| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * arch-independent dma-mapping routines |
| * |
| * Copyright (c) 2006 SUSE Linux Products GmbH |
| * Copyright (c) 2006 Tejun Heo <teheo@suse.de> |
| */ |
| #include <linux/memblock.h> /* for max_pfn */ |
| #include <linux/acpi.h> |
| #include <linux/dma-direct.h> |
| #include <linux/dma-noncoherent.h> |
| #include <linux/export.h> |
| #include <linux/gfp.h> |
| #include <linux/of_device.h> |
| #include <linux/slab.h> |
| #include <linux/vmalloc.h> |
| |
| /* |
| * Managed DMA API |
| */ |
| struct dma_devres { |
| size_t size; |
| void *vaddr; |
| dma_addr_t dma_handle; |
| unsigned long attrs; |
| }; |
| |
| static void dmam_release(struct device *dev, void *res) |
| { |
| struct dma_devres *this = res; |
| |
| dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle, |
| this->attrs); |
| } |
| |
| static int dmam_match(struct device *dev, void *res, void *match_data) |
| { |
| struct dma_devres *this = res, *match = match_data; |
| |
| if (this->vaddr == match->vaddr) { |
| WARN_ON(this->size != match->size || |
| this->dma_handle != match->dma_handle); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * dmam_free_coherent - Managed dma_free_coherent() |
| * @dev: Device to free coherent memory for |
| * @size: Size of allocation |
| * @vaddr: Virtual address of the memory to free |
| * @dma_handle: DMA handle of the memory to free |
| * |
| * Managed dma_free_coherent(). |
| */ |
| void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, |
| dma_addr_t dma_handle) |
| { |
| struct dma_devres match_data = { size, vaddr, dma_handle }; |
| |
| dma_free_coherent(dev, size, vaddr, dma_handle); |
| WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data)); |
| } |
| EXPORT_SYMBOL(dmam_free_coherent); |
| |
| /** |
| * dmam_alloc_attrs - Managed dma_alloc_attrs() |
| * @dev: Device to allocate non_coherent memory for |
| * @size: Size of allocation |
| * @dma_handle: Out argument for allocated DMA handle |
| * @gfp: Allocation flags |
| * @attrs: Flags in the DMA_ATTR_* namespace. |
| * |
| * Managed dma_alloc_attrs(). Memory allocated using this function will be |
| * automatically released on driver detach. |
| * |
| * RETURNS: |
| * Pointer to allocated memory on success, NULL on failure. |
| */ |
| void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| gfp_t gfp, unsigned long attrs) |
| { |
| struct dma_devres *dr; |
| void *vaddr; |
| |
| dr = devres_alloc(dmam_release, sizeof(*dr), gfp); |
| if (!dr) |
| return NULL; |
| |
| vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs); |
| if (!vaddr) { |
| devres_free(dr); |
| return NULL; |
| } |
| |
| dr->vaddr = vaddr; |
| dr->dma_handle = *dma_handle; |
| dr->size = size; |
| dr->attrs = attrs; |
| |
| devres_add(dev, dr); |
| |
| return vaddr; |
| } |
| EXPORT_SYMBOL(dmam_alloc_attrs); |
| |
| /* |
| * Create scatter-list for the already allocated DMA buffer. |
| */ |
| int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| struct page *page; |
| int ret; |
| |
| if (!dev_is_dma_coherent(dev)) { |
| if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN)) |
| return -ENXIO; |
| |
| page = pfn_to_page(arch_dma_coherent_to_pfn(dev, cpu_addr, |
| dma_addr)); |
| } else { |
| page = virt_to_page(cpu_addr); |
| } |
| |
| ret = sg_alloc_table(sgt, 1, GFP_KERNEL); |
| if (!ret) |
| sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); |
| return ret; |
| } |
| |
| int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (!dma_is_direct(ops) && ops->get_sgtable) |
| return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, |
| attrs); |
| return dma_common_get_sgtable(dev, sgt, cpu_addr, dma_addr, size, |
| attrs); |
| } |
| EXPORT_SYMBOL(dma_get_sgtable_attrs); |
| |
| /* |
| * Create userspace mapping for the DMA-coherent memory. |
| */ |
| int dma_common_mmap(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| #ifndef CONFIG_ARCH_NO_COHERENT_DMA_MMAP |
| unsigned long user_count = vma_pages(vma); |
| unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; |
| unsigned long off = vma->vm_pgoff; |
| unsigned long pfn; |
| int ret = -ENXIO; |
| |
| vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs); |
| |
| if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) |
| return ret; |
| |
| if (off >= count || user_count > count - off) |
| return -ENXIO; |
| |
| if (!dev_is_dma_coherent(dev)) { |
| if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_COHERENT_TO_PFN)) |
| return -ENXIO; |
| pfn = arch_dma_coherent_to_pfn(dev, cpu_addr, dma_addr); |
| } else { |
| pfn = page_to_pfn(virt_to_page(cpu_addr)); |
| } |
| |
| return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff, |
| user_count << PAGE_SHIFT, vma->vm_page_prot); |
| #else |
| return -ENXIO; |
| #endif /* !CONFIG_ARCH_NO_COHERENT_DMA_MMAP */ |
| } |
| |
| /** |
| * dma_mmap_attrs - map a coherent DMA allocation into user space |
| * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices |
| * @vma: vm_area_struct describing requested user mapping |
| * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs |
| * @dma_addr: device-view address returned from dma_alloc_attrs |
| * @size: size of memory originally requested in dma_alloc_attrs |
| * @attrs: attributes of mapping properties requested in dma_alloc_attrs |
| * |
| * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user |
| * space. The coherent DMA buffer must not be freed by the driver until the |
| * user space mapping has been released. |
| */ |
| int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, |
| void *cpu_addr, dma_addr_t dma_addr, size_t size, |
| unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (!dma_is_direct(ops) && ops->mmap) |
| return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs); |
| return dma_common_mmap(dev, vma, cpu_addr, dma_addr, size, attrs); |
| } |
| EXPORT_SYMBOL(dma_mmap_attrs); |
| |
| static u64 dma_default_get_required_mask(struct device *dev) |
| { |
| u32 low_totalram = ((max_pfn - 1) << PAGE_SHIFT); |
| u32 high_totalram = ((max_pfn - 1) >> (32 - PAGE_SHIFT)); |
| u64 mask; |
| |
| if (!high_totalram) { |
| /* convert to mask just covering totalram */ |
| low_totalram = (1 << (fls(low_totalram) - 1)); |
| low_totalram += low_totalram - 1; |
| mask = low_totalram; |
| } else { |
| high_totalram = (1 << (fls(high_totalram) - 1)); |
| high_totalram += high_totalram - 1; |
| mask = (((u64)high_totalram) << 32) + 0xffffffff; |
| } |
| return mask; |
| } |
| |
| u64 dma_get_required_mask(struct device *dev) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_is_direct(ops)) |
| return dma_direct_get_required_mask(dev); |
| if (ops->get_required_mask) |
| return ops->get_required_mask(dev); |
| return dma_default_get_required_mask(dev); |
| } |
| EXPORT_SYMBOL_GPL(dma_get_required_mask); |
| |
| #ifndef arch_dma_alloc_attrs |
| #define arch_dma_alloc_attrs(dev) (true) |
| #endif |
| |
| void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, |
| gfp_t flag, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| void *cpu_addr; |
| |
| WARN_ON_ONCE(dev && !dev->coherent_dma_mask); |
| |
| if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) |
| return cpu_addr; |
| |
| /* let the implementation decide on the zone to allocate from: */ |
| flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM); |
| |
| if (!arch_dma_alloc_attrs(&dev)) |
| return NULL; |
| |
| if (dma_is_direct(ops)) |
| cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs); |
| else if (ops->alloc) |
| cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs); |
| else |
| return NULL; |
| |
| debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr); |
| return cpu_addr; |
| } |
| EXPORT_SYMBOL(dma_alloc_attrs); |
| |
| void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, |
| dma_addr_t dma_handle, unsigned long attrs) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr)) |
| return; |
| /* |
| * On non-coherent platforms which implement DMA-coherent buffers via |
| * non-cacheable remaps, ops->free() may call vunmap(). Thus getting |
| * this far in IRQ context is a) at risk of a BUG_ON() or trying to |
| * sleep on some machines, and b) an indication that the driver is |
| * probably misusing the coherent API anyway. |
| */ |
| WARN_ON(irqs_disabled()); |
| |
| if (!cpu_addr) |
| return; |
| |
| debug_dma_free_coherent(dev, size, cpu_addr, dma_handle); |
| if (dma_is_direct(ops)) |
| dma_direct_free(dev, size, cpu_addr, dma_handle, attrs); |
| else if (ops->free) |
| ops->free(dev, size, cpu_addr, dma_handle, attrs); |
| } |
| EXPORT_SYMBOL(dma_free_attrs); |
| |
| static inline void dma_check_mask(struct device *dev, u64 mask) |
| { |
| if (sme_active() && (mask < (((u64)sme_get_me_mask() << 1) - 1))) |
| dev_warn(dev, "SME is active, device will require DMA bounce buffers\n"); |
| } |
| |
| int dma_supported(struct device *dev, u64 mask) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| if (dma_is_direct(ops)) |
| return dma_direct_supported(dev, mask); |
| if (!ops->dma_supported) |
| return 1; |
| return ops->dma_supported(dev, mask); |
| } |
| EXPORT_SYMBOL(dma_supported); |
| |
| #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK |
| void arch_dma_set_mask(struct device *dev, u64 mask); |
| #else |
| #define arch_dma_set_mask(dev, mask) do { } while (0) |
| #endif |
| |
| int dma_set_mask(struct device *dev, u64 mask) |
| { |
| if (!dev->dma_mask || !dma_supported(dev, mask)) |
| return -EIO; |
| |
| arch_dma_set_mask(dev, mask); |
| dma_check_mask(dev, mask); |
| *dev->dma_mask = mask; |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_set_mask); |
| |
| #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK |
| int dma_set_coherent_mask(struct device *dev, u64 mask) |
| { |
| if (!dma_supported(dev, mask)) |
| return -EIO; |
| |
| dma_check_mask(dev, mask); |
| dev->coherent_dma_mask = mask; |
| return 0; |
| } |
| EXPORT_SYMBOL(dma_set_coherent_mask); |
| #endif |
| |
| void dma_cache_sync(struct device *dev, void *vaddr, size_t size, |
| enum dma_data_direction dir) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| |
| BUG_ON(!valid_dma_direction(dir)); |
| |
| if (dma_is_direct(ops)) |
| arch_dma_cache_sync(dev, vaddr, size, dir); |
| else if (ops->cache_sync) |
| ops->cache_sync(dev, vaddr, size, dir); |
| } |
| EXPORT_SYMBOL(dma_cache_sync); |
| |
| size_t dma_max_mapping_size(struct device *dev) |
| { |
| const struct dma_map_ops *ops = get_dma_ops(dev); |
| size_t size = SIZE_MAX; |
| |
| if (dma_is_direct(ops)) |
| size = dma_direct_max_mapping_size(dev); |
| else if (ops && ops->max_mapping_size) |
| size = ops->max_mapping_size(dev); |
| |
| return size; |
| } |
| EXPORT_SYMBOL_GPL(dma_max_mapping_size); |