buswidth; |
| u32 num_periods, nb_data_items; |
| int i, ret; |
| |
| if (!buf_len || !period_len) { |
| dev_err(chan2dev(chan), "Invalid buffer/period len\n"); |
| return NULL; |
| } |
| |
| if (!chan->config_init) { |
| dev_err(chan2dev(chan), "dma channel is not configured\n"); |
| return NULL; |
| } |
| |
| if (buf_len % period_len) { |
| dev_err(chan2dev(chan), "buf_len not multiple of period_len\n"); |
| return NULL; |
| } |
| |
| /* |
| * We allow to take more number of requests till DMA is |
| * not started. The driver will loop over all requests. |
| * Once DMA is started then new requests can be queued only after |
| * terminating the DMA. |
| */ |
| if (chan->busy) { |
| dev_err(chan2dev(chan), "Request not allowed when dma busy\n"); |
| return NULL; |
| } |
| |
| ret = stm32_dma_set_xfer_param(chan, direction, &buswidth, period_len); |
| if (ret < 0) |
| return NULL; |
| |
| nb_data_items = period_len / buswidth; |
| if (nb_data_items > STM32_DMA_ALIGNED_MAX_DATA_ITEMS) { |
| dev_err(chan2dev(chan), "number of items not supported\n"); |
| return NULL; |
| } |
| |
| /* Enable Circular mode or double buffer mode */ |
| if (buf_len == period_len) |
| chan->chan_reg.dma_scr |= STM32_DMA_SCR_CIRC; |
| else |
| chan->chan_reg.dma_scr |= STM32_DMA_SCR_DBM; |
| |
| /* Clear periph ctrl if client set it */ |
| chan->chan_reg.dma_scr &= ~STM32_DMA_SCR_PFCTRL; |
| |
| num_periods = buf_len / period_len; |
| |
| desc = stm32_dma_alloc_desc(num_periods); |
| if (!desc) |
| return NULL; |
| |
| for (i = 0; i < num_periods; i++) { |
| desc->sg_req[i].len = period_len; |
| |
| stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); |
| desc->sg_req[i].chan_reg.dma_scr = chan->chan_reg.dma_scr; |
| desc->sg_req[i].chan_reg.dma_sfcr = chan->chan_reg.dma_sfcr; |
| desc->sg_req[i].chan_reg.dma_spar = chan->chan_reg.dma_spar; |
| desc->sg_req[i].chan_reg.dma_sm0ar = buf_addr; |
| desc->sg_req[i].chan_reg.dma_sm1ar = buf_addr; |
| desc->sg_req[i].chan_reg.dma_sndtr = nb_data_items; |
| buf_addr += period_len; |
| } |
| |
| desc->num_sgs = num_periods; |
| desc->cyclic = true; |
| |
| return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *stm32_dma_prep_dma_memcpy( |
| struct dma_chan *c, dma_addr_t dest, |
| dma_addr_t src, size_t len, unsigned long flags) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| enum dma_slave_buswidth max_width; |
| struct stm32_dma_desc *desc; |
| size_t xfer_count, offset; |
| u32 num_sgs, best_burst, dma_burst, threshold; |
| int i; |
| |
| num_sgs = DIV_ROUND_UP(len, STM32_DMA_ALIGNED_MAX_DATA_ITEMS); |
| desc = stm32_dma_alloc_desc(num_sgs); |
| if (!desc) |
| return NULL; |
| |
| threshold = chan->threshold; |
| |
| for (offset = 0, i = 0; offset < len; offset += xfer_count, i++) { |
| xfer_count = min_t(size_t, len - offset, |
| STM32_DMA_ALIGNED_MAX_DATA_ITEMS); |
| |
| /* Compute best burst size */ |
| max_width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| best_burst = stm32_dma_get_best_burst(len, STM32_DMA_MAX_BURST, |
| threshold, max_width); |
| dma_burst = stm32_dma_get_burst(chan, best_burst); |
| |
| stm32_dma_clear_reg(&desc->sg_req[i].chan_reg); |
| desc->sg_req[i].chan_reg.dma_scr = |
| STM32_DMA_SCR_DIR(STM32_DMA_MEM_TO_MEM) | |
| STM32_DMA_SCR_PBURST(dma_burst) | |
| STM32_DMA_SCR_MBURST(dma_burst) | |
| STM32_DMA_SCR_MINC | |
| STM32_DMA_SCR_PINC | |
| STM32_DMA_SCR_TCIE | |
| STM32_DMA_SCR_TEIE; |
| desc->sg_req[i].chan_reg.dma_sfcr |= STM32_DMA_SFCR_MASK; |
| desc->sg_req[i].chan_reg.dma_sfcr |= |
| STM32_DMA_SFCR_FTH(threshold); |
| desc->sg_req[i].chan_reg.dma_spar = src + offset; |
| desc->sg_req[i].chan_reg.dma_sm0ar = dest + offset; |
| desc->sg_req[i].chan_reg.dma_sndtr = xfer_count; |
| desc->sg_req[i].len = xfer_count; |
| } |
| |
| desc->num_sgs = num_sgs; |
| desc->cyclic = false; |
| |
| return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags); |
| } |
| |
| static u32 stm32_dma_get_remaining_bytes(struct stm32_dma_chan *chan) |
| { |
| u32 dma_scr, width, ndtr; |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| |
| dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(chan->id)); |
| width = STM32_DMA_SCR_PSIZE_GET(dma_scr); |
| ndtr = stm32_dma_read(dmadev, STM32_DMA_SNDTR(chan->id)); |
| |
| return ndtr << width; |
| } |
| |
| /** |
| * stm32_dma_is_current_sg - check that expected sg_req is currently transferred |
| * @chan: dma channel |
| * |
| * This function called when IRQ are disable, checks that the hardware has not |
| * switched on the next transfer in double buffer mode. The test is done by |
| * comparing the next_sg memory address with the hardware related register |
| * (based on CT bit value). |
| * |
| * Returns true if expected current transfer is still running or double |
| * buffer mode is not activated. |
| */ |
| static bool stm32_dma_is_current_sg(struct stm32_dma_chan *chan) |
| { |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| struct stm32_dma_sg_req *sg_req; |
| u32 dma_scr, dma_smar, id; |
| |
| id = chan->id; |
| dma_scr = stm32_dma_read(dmadev, STM32_DMA_SCR(id)); |
| |
| if (!(dma_scr & STM32_DMA_SCR_DBM)) |
| return true; |
| |
| sg_req = &chan->desc->sg_req[chan->next_sg]; |
| |
| if (dma_scr & STM32_DMA_SCR_CT) { |
| dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM0AR(id)); |
| return (dma_smar == sg_req->chan_reg.dma_sm0ar); |
| } |
| |
| dma_smar = stm32_dma_read(dmadev, STM32_DMA_SM1AR(id)); |
| |
| return (dma_smar == sg_req->chan_reg.dma_sm1ar); |
| } |
| |
| static size_t stm32_dma_desc_residue(struct stm32_dma_chan *chan, |
| struct stm32_dma_desc *desc, |
| u32 next_sg) |
| { |
| u32 modulo, burst_size; |
| u32 residue; |
| u32 n_sg = next_sg; |
| struct stm32_dma_sg_req *sg_req = &chan->desc->sg_req[chan->next_sg]; |
| int i; |
| |
| /* |
| * Calculate the residue means compute the descriptors |
| * information: |
| * - the sg_req currently transferred |
| * - the Hardware remaining position in this sg (NDTR bits field). |
| * |
| * A race condition may occur if DMA is running in cyclic or double |
| * buffer mode, since the DMA register are automatically reloaded at end |
| * of period transfer. The hardware may have switched to the next |
| * transfer (CT bit updated) just before the position (SxNDTR reg) is |
| * read. |
| * In this case the SxNDTR reg could (or not) correspond to the new |
| * transfer position, and not the expected one. |
| * The strategy implemented in the stm32 driver is to: |
| * - read the SxNDTR register |
| * - crosscheck that hardware is still in current transfer. |
| * In case of switch, we can assume that the DMA is at the beginning of |
| * the next transfer. So we approximate the residue in consequence, by |
| * pointing on the beginning of next transfer. |
| * |
| * This race condition doesn't apply for none cyclic mode, as double |
| * buffer is not used. In such situation registers are updated by the |
| * software. |
| */ |
| |
| residue = stm32_dma_get_remaining_bytes(chan); |
| |
| if (!stm32_dma_is_current_sg(chan)) { |
| n_sg++; |
| if (n_sg == chan->desc->num_sgs) |
| n_sg = 0; |
| residue = sg_req->len; |
| } |
| |
| /* |
| * In cyclic mode, for the last period, residue = remaining bytes |
| * from NDTR, |
| * else for all other periods in cyclic mode, and in sg mode, |
| * residue = remaining bytes from NDTR + remaining |
| * periods/sg to be transferred |
| */ |
| if (!chan->desc->cyclic || n_sg != 0) |
| for (i = n_sg; i < desc->num_sgs; i++) |
| residue += desc->sg_req[i].len; |
| |
| if (!chan->mem_burst) |
| return residue; |
| |
| burst_size = chan->mem_burst * chan->mem_width; |
| modulo = residue % burst_size; |
| if (modulo) |
| residue = residue - modulo + burst_size; |
| |
| return residue; |
| } |
| |
| static enum dma_status stm32_dma_tx_status(struct dma_chan *c, |
| dma_cookie_t cookie, |
| struct dma_tx_state *state) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| struct virt_dma_desc *vdesc; |
| enum dma_status status; |
| unsigned long flags; |
| u32 residue = 0; |
| |
| status = dma_cookie_status(c, cookie, state); |
| if (status == DMA_COMPLETE || !state) |
| return status; |
| |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| vdesc = vchan_find_desc(&chan->vchan, cookie); |
| if (chan->desc && cookie == chan->desc->vdesc.tx.cookie) |
| residue = stm32_dma_desc_residue(chan, chan->desc, |
| chan->next_sg); |
| else if (vdesc) |
| residue = stm32_dma_desc_residue(chan, |
| to_stm32_dma_desc(vdesc), 0); |
| dma_set_residue(state, residue); |
| |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| |
| return status; |
| } |
| |
| static int stm32_dma_alloc_chan_resources(struct dma_chan *c) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| int ret; |
| |
| chan->config_init = false; |
| |
| ret = pm_runtime_get_sync(dmadev->ddev.dev); |
| if (ret < 0) |
| return ret; |
| |
| ret = stm32_dma_disable_chan(chan); |
| if (ret < 0) |
| pm_runtime_put(dmadev->ddev.dev); |
| |
| return ret; |
| } |
| |
| static void stm32_dma_free_chan_resources(struct dma_chan *c) |
| { |
| struct stm32_dma_chan *chan = to_stm32_dma_chan(c); |
| struct stm32_dma_device *dmadev = stm32_dma_get_dev(chan); |
| unsigned long flags; |
| |
| dev_dbg(chan2dev(chan), "Freeing channel %d\n", chan->id); |
| |
| if (chan->busy) { |
| spin_lock_irqsave(&chan->vchan.lock, flags); |
| stm32_dma_stop(chan); |
| chan->desc = NULL; |
| spin_unlock_irqrestore(&chan->vchan.lock, flags); |
| } |
| |
| pm_runtime_put(dmadev->ddev.dev); |
| |
| vchan_free_chan_resources(to_virt_chan(c)); |
| } |
| |
| static void stm32_dma_desc_free(struct virt_dma_desc *vdesc) |
| { |
| kfree(container_of(vdesc, struct stm32_dma_desc, vdesc)); |
| } |
| |
| static void stm32_dma_set_config(struct stm32_dma_chan *chan, |
| struct stm32_dma_cfg *cfg) |
| { |
| stm32_dma_clear_reg(&chan->chan_reg); |
| |
| chan->chan_reg.dma_scr = cfg->stream_config & STM32_DMA_SCR_CFG_MASK; |
| chan->chan_reg.dma_scr |= STM32_DMA_SCR_REQ(cfg->request_line); |
| |
| /* Enable Interrupts */ |
| chan->chan_reg.dma_scr |= STM32_DMA_SCR_TEIE | STM32_DMA_SCR_TCIE; |
| |
| chan->threshold = STM32_DMA_THRESHOLD_FTR_GET(cfg->features); |
| } |
| |
| static struct dma_chan *stm32_dma_of_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct stm32_dma_device *dmadev = ofdma->of_dma_data; |
| struct device *dev = dmadev->ddev.dev; |
| struct stm32_dma_cfg cfg; |
| struct stm32_dma_chan *chan; |
| struct dma_chan *c; |
| |
| if (dma_spec->args_count < 4) { |
| dev_err(dev, "Bad number of cells\n"); |
| return NULL; |
| } |
| |
| cfg.channel_id = dma_spec->args[0]; |
| cfg.request_line = dma_spec->args[1]; |
| cfg.stream_config = dma_spec->args[2]; |
| cfg.features = dma_spec->args[3]; |
| |
| if (cfg.channel_id >= STM32_DMA_MAX_CHANNELS || |
| cfg.request_line >= STM32_DMA_MAX_REQUEST_ID) { |
| dev_err(dev, "Bad channel and/or request id\n"); |
| return NULL; |
| } |
| |
| chan = &dmadev->chan[cfg.channel_id]; |
| |
| c = dma_get_slave_channel(&chan->vchan.chan); |
| if (!c) { |
| dev_err(dev, "No more channels available\n"); |
| return NULL; |
| } |
| |
| stm32_dma_set_config(chan, &cfg); |
| |
| return c; |
| } |
| |
| static const struct of_device_id stm32_dma_of_match[] = { |
| { .compatible = "st,stm32-dma", }, |
| { /* sentinel */ }, |
| }; |
| MODULE_DEVICE_TABLE(of, stm32_dma_of_match); |
| |
| static int stm32_dma_probe(struct platform_device *pdev) |
| { |
| struct stm32_dma_chan *chan; |
| struct stm32_dma_device *dmadev; |
| struct dma_device *dd; |
| const struct of_device_id *match; |
| struct resource *res; |
| int i, ret; |
| |
| match = of_match_device(stm32_dma_of_match, &pdev->dev); |
| if (!match) { |
| dev_err(&pdev->dev, "Error: No device match found\n"); |
| return -ENODEV; |
| } |
| |
| dmadev = devm_kzalloc(&pdev->dev, sizeof(*dmadev), GFP_KERNEL); |
| if (!dmadev) |
| return -ENOMEM; |
| |
| dd = &dmadev->ddev; |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| dmadev->base = devm_ioremap_resource(&pdev->dev, res); |
| if (IS_ERR(dmadev->base)) |
| return PTR_ERR(dmadev->base); |
| |
| dmadev->clk = devm_clk_get(&pdev->dev, NULL); |
| if (IS_ERR(dmadev->clk)) { |
| dev_err(&pdev->dev, "Error: Missing controller clock\n"); |
| return PTR_ERR(dmadev->clk); |
| } |
| |
| ret = clk_prepare_enable(dmadev->clk); |
| if (ret < 0) { |
| dev_err(&pdev->dev, "clk_prep_enable error: %d\n", ret); |
| return ret; |
| } |
| |
| dmadev->mem2mem = of_property_read_bool(pdev->dev.of_node, |
| "st,mem2mem"); |
| |
| dmadev->rst = devm_reset_control_get(&pdev->dev, NULL); |
| if (!IS_ERR(dmadev->rst)) { |
| reset_control_assert(dmadev->rst); |
| udelay(2); |
| reset_control_deassert(dmadev->rst); |
| } |
| |
| dma_cap_set(DMA_SLAVE, dd->cap_mask); |
| dma_cap_set(DMA_PRIVATE, dd->cap_mask); |
| dma_cap_set(DMA_CYCLIC, dd->cap_mask); |
| dd->device_alloc_chan_resources = stm32_dma_alloc_chan_resources; |
| dd->device_free_chan_resources = stm32_dma_free_chan_resources; |
| dd->device_tx_status = stm32_dma_tx_status; |
| dd->device_issue_pending = stm32_dma_issue_pending; |
