|  | /* | 
|  | * Common Flash Interface support: | 
|  | *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002) | 
|  | * | 
|  | * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp> | 
|  | * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com> | 
|  | * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com> | 
|  | * | 
|  | * 2_by_8 routines added by Simon Munton | 
|  | * | 
|  | * 4_by_16 work by Carolyn J. Smith | 
|  | * | 
|  | * XIP support hooks by Vitaly Wool (based on code for Intel flash | 
|  | * by Nicolas Pitre) | 
|  | * | 
|  | * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0 | 
|  | * | 
|  | * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com | 
|  | * | 
|  | * This code is GPL | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | #include <linux/errno.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/of_platform.h> | 
|  | #include <linux/mtd/map.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/cfi.h> | 
|  | #include <linux/mtd/xip.h> | 
|  |  | 
|  | #define AMD_BOOTLOC_BUG | 
|  | #define FORCE_WORD_WRITE 0 | 
|  |  | 
|  | #define MAX_RETRIES 3 | 
|  |  | 
|  | #define SST49LF004B		0x0060 | 
|  | #define SST49LF040B		0x0050 | 
|  | #define SST49LF008A		0x005a | 
|  | #define AT49BV6416		0x00d6 | 
|  |  | 
|  | static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | 
|  | static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | 
|  | static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *); | 
|  | static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *); | 
|  | static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *); | 
|  | static void cfi_amdstd_sync (struct mtd_info *); | 
|  | static int cfi_amdstd_suspend (struct mtd_info *); | 
|  | static void cfi_amdstd_resume (struct mtd_info *); | 
|  | static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *); | 
|  | static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t, | 
|  | size_t *, struct otp_info *); | 
|  | static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t, | 
|  | size_t *, struct otp_info *); | 
|  | static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *); | 
|  | static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t, | 
|  | size_t *, u_char *); | 
|  | static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t, | 
|  | size_t *, u_char *); | 
|  | static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t, | 
|  | size_t *, u_char *); | 
|  | static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t); | 
|  |  | 
|  | static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf); | 
|  |  | 
|  | static void cfi_amdstd_destroy(struct mtd_info *); | 
|  |  | 
|  | struct mtd_info *cfi_cmdset_0002(struct map_info *, int); | 
|  | static struct mtd_info *cfi_amdstd_setup (struct mtd_info *); | 
|  |  | 
|  | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode); | 
|  | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr); | 
|  | #include "fwh_lock.h" | 
|  |  | 
|  | static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); | 
|  | static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); | 
|  |  | 
|  | static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); | 
|  | static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); | 
|  | static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); | 
|  |  | 
|  | static struct mtd_chip_driver cfi_amdstd_chipdrv = { | 
|  | .probe		= NULL, /* Not usable directly */ | 
|  | .destroy	= cfi_amdstd_destroy, | 
|  | .name		= "cfi_cmdset_0002", | 
|  | .module		= THIS_MODULE | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* #define DEBUG_CFI_FEATURES */ | 
|  |  | 
|  |  | 
|  | #ifdef DEBUG_CFI_FEATURES | 
|  | static void cfi_tell_features(struct cfi_pri_amdstd *extp) | 
|  | { | 
|  | const char* erase_suspend[3] = { | 
|  | "Not supported", "Read only", "Read/write" | 
|  | }; | 
|  | const char* top_bottom[6] = { | 
|  | "No WP", "8x8KiB sectors at top & bottom, no WP", | 
|  | "Bottom boot", "Top boot", | 
|  | "Uniform, Bottom WP", "Uniform, Top WP" | 
|  | }; | 
|  |  | 
|  | printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1); | 
|  | printk("  Address sensitive unlock: %s\n", | 
|  | (extp->SiliconRevision & 1) ? "Not required" : "Required"); | 
|  |  | 
|  | if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend)) | 
|  | printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]); | 
|  | else | 
|  | printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend); | 
|  |  | 
|  | if (extp->BlkProt == 0) | 
|  | printk("  Block protection: Not supported\n"); | 
|  | else | 
|  | printk("  Block protection: %d sectors per group\n", extp->BlkProt); | 
|  |  | 
|  |  | 
|  | printk("  Temporary block unprotect: %s\n", | 
|  | extp->TmpBlkUnprotect ? "Supported" : "Not supported"); | 
|  | printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot); | 
|  | printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps); | 
|  | printk("  Burst mode: %s\n", | 
|  | extp->BurstMode ? "Supported" : "Not supported"); | 
|  | if (extp->PageMode == 0) | 
|  | printk("  Page mode: Not supported\n"); | 
|  | else | 
|  | printk("  Page mode: %d word page\n", extp->PageMode << 2); | 
|  |  | 
|  | printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n", | 
|  | extp->VppMin >> 4, extp->VppMin & 0xf); | 
|  | printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n", | 
|  | extp->VppMax >> 4, extp->VppMax & 0xf); | 
|  |  | 
|  | if (extp->TopBottom < ARRAY_SIZE(top_bottom)) | 
|  | printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]); | 
|  | else | 
|  | printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef AMD_BOOTLOC_BUG | 
|  | /* Wheee. Bring me the head of someone at AMD. */ | 
|  | static void fixup_amd_bootblock(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | 
|  | __u8 major = extp->MajorVersion; | 
|  | __u8 minor = extp->MinorVersion; | 
|  |  | 
|  | if (((major << 8) | minor) < 0x3131) { | 
|  | /* CFI version 1.0 => don't trust bootloc */ | 
|  |  | 
|  | pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n", | 
|  | map->name, cfi->mfr, cfi->id); | 
|  |  | 
|  | /* AFAICS all 29LV400 with a bottom boot block have a device ID | 
|  | * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode. | 
|  | * These were badly detected as they have the 0x80 bit set | 
|  | * so treat them as a special case. | 
|  | */ | 
|  | if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) && | 
|  |  | 
|  | /* Macronix added CFI to their 2nd generation | 
|  | * MX29LV400C B/T but AFAICS no other 29LV400 (AMD, | 
|  | * Fujitsu, Spansion, EON, ESI and older Macronix) | 
|  | * has CFI. | 
|  | * | 
|  | * Therefore also check the manufacturer. | 
|  | * This reduces the risk of false detection due to | 
|  | * the 8-bit device ID. | 
|  | */ | 
|  | (cfi->mfr == CFI_MFR_MACRONIX)) { | 
|  | pr_debug("%s: Macronix MX29LV400C with bottom boot block" | 
|  | " detected\n", map->name); | 
|  | extp->TopBottom = 2;	/* bottom boot */ | 
|  | } else | 
|  | if (cfi->id & 0x80) { | 
|  | printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id); | 
|  | extp->TopBottom = 3;	/* top boot */ | 
|  | } else { | 
|  | extp->TopBottom = 2;	/* bottom boot */ | 
|  | } | 
|  |  | 
|  | pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;" | 
|  | " deduced %s from Device ID\n", map->name, major, minor, | 
|  | extp->TopBottom == 2 ? "bottom" : "top"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void fixup_use_write_buffers(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | if (cfi->cfiq->BufWriteTimeoutTyp) { | 
|  | pr_debug("Using buffer write method\n"); | 
|  | mtd->_write = cfi_amdstd_write_buffers; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Atmel chips don't use the same PRI format as AMD chips */ | 
|  | static void fixup_convert_atmel_pri(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | 
|  | struct cfi_pri_atmel atmel_pri; | 
|  |  | 
|  | memcpy(&atmel_pri, extp, sizeof(atmel_pri)); | 
|  | memset((char *)extp + 5, 0, sizeof(*extp) - 5); | 
|  |  | 
|  | if (atmel_pri.Features & 0x02) | 
|  | extp->EraseSuspend = 2; | 
|  |  | 
|  | /* Some chips got it backwards... */ | 
|  | if (cfi->id == AT49BV6416) { | 
|  | if (atmel_pri.BottomBoot) | 
|  | extp->TopBottom = 3; | 
|  | else | 
|  | extp->TopBottom = 2; | 
|  | } else { | 
|  | if (atmel_pri.BottomBoot) | 
|  | extp->TopBottom = 2; | 
|  | else | 
|  | extp->TopBottom = 3; | 
|  | } | 
|  |  | 
|  | /* burst write mode not supported */ | 
|  | cfi->cfiq->BufWriteTimeoutTyp = 0; | 
|  | cfi->cfiq->BufWriteTimeoutMax = 0; | 
|  | } | 
|  |  | 
|  | static void fixup_use_secsi(struct mtd_info *mtd) | 
|  | { | 
|  | /* Setup for chips with a secsi area */ | 
|  | mtd->_read_user_prot_reg = cfi_amdstd_secsi_read; | 
|  | mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read; | 
|  | } | 
|  |  | 
|  | static void fixup_use_erase_chip(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | if ((cfi->cfiq->NumEraseRegions == 1) && | 
|  | ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) { | 
|  | mtd->_erase = cfi_amdstd_erase_chip; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors | 
|  | * locked by default. | 
|  | */ | 
|  | static void fixup_use_atmel_lock(struct mtd_info *mtd) | 
|  | { | 
|  | mtd->_lock = cfi_atmel_lock; | 
|  | mtd->_unlock = cfi_atmel_unlock; | 
|  | mtd->flags |= MTD_POWERUP_LOCK; | 
|  | } | 
|  |  | 
|  | static void fixup_old_sst_eraseregion(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | /* | 
|  | * These flashes report two separate eraseblock regions based on the | 
|  | * sector_erase-size and block_erase-size, although they both operate on the | 
|  | * same memory. This is not allowed according to CFI, so we just pick the | 
|  | * sector_erase-size. | 
|  | */ | 
|  | cfi->cfiq->NumEraseRegions = 1; | 
|  | } | 
|  |  | 
|  | static void fixup_sst39vf(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | fixup_old_sst_eraseregion(mtd); | 
|  |  | 
|  | cfi->addr_unlock1 = 0x5555; | 
|  | cfi->addr_unlock2 = 0x2AAA; | 
|  | } | 
|  |  | 
|  | static void fixup_sst39vf_rev_b(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | fixup_old_sst_eraseregion(mtd); | 
|  |  | 
|  | cfi->addr_unlock1 = 0x555; | 
|  | cfi->addr_unlock2 = 0x2AA; | 
|  |  | 
|  | cfi->sector_erase_cmd = CMD(0x50); | 
|  | } | 
|  |  | 
|  | static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | fixup_sst39vf_rev_b(mtd); | 
|  |  | 
|  | /* | 
|  | * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where | 
|  | * it should report a size of 8KBytes (0x0020*256). | 
|  | */ | 
|  | cfi->cfiq->EraseRegionInfo[0] = 0x002003ff; | 
|  | pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", | 
|  | mtd->name); | 
|  | } | 
|  |  | 
|  | static void fixup_s29gl064n_sectors(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) { | 
|  | cfi->cfiq->EraseRegionInfo[0] |= 0x0040; | 
|  | pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n", | 
|  | mtd->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fixup_s29gl032n_sectors(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) { | 
|  | cfi->cfiq->EraseRegionInfo[1] &= ~0x0040; | 
|  | pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n", | 
|  | mtd->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void fixup_s29ns512p_sectors(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | /* | 
|  | *  S29NS512P flash uses more than 8bits to report number of sectors, | 
|  | * which is not permitted by CFI. | 
|  | */ | 
|  | cfi->cfiq->EraseRegionInfo[0] = 0x020001ff; | 
|  | pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n", | 
|  | mtd->name); | 
|  | } | 
|  |  | 
|  | /* Used to fix CFI-Tables of chips without Extended Query Tables */ | 
|  | static struct cfi_fixup cfi_nopri_fixup_table[] = { | 
|  | { CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */ | 
|  | { CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */ | 
|  | { CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */ | 
|  | { CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */ | 
|  | { CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */ | 
|  | { CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */ | 
|  | { CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */ | 
|  | { CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */ | 
|  | { 0, 0, NULL } | 
|  | }; | 
|  |  | 
|  | static struct cfi_fixup cfi_fixup_table[] = { | 
|  | { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri }, | 
|  | #ifdef AMD_BOOTLOC_BUG | 
|  | { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock }, | 
|  | { CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock }, | 
|  | { CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock }, | 
|  | #endif | 
|  | { CFI_MFR_AMD, 0x0050, fixup_use_secsi }, | 
|  | { CFI_MFR_AMD, 0x0053, fixup_use_secsi }, | 
|  | { CFI_MFR_AMD, 0x0055, fixup_use_secsi }, | 
|  | { CFI_MFR_AMD, 0x0056, fixup_use_secsi }, | 
|  | { CFI_MFR_AMD, 0x005C, fixup_use_secsi }, | 
|  | { CFI_MFR_AMD, 0x005F, fixup_use_secsi }, | 
|  | { CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors }, | 
|  | { CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors }, | 
|  | { CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors }, | 
|  | { CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors }, | 
|  | { CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors }, | 
|  | { CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */ | 
|  | { CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */ | 
|  | { CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */ | 
|  | { CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */ | 
|  | #if !FORCE_WORD_WRITE | 
|  | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers }, | 
|  | #endif | 
|  | { 0, 0, NULL } | 
|  | }; | 
|  | static struct cfi_fixup jedec_fixup_table[] = { | 
|  | { CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock }, | 
|  | { CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock }, | 
|  | { CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock }, | 
|  | { 0, 0, NULL } | 
|  | }; | 
|  |  | 
|  | static struct cfi_fixup fixup_table[] = { | 
|  | /* The CFI vendor ids and the JEDEC vendor IDs appear | 
|  | * to be common.  It is like the devices id's are as | 
|  | * well.  This table is to pick all cases where | 
|  | * we know that is the case. | 
|  | */ | 
|  | { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip }, | 
|  | { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock }, | 
|  | { 0, 0, NULL } | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void cfi_fixup_major_minor(struct cfi_private *cfi, | 
|  | struct cfi_pri_amdstd *extp) | 
|  | { | 
|  | if (cfi->mfr == CFI_MFR_SAMSUNG) { | 
|  | if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') || | 
|  | (extp->MajorVersion == '3' && extp->MinorVersion == '3')) { | 
|  | /* | 
|  | * Samsung K8P2815UQB and K8D6x16UxM chips | 
|  | * report major=0 / minor=0. | 
|  | * K8D3x16UxC chips report major=3 / minor=3. | 
|  | */ | 
|  | printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu" | 
|  | " Extended Query version to 1.%c\n", | 
|  | extp->MinorVersion); | 
|  | extp->MajorVersion = '1'; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SST 38VF640x chips report major=0xFF / minor=0xFF. | 
|  | */ | 
|  | if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) { | 
|  | extp->MajorVersion = '1'; | 
|  | extp->MinorVersion = '0'; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int is_m29ew(struct cfi_private *cfi) | 
|  | { | 
|  | if (cfi->mfr == CFI_MFR_INTEL && | 
|  | ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) || | 
|  | (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e))) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20: | 
|  | * Some revisions of the M29EW suffer from erase suspend hang ups. In | 
|  | * particular, it can occur when the sequence | 
|  | * Erase Confirm -> Suspend -> Program -> Resume | 
|  | * causes a lockup due to internal timing issues. The consequence is that the | 
|  | * erase cannot be resumed without inserting a dummy command after programming | 
|  | * and prior to resuming. [...] The work-around is to issue a dummy write cycle | 
|  | * that writes an F0 command code before the RESUME command. | 
|  | */ | 
|  | static void cfi_fixup_m29ew_erase_suspend(struct map_info *map, | 
|  | unsigned long adr) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | /* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */ | 
|  | if (is_m29ew(cfi)) | 
|  | map_write(map, CMD(0xF0), adr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22: | 
|  | * | 
|  | * Some revisions of the M29EW (for example, A1 and A2 step revisions) | 
|  | * are affected by a problem that could cause a hang up when an ERASE SUSPEND | 
|  | * command is issued after an ERASE RESUME operation without waiting for a | 
|  | * minimum delay.  The result is that once the ERASE seems to be completed | 
|  | * (no bits are toggling), the contents of the Flash memory block on which | 
|  | * the erase was ongoing could be inconsistent with the expected values | 
|  | * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84 | 
|  | * values), causing a consequent failure of the ERASE operation. | 
|  | * The occurrence of this issue could be high, especially when file system | 
|  | * operations on the Flash are intensive.  As a result, it is recommended | 
|  | * that a patch be applied.  Intensive file system operations can cause many | 
|  | * calls to the garbage routine to free Flash space (also by erasing physical | 
|  | * Flash blocks) and as a result, many consecutive SUSPEND and RESUME | 
|  | * commands can occur.  The problem disappears when a delay is inserted after | 
|  | * the RESUME command by using the udelay() function available in Linux. | 
|  | * The DELAY value must be tuned based on the customer's platform. | 
|  | * The maximum value that fixes the problem in all cases is 500us. | 
|  | * But, in our experience, a delay of 30 µs to 50 µs is sufficient | 
|  | * in most cases. | 
|  | * We have chosen 500µs because this latency is acceptable. | 
|  | */ | 
|  | static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi) | 
|  | { | 
|  | /* | 
|  | * Resolving the Delay After Resume Issue see Micron TN-13-07 | 
|  | * Worst case delay must be 500µs but 30-50µs should be ok as well | 
|  | */ | 
|  | if (is_m29ew(cfi)) | 
|  | cfi_udelay(500); | 
|  | } | 
|  |  | 
|  | struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct device_node __maybe_unused *np = map->device_node; | 
|  | struct mtd_info *mtd; | 
|  | int i; | 
|  |  | 
|  | mtd = kzalloc(sizeof(*mtd), GFP_KERNEL); | 
|  | if (!mtd) | 
|  | return NULL; | 
|  | mtd->priv = map; | 
|  | mtd->type = MTD_NORFLASH; | 
|  |  | 
|  | /* Fill in the default mtd operations */ | 
|  | mtd->_erase   = cfi_amdstd_erase_varsize; | 
|  | mtd->_write   = cfi_amdstd_write_words; | 
|  | mtd->_read    = cfi_amdstd_read; | 
|  | mtd->_sync    = cfi_amdstd_sync; | 
|  | mtd->_suspend = cfi_amdstd_suspend; | 
|  | mtd->_resume  = cfi_amdstd_resume; | 
|  | mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg; | 
|  | mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg; | 
|  | mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info; | 
|  | mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info; | 
|  | mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg; | 
|  | mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg; | 
|  | mtd->flags   = MTD_CAP_NORFLASH; | 
|  | mtd->name    = map->name; | 
|  | mtd->writesize = 1; | 
|  | mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | 
|  |  | 
|  | pr_debug("MTD %s(): write buffer size %d\n", __func__, | 
|  | mtd->writebufsize); | 
|  |  | 
|  | mtd->_panic_write = cfi_amdstd_panic_write; | 
|  | mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot; | 
|  |  | 
|  | if (cfi->cfi_mode==CFI_MODE_CFI){ | 
|  | unsigned char bootloc; | 
|  | __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR; | 
|  | struct cfi_pri_amdstd *extp; | 
|  |  | 
|  | extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu"); | 
|  | if (extp) { | 
|  | /* | 
|  | * It's a real CFI chip, not one for which the probe | 
|  | * routine faked a CFI structure. | 
|  | */ | 
|  | cfi_fixup_major_minor(cfi, extp); | 
|  |  | 
|  | /* | 
|  | * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5 | 
|  | * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19 | 
|  | *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf | 
|  | *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf | 
|  | *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf | 
|  | */ | 
|  | if (extp->MajorVersion != '1' || | 
|  | (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) { | 
|  | printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query " | 
|  | "version %c.%c (%#02x/%#02x).\n", | 
|  | extp->MajorVersion, extp->MinorVersion, | 
|  | extp->MajorVersion, extp->MinorVersion); | 
|  | kfree(extp); | 
|  | kfree(mtd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n", | 
|  | extp->MajorVersion, extp->MinorVersion); | 
|  |  | 
|  | /* Install our own private info structure */ | 
|  | cfi->cmdset_priv = extp; | 
|  |  | 
|  | /* Apply cfi device specific fixups */ | 
|  | cfi_fixup(mtd, cfi_fixup_table); | 
|  |  | 
|  | #ifdef DEBUG_CFI_FEATURES | 
|  | /* Tell the user about it in lots of lovely detail */ | 
|  | cfi_tell_features(extp); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_OF | 
|  | if (np && of_property_read_bool( | 
|  | np, "use-advanced-sector-protection") | 
|  | && extp->BlkProtUnprot == 8) { | 
|  | printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n"); | 
|  | mtd->_lock = cfi_ppb_lock; | 
|  | mtd->_unlock = cfi_ppb_unlock; | 
|  | mtd->_is_locked = cfi_ppb_is_locked; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | bootloc = extp->TopBottom; | 
|  | if ((bootloc < 2) || (bootloc > 5)) { | 
|  | printk(KERN_WARNING "%s: CFI contains unrecognised boot " | 
|  | "bank location (%d). Assuming bottom.\n", | 
|  | map->name, bootloc); | 
|  | bootloc = 2; | 
|  | } | 
|  |  | 
|  | if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) { | 
|  | printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name); | 
|  |  | 
|  | for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) { | 
|  | int j = (cfi->cfiq->NumEraseRegions-1)-i; | 
|  |  | 
|  | swap(cfi->cfiq->EraseRegionInfo[i], | 
|  | cfi->cfiq->EraseRegionInfo[j]); | 
|  | } | 
|  | } | 
|  | /* Set the default CFI lock/unlock addresses */ | 
|  | cfi->addr_unlock1 = 0x555; | 
|  | cfi->addr_unlock2 = 0x2aa; | 
|  | } | 
|  | cfi_fixup(mtd, cfi_nopri_fixup_table); | 
|  |  | 
|  | if (!cfi->addr_unlock1 || !cfi->addr_unlock2) { | 
|  | kfree(mtd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | } /* CFI mode */ | 
|  | else if (cfi->cfi_mode == CFI_MODE_JEDEC) { | 
|  | /* Apply jedec specific fixups */ | 
|  | cfi_fixup(mtd, jedec_fixup_table); | 
|  | } | 
|  | /* Apply generic fixups */ | 
|  | cfi_fixup(mtd, fixup_table); | 
|  |  | 
|  | for (i=0; i< cfi->numchips; i++) { | 
|  | cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp; | 
|  | cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp; | 
|  | cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp; | 
|  | /* | 
|  | * First calculate the timeout max according to timeout field | 
|  | * of struct cfi_ident that probed from chip's CFI aera, if | 
|  | * available. Specify a minimum of 2000us, in case the CFI data | 
|  | * is wrong. | 
|  | */ | 
|  | if (cfi->cfiq->BufWriteTimeoutTyp && | 
|  | cfi->cfiq->BufWriteTimeoutMax) | 
|  | cfi->chips[i].buffer_write_time_max = | 
|  | 1 << (cfi->cfiq->BufWriteTimeoutTyp + | 
|  | cfi->cfiq->BufWriteTimeoutMax); | 
|  | else | 
|  | cfi->chips[i].buffer_write_time_max = 0; | 
|  |  | 
|  | cfi->chips[i].buffer_write_time_max = | 
|  | max(cfi->chips[i].buffer_write_time_max, 2000); | 
|  |  | 
|  | cfi->chips[i].ref_point_counter = 0; | 
|  | init_waitqueue_head(&(cfi->chips[i].wq)); | 
|  | } | 
|  |  | 
|  | map->fldrv = &cfi_amdstd_chipdrv; | 
|  |  | 
|  | return cfi_amdstd_setup(mtd); | 
|  | } | 
|  | struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); | 
|  | struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002"))); | 
|  | EXPORT_SYMBOL_GPL(cfi_cmdset_0002); | 
|  | EXPORT_SYMBOL_GPL(cfi_cmdset_0006); | 
|  | EXPORT_SYMBOL_GPL(cfi_cmdset_0701); | 
|  |  | 
|  | static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave; | 
|  | unsigned long offset = 0; | 
|  | int i,j; | 
|  |  | 
|  | printk(KERN_NOTICE "number of %s chips: %d\n", | 
|  | (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips); | 
|  | /* Select the correct geometry setup */ | 
|  | mtd->size = devsize * cfi->numchips; | 
|  |  | 
|  | mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips; | 
|  | mtd->eraseregions = kmalloc_array(mtd->numeraseregions, | 
|  | sizeof(struct mtd_erase_region_info), | 
|  | GFP_KERNEL); | 
|  | if (!mtd->eraseregions) | 
|  | goto setup_err; | 
|  |  | 
|  | for (i=0; i<cfi->cfiq->NumEraseRegions; i++) { | 
|  | unsigned long ernum, ersize; | 
|  | ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave; | 
|  | ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1; | 
|  |  | 
|  | if (mtd->erasesize < ersize) { | 
|  | mtd->erasesize = ersize; | 
|  | } | 
|  | for (j=0; j<cfi->numchips; j++) { | 
|  | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset; | 
|  | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize; | 
|  | mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum; | 
|  | } | 
|  | offset += (ersize * ernum); | 
|  | } | 
|  | if (offset != devsize) { | 
|  | /* Argh */ | 
|  | printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize); | 
|  | goto setup_err; | 
|  | } | 
|  |  | 
|  | __module_get(THIS_MODULE); | 
|  | register_reboot_notifier(&mtd->reboot_notifier); | 
|  | return mtd; | 
|  |  | 
|  | setup_err: | 
|  | kfree(mtd->eraseregions); | 
|  | kfree(mtd); | 
|  | kfree(cfi->cmdset_priv); | 
|  | kfree(cfi->cfiq); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the chip is ready. | 
|  | * | 
|  | * Ready is one of: read mode, query mode, erase-suspend-read mode (in any | 
|  | * non-suspended sector) and is indicated by no toggle bits toggling. | 
|  | * | 
|  | * Note that anything more complicated than checking if no bits are toggling | 
|  | * (including checking DQ5 for an error status) is tricky to get working | 
|  | * correctly and is therefore not done	(particularly with interleaved chips | 
|  | * as each chip must be checked independently of the others). | 
|  | */ | 
|  | static int __xipram chip_ready(struct map_info *map, unsigned long addr) | 
|  | { | 
|  | map_word d, t; | 
|  |  | 
|  | d = map_read(map, addr); | 
|  | t = map_read(map, addr); | 
|  |  | 
|  | return map_word_equal(map, d, t); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if the chip is ready and has the correct value. | 
|  | * | 
|  | * Ready is one of: read mode, query mode, erase-suspend-read mode (in any | 
|  | * non-suspended sector) and it is indicated by no bits toggling. | 
|  | * | 
|  | * Error are indicated by toggling bits or bits held with the wrong value, | 
|  | * or with bits toggling. | 
|  | * | 
|  | * Note that anything more complicated than checking if no bits are toggling | 
|  | * (including checking DQ5 for an error status) is tricky to get working | 
|  | * correctly and is therefore not done	(particularly with interleaved chips | 
|  | * as each chip must be checked independently of the others). | 
|  | * | 
|  | */ | 
|  | static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected) | 
|  | { | 
|  | map_word oldd, curd; | 
|  |  | 
|  | oldd = map_read(map, addr); | 
|  | curd = map_read(map, addr); | 
|  |  | 
|  | return	map_word_equal(map, oldd, curd) && | 
|  | map_word_equal(map, curd, expected); | 
|  | } | 
|  |  | 
|  | static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode) | 
|  | { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long timeo; | 
|  | struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv; | 
|  |  | 
|  | resettime: | 
|  | timeo = jiffies + HZ; | 
|  | retry: | 
|  | switch (chip->state) { | 
|  |  | 
|  | case FL_STATUS: | 
|  | for (;;) { | 
|  | if (chip_ready(map, adr)) | 
|  | break; | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); | 
|  | return -EIO; | 
|  | } | 
|  | mutex_unlock(&chip->mutex); | 
|  | cfi_udelay(1); | 
|  | mutex_lock(&chip->mutex); | 
|  | /* Someone else might have been playing with it. */ | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | case FL_READY: | 
|  | case FL_CFI_QUERY: | 
|  | case FL_JEDEC_QUERY: | 
|  | return 0; | 
|  |  | 
|  | case FL_ERASING: | 
|  | if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) || | 
|  | !(mode == FL_READY || mode == FL_POINT || | 
|  | (mode == FL_WRITING && (cfip->EraseSuspend & 0x2)))) | 
|  | goto sleep; | 
|  |  | 
|  | /* Do not allow suspend iff read/write to EB address */ | 
|  | if ((adr & chip->in_progress_block_mask) == | 
|  | chip->in_progress_block_addr) | 
|  | goto sleep; | 
|  |  | 
|  | /* Erase suspend */ | 
|  | /* It's harmless to issue the Erase-Suspend and Erase-Resume | 
|  | * commands when the erase algorithm isn't in progress. */ | 
|  | map_write(map, CMD(0xB0), chip->in_progress_block_addr); | 
|  | chip->oldstate = FL_ERASING; | 
|  | chip->state = FL_ERASE_SUSPENDING; | 
|  | chip->erase_suspended = 1; | 
|  | for (;;) { | 
|  | if (chip_ready(map, adr)) | 
|  | break; | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | /* Should have suspended the erase by now. | 
|  | * Send an Erase-Resume command as either | 
|  | * there was an error (so leave the erase | 
|  | * routine to recover from it) or we trying to | 
|  | * use the erase-in-progress sector. */ | 
|  | put_chip(map, chip, adr); | 
|  | printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&chip->mutex); | 
|  | cfi_udelay(1); | 
|  | mutex_lock(&chip->mutex); | 
|  | /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING. | 
|  | So we can just loop here. */ | 
|  | } | 
|  | chip->state = FL_READY; | 
|  | return 0; | 
|  |  | 
|  | case FL_XIP_WHILE_ERASING: | 
|  | if (mode != FL_READY && mode != FL_POINT && | 
|  | (!cfip || !(cfip->EraseSuspend&2))) | 
|  | goto sleep; | 
|  | chip->oldstate = chip->state; | 
|  | chip->state = FL_READY; | 
|  | return 0; | 
|  |  | 
|  | case FL_SHUTDOWN: | 
|  | /* The machine is rebooting */ | 
|  | return -EIO; | 
|  |  | 
|  | case FL_POINT: | 
|  | /* Only if there's no operation suspended... */ | 
|  | if (mode == FL_READY && chip->oldstate == FL_READY) | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | sleep: | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | mutex_unlock(&chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | mutex_lock(&chip->mutex); | 
|  | goto resettime; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | switch(chip->oldstate) { | 
|  | case FL_ERASING: | 
|  | cfi_fixup_m29ew_erase_suspend(map, | 
|  | chip->in_progress_block_addr); | 
|  | map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr); | 
|  | cfi_fixup_m29ew_delay_after_resume(cfi); | 
|  | chip->oldstate = FL_READY; | 
|  | chip->state = FL_ERASING; | 
|  | break; | 
|  |  | 
|  | case FL_XIP_WHILE_ERASING: | 
|  | chip->state = chip->oldstate; | 
|  | chip->oldstate = FL_READY; | 
|  | break; | 
|  |  | 
|  | case FL_READY: | 
|  | case FL_STATUS: | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate); | 
|  | } | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_XIP | 
|  |  | 
|  | /* | 
|  | * No interrupt what so ever can be serviced while the flash isn't in array | 
|  | * mode.  This is ensured by the xip_disable() and xip_enable() functions | 
|  | * enclosing any code path where the flash is known not to be in array mode. | 
|  | * And within a XIP disabled code path, only functions marked with __xipram | 
|  | * may be called and nothing else (it's a good thing to inspect generated | 
|  | * assembly to make sure inline functions were actually inlined and that gcc | 
|  | * didn't emit calls to its own support functions). Also configuring MTD CFI | 
|  | * support to a single buswidth and a single interleave is also recommended. | 
|  | */ | 
|  |  | 
|  | static void xip_disable(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr) | 
|  | { | 
|  | /* TODO: chips with no XIP use should ignore and return */ | 
|  | (void) map_read(map, adr); /* ensure mmu mapping is up to date */ | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | static void __xipram xip_enable(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | if (chip->state != FL_POINT && chip->state != FL_READY) { | 
|  | map_write(map, CMD(0xf0), adr); | 
|  | chip->state = FL_READY; | 
|  | } | 
|  | (void) map_read(map, adr); | 
|  | xip_iprefetch(); | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a delay is required for the flash operation to complete, the | 
|  | * xip_udelay() function is polling for both the given timeout and pending | 
|  | * (but still masked) hardware interrupts.  Whenever there is an interrupt | 
|  | * pending then the flash erase operation is suspended, array mode restored | 
|  | * and interrupts unmasked.  Task scheduling might also happen at that | 
|  | * point.  The CPU eventually returns from the interrupt or the call to | 
|  | * schedule() and the suspended flash operation is resumed for the remaining | 
|  | * of the delay period. | 
|  | * | 
|  | * Warning: this function _will_ fool interrupt latency tracing tools. | 
|  | */ | 
|  |  | 
|  | static void __xipram xip_udelay(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, int usec) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct cfi_pri_amdstd *extp = cfi->cmdset_priv; | 
|  | map_word status, OK = CMD(0x80); | 
|  | unsigned long suspended, start = xip_currtime(); | 
|  | flstate_t oldstate; | 
|  |  | 
|  | do { | 
|  | cpu_relax(); | 
|  | if (xip_irqpending() && extp && | 
|  | ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) && | 
|  | (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) { | 
|  | /* | 
|  | * Let's suspend the erase operation when supported. | 
|  | * Note that we currently don't try to suspend | 
|  | * interleaved chips if there is already another | 
|  | * operation suspended (imagine what happens | 
|  | * when one chip was already done with the current | 
|  | * operation while another chip suspended it, then | 
|  | * we resume the whole thing at once).  Yes, it | 
|  | * can happen! | 
|  | */ | 
|  | map_write(map, CMD(0xb0), adr); | 
|  | usec -= xip_elapsed_since(start); | 
|  | suspended = xip_currtime(); | 
|  | do { | 
|  | if (xip_elapsed_since(suspended) > 100000) { | 
|  | /* | 
|  | * The chip doesn't want to suspend | 
|  | * after waiting for 100 msecs. | 
|  | * This is a critical error but there | 
|  | * is not much we can do here. | 
|  | */ | 
|  | return; | 
|  | } | 
|  | status = map_read(map, adr); | 
|  | } while (!map_word_andequal(map, status, OK, OK)); | 
|  |  | 
|  | /* Suspend succeeded */ | 
|  | oldstate = chip->state; | 
|  | if (!map_word_bitsset(map, status, CMD(0x40))) | 
|  | break; | 
|  | chip->state = FL_XIP_WHILE_ERASING; | 
|  | chip->erase_suspended = 1; | 
|  | map_write(map, CMD(0xf0), adr); | 
|  | (void) map_read(map, adr); | 
|  | xip_iprefetch(); | 
|  | local_irq_enable(); | 
|  | mutex_unlock(&chip->mutex); | 
|  | xip_iprefetch(); | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * We're back.  However someone else might have | 
|  | * decided to go write to the chip if we are in | 
|  | * a suspended erase state.  If so let's wait | 
|  | * until it's done. | 
|  | */ | 
|  | mutex_lock(&chip->mutex); | 
|  | while (chip->state != FL_XIP_WHILE_ERASING) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | mutex_unlock(&chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | mutex_lock(&chip->mutex); | 
|  | } | 
|  | /* Disallow XIP again */ | 
|  | local_irq_disable(); | 
|  |  | 
|  | /* Correct Erase Suspend Hangups for M29EW */ | 
|  | cfi_fixup_m29ew_erase_suspend(map, adr); | 
|  | /* Resume the write or erase operation */ | 
|  | map_write(map, cfi->sector_erase_cmd, adr); | 
|  | chip->state = oldstate; | 
|  | start = xip_currtime(); | 
|  | } else if (usec >= 1000000/HZ) { | 
|  | /* | 
|  | * Try to save on CPU power when waiting delay | 
|  | * is at least a system timer tick period. | 
|  | * No need to be extremely accurate here. | 
|  | */ | 
|  | xip_cpu_idle(); | 
|  | } | 
|  | status = map_read(map, adr); | 
|  | } while (!map_word_andequal(map, status, OK, OK) | 
|  | && xip_elapsed_since(start) < usec); | 
|  | } | 
|  |  | 
|  | #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec) | 
|  |  | 
|  | /* | 
|  | * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while | 
|  | * the flash is actively programming or erasing since we have to poll for | 
|  | * the operation to complete anyway.  We can't do that in a generic way with | 
|  | * a XIP setup so do it before the actual flash operation in this case | 
|  | * and stub it out from INVALIDATE_CACHE_UDELAY. | 
|  | */ | 
|  | #define XIP_INVAL_CACHED_RANGE(map, from, size)  \ | 
|  | INVALIDATE_CACHED_RANGE(map, from, size) | 
|  |  | 
|  | #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \ | 
|  | UDELAY(map, chip, adr, usec) | 
|  |  | 
|  | /* | 
|  | * Extra notes: | 
|  | * | 
|  | * Activating this XIP support changes the way the code works a bit.  For | 
|  | * example the code to suspend the current process when concurrent access | 
|  | * happens is never executed because xip_udelay() will always return with the | 
|  | * same chip state as it was entered with.  This is why there is no care for | 
|  | * the presence of add_wait_queue() or schedule() calls from within a couple | 
|  | * xip_disable()'d  areas of code, like in do_erase_oneblock for example. | 
|  | * The queueing and scheduling are always happening within xip_udelay(). | 
|  | * | 
|  | * Similarly, get_chip() and put_chip() just happen to always be executed | 
|  | * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state | 
|  | * is in array mode, therefore never executing many cases therein and not | 
|  | * causing any problem with XIP. | 
|  | */ | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define xip_disable(map, chip, adr) | 
|  | #define xip_enable(map, chip, adr) | 
|  | #define XIP_INVAL_CACHED_RANGE(x...) | 
|  |  | 
|  | #define UDELAY(map, chip, adr, usec)  \ | 
|  | do {  \ | 
|  | mutex_unlock(&chip->mutex);  \ | 
|  | cfi_udelay(usec);  \ | 
|  | mutex_lock(&chip->mutex);  \ | 
|  | } while (0) | 
|  |  | 
|  | #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \ | 
|  | do {  \ | 
|  | mutex_unlock(&chip->mutex);  \ | 
|  | INVALIDATE_CACHED_RANGE(map, adr, len);  \ | 
|  | cfi_udelay(usec);  \ | 
|  | mutex_lock(&chip->mutex);  \ | 
|  | } while (0) | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf) | 
|  | { | 
|  | unsigned long cmd_addr; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int ret; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | /* Ensure cmd read/writes are aligned. */ | 
|  | cmd_addr = adr & ~(map_bankwidth(map)-1); | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, cmd_addr, FL_READY); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (chip->state != FL_POINT && chip->state != FL_READY) { | 
|  | map_write(map, CMD(0xf0), cmd_addr); | 
|  | chip->state = FL_READY; | 
|  | } | 
|  |  | 
|  | map_copy_from(map, buf, adr, len); | 
|  |  | 
|  | put_chip(map, chip, cmd_addr); | 
|  |  | 
|  | mutex_unlock(&chip->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long ofs; | 
|  | int chipnum; | 
|  | int ret = 0; | 
|  |  | 
|  | /* ofs: offset within the first chip that the first read should start */ | 
|  | chipnum = (from >> cfi->chipshift); | 
|  | ofs = from - (chipnum <<  cfi->chipshift); | 
|  |  | 
|  | while (len) { | 
|  | unsigned long thislen; | 
|  |  | 
|  | if (chipnum >= cfi->numchips) | 
|  | break; | 
|  |  | 
|  | if ((len + ofs -1) >> cfi->chipshift) | 
|  | thislen = (1<<cfi->chipshift) - ofs; | 
|  | else | 
|  | thislen = len; | 
|  |  | 
|  | ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | *retlen += thislen; | 
|  | len -= thislen; | 
|  | buf += thislen; | 
|  |  | 
|  | ofs = 0; | 
|  | chipnum++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip, | 
|  | loff_t adr, size_t len, u_char *buf, size_t grouplen); | 
|  |  | 
|  | static inline void otp_enter(struct map_info *map, struct flchip *chip, | 
|  | loff_t adr, size_t len) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  |  | 
|  | INVALIDATE_CACHED_RANGE(map, chip->start + adr, len); | 
|  | } | 
|  |  | 
|  | static inline void otp_exit(struct map_info *map, struct flchip *chip, | 
|  | loff_t adr, size_t len) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  |  | 
|  | INVALIDATE_CACHED_RANGE(map, chip->start + adr, len); | 
|  | } | 
|  |  | 
|  | static inline int do_read_secsi_onechip(struct map_info *map, | 
|  | struct flchip *chip, loff_t adr, | 
|  | size_t len, u_char *buf, | 
|  | size_t grouplen) | 
|  | { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | retry: | 
|  | mutex_lock(&chip->mutex); | 
|  |  | 
|  | if (chip->state != FL_READY){ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | chip->state = FL_READY; | 
|  |  | 
|  | otp_enter(map, chip, adr, len); | 
|  | map_copy_from(map, buf, adr, len); | 
|  | otp_exit(map, chip, adr, len); | 
|  |  | 
|  | wake_up(&chip->wq); | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long ofs; | 
|  | int chipnum; | 
|  | int ret = 0; | 
|  |  | 
|  | /* ofs: offset within the first chip that the first read should start */ | 
|  | /* 8 secsi bytes per chip */ | 
|  | chipnum=from>>3; | 
|  | ofs=from & 7; | 
|  |  | 
|  | while (len) { | 
|  | unsigned long thislen; | 
|  |  | 
|  | if (chipnum >= cfi->numchips) | 
|  | break; | 
|  |  | 
|  | if ((len + ofs -1) >> 3) | 
|  | thislen = (1<<3) - ofs; | 
|  | else | 
|  | thislen = len; | 
|  |  | 
|  | ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, | 
|  | thislen, buf, 0); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | *retlen += thislen; | 
|  | len -= thislen; | 
|  | buf += thislen; | 
|  |  | 
|  | ofs = 0; | 
|  | chipnum++; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, map_word datum, | 
|  | int mode); | 
|  |  | 
|  | static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr, | 
|  | size_t len, u_char *buf, size_t grouplen) | 
|  | { | 
|  | int ret; | 
|  | while (len) { | 
|  | unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1); | 
|  | int gap = adr - bus_ofs; | 
|  | int n = min_t(int, len, map_bankwidth(map) - gap); | 
|  | map_word datum = map_word_ff(map); | 
|  |  | 
|  | if (n != map_bankwidth(map)) { | 
|  | /* partial write of a word, load old contents */ | 
|  | otp_enter(map, chip, bus_ofs, map_bankwidth(map)); | 
|  | datum = map_read(map, bus_ofs); | 
|  | otp_exit(map, chip, bus_ofs, map_bankwidth(map)); | 
|  | } | 
|  |  | 
|  | datum = map_word_load_partial(map, datum, buf, gap, n); | 
|  | ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | adr += n; | 
|  | buf += n; | 
|  | len -= n; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr, | 
|  | size_t len, u_char *buf, size_t grouplen) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | uint8_t lockreg; | 
|  | unsigned long timeo; | 
|  | int ret; | 
|  |  | 
|  | /* make sure area matches group boundaries */ | 
|  | if ((adr != 0) || (len != grouplen)) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, chip->start, FL_LOCKING); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  | chip->state = FL_LOCKING; | 
|  |  | 
|  | /* Enter lock register command */ | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  |  | 
|  | /* read lock register */ | 
|  | lockreg = cfi_read_query(map, 0); | 
|  |  | 
|  | /* set bit 0 to protect extended memory block */ | 
|  | lockreg &= ~0x01; | 
|  |  | 
|  | /* set bit 0 to protect extended memory block */ | 
|  | /* write lock register */ | 
|  | map_write(map, CMD(0xA0), chip->start); | 
|  | map_write(map, CMD(lockreg), chip->start); | 
|  |  | 
|  | /* wait for chip to become ready */ | 
|  | timeo = jiffies + msecs_to_jiffies(2); | 
|  | for (;;) { | 
|  | if (chip_ready(map, adr)) | 
|  | break; | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | pr_err("Waiting for chip to be ready timed out.\n"); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  | UDELAY(map, chip, 0, 1); | 
|  | } | 
|  |  | 
|  | /* exit protection commands */ | 
|  | map_write(map, CMD(0x90), chip->start); | 
|  | map_write(map, CMD(0x00), chip->start); | 
|  |  | 
|  | chip->state = FL_READY; | 
|  | put_chip(map, chip, chip->start); | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf, | 
|  | otp_op_t action, int user_regs) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int ofs_factor = cfi->interleave * cfi->device_type; | 
|  | unsigned long base; | 
|  | int chipnum; | 
|  | struct flchip *chip; | 
|  | uint8_t otp, lockreg; | 
|  | int ret; | 
|  |  | 
|  | size_t user_size, factory_size, otpsize; | 
|  | loff_t user_offset, factory_offset, otpoffset; | 
|  | int user_locked = 0, otplocked; | 
|  |  | 
|  | *retlen = 0; | 
|  |  | 
|  | for (chipnum = 0; chipnum < cfi->numchips; chipnum++) { | 
|  | chip = &cfi->chips[chipnum]; | 
|  | factory_size = 0; | 
|  | user_size = 0; | 
|  |  | 
|  | /* Micron M29EW family */ | 
|  | if (is_m29ew(cfi)) { | 
|  | base = chip->start; | 
|  |  | 
|  | /* check whether secsi area is factory locked | 
|  | or user lockable */ | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, base, FL_CFI_QUERY); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  | cfi_qry_mode_on(base, map, cfi); | 
|  | otp = cfi_read_query(map, base + 0x3 * ofs_factor); | 
|  | cfi_qry_mode_off(base, map, cfi); | 
|  | put_chip(map, chip, base); | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | if (otp & 0x80) { | 
|  | /* factory locked */ | 
|  | factory_offset = 0; | 
|  | factory_size = 0x100; | 
|  | } else { | 
|  | /* customer lockable */ | 
|  | user_offset = 0; | 
|  | user_size = 0x100; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, base, FL_LOCKING); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Enter lock register command */ | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, | 
|  | chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, | 
|  | chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x40, cfi->addr_unlock1, | 
|  | chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | /* read lock register */ | 
|  | lockreg = cfi_read_query(map, 0); | 
|  | /* exit protection commands */ | 
|  | map_write(map, CMD(0x90), chip->start); | 
|  | map_write(map, CMD(0x00), chip->start); | 
|  | put_chip(map, chip, chip->start); | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | user_locked = ((lockreg & 0x01) == 0x00); | 
|  | } | 
|  | } | 
|  |  | 
|  | otpsize = user_regs ? user_size : factory_size; | 
|  | if (!otpsize) | 
|  | continue; | 
|  | otpoffset = user_regs ? user_offset : factory_offset; | 
|  | otplocked = user_regs ? user_locked : 1; | 
|  |  | 
|  | if (!action) { | 
|  | /* return otpinfo */ | 
|  | struct otp_info *otpinfo; | 
|  | len -= sizeof(*otpinfo); | 
|  | if (len <= 0) | 
|  | return -ENOSPC; | 
|  | otpinfo = (struct otp_info *)buf; | 
|  | otpinfo->start = from; | 
|  | otpinfo->length = otpsize; | 
|  | otpinfo->locked = otplocked; | 
|  | buf += sizeof(*otpinfo); | 
|  | *retlen += sizeof(*otpinfo); | 
|  | from += otpsize; | 
|  | } else if ((from < otpsize) && (len > 0)) { | 
|  | size_t size; | 
|  | size = (len < otpsize - from) ? len : otpsize - from; | 
|  | ret = action(map, chip, otpoffset + from, size, buf, | 
|  | otpsize); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | buf += size; | 
|  | len -= size; | 
|  | *retlen += size; | 
|  | from = 0; | 
|  | } else { | 
|  | from -= otpsize; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len, | 
|  | size_t *retlen, struct otp_info *buf) | 
|  | { | 
|  | return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf, | 
|  | NULL, 0); | 
|  | } | 
|  |  | 
|  | static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len, | 
|  | size_t *retlen, struct otp_info *buf) | 
|  | { | 
|  | return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf, | 
|  | NULL, 1); | 
|  | } | 
|  |  | 
|  | static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, | 
|  | size_t len, size_t *retlen, | 
|  | u_char *buf) | 
|  | { | 
|  | return cfi_amdstd_otp_walk(mtd, from, len, retlen, | 
|  | buf, do_read_secsi_onechip, 0); | 
|  | } | 
|  |  | 
|  | static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, | 
|  | size_t len, size_t *retlen, | 
|  | u_char *buf) | 
|  | { | 
|  | return cfi_amdstd_otp_walk(mtd, from, len, retlen, | 
|  | buf, do_read_secsi_onechip, 1); | 
|  | } | 
|  |  | 