| dd->device_prep_slave_sg = stm32_dma_prep_slave_sg; |
| dd->device_prep_dma_cyclic = stm32_dma_prep_dma_cyclic; |
| dd->device_config = stm32_dma_slave_config; |
| dd->device_terminate_all = stm32_dma_terminate_all; |
| dd->device_synchronize = stm32_dma_synchronize; |
| dd->src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
| dd->dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); |
| dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| dd->max_burst = STM32_DMA_MAX_BURST; |
| dd->dev = &pdev->dev; |
| INIT_LIST_HEAD(&dd->channels); |
| |
| if (dmadev->mem2mem) { |
| dma_cap_set(DMA_MEMCPY, dd->cap_mask); |
| dd->device_prep_dma_memcpy = stm32_dma_prep_dma_memcpy; |
| dd->directions |= BIT(DMA_MEM_TO_MEM); |
| } |
| |
| for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { |
| chan = &dmadev->chan[i]; |
| chan->id = i; |
| chan->vchan.desc_free = stm32_dma_desc_free; |
| vchan_init(&chan->vchan, dd); |
| } |
| |
| ret = dma_async_device_register(dd); |
| if (ret) |
| goto clk_free; |
| |
| for (i = 0; i < STM32_DMA_MAX_CHANNELS; i++) { |
| chan = &dmadev->chan[i]; |
| chan->irq = platform_get_irq(pdev, i); |
| ret = platform_get_irq(pdev, i); |
| if (ret < 0) { |
| if (ret != -EPROBE_DEFER) |
| dev_err(&pdev->dev, |
| "No irq resource for chan %d\n", i); |
| goto err_unregister; |
| } |
| chan->irq = ret; |
| |
| ret = devm_request_irq(&pdev->dev, chan->irq, |
| stm32_dma_chan_irq, 0, |
| dev_name(chan2dev(chan)), chan); |
| if (ret) { |
| dev_err(&pdev->dev, |
| "request_irq failed with err %d channel %d\n", |
| ret, i); |
| goto err_unregister; |
| } |
| } |
| |
| ret = of_dma_controller_register(pdev->dev.of_node, |
| stm32_dma_of_xlate, dmadev); |
| if (ret < 0) { |
| dev_err(&pdev->dev, |
| "STM32 DMA DMA OF registration failed %d\n", ret); |
| goto err_unregister; |
| } |
| |
| platform_set_drvdata(pdev, dmadev); |
| |
| pm_runtime_set_active(&pdev->dev); |
| pm_runtime_enable(&pdev->dev); |
| pm_runtime_get_noresume(&pdev->dev); |
| pm_runtime_put(&pdev->dev); |
| |
| dev_info(&pdev->dev, "STM32 DMA driver registered\n"); |
| |
| return 0; |
| |
| err_unregister: |
| dma_async_device_unregister(dd); |
| clk_free: |
| clk_disable_unprepare(dmadev->clk); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_PM |
| static int stm32_dma_runtime_suspend(struct device *dev) |
| { |
| struct stm32_dma_device *dmadev = dev_get_drvdata(dev); |
| |
| clk_disable_unprepare(dmadev->clk); |
| |
| return 0; |
| } |
| |
| static int stm32_dma_runtime_resume(struct device *dev) |
| { |
| struct stm32_dma_device *dmadev = dev_get_drvdata(dev); |
| int ret; |
| |
| ret = clk_prepare_enable(dmadev->clk); |
| if (ret) { |
| dev_err(dev, "failed to prepare_enable clock\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| static const struct dev_pm_ops stm32_dma_pm_ops = { |
| SET_RUNTIME_PM_OPS(stm32_dma_runtime_suspend, |
| stm32_dma_runtime_resume, NULL) |
| }; |
| |
| static struct platform_driver stm32_dma_driver = { |
| .driver = { |
| .name = "stm32-dma", |
| .of_match_table = stm32_dma_of_match, |
| .pm = &stm32_dma_pm_ops, |
| }, |
| }; |
| |
| static int __init stm32_dma_init(void) |
| { |
| return platform_driver_probe(&stm32_dma_driver, stm32_dma_probe); |
| } |
| subsys_initcall(stm32_dma_init); |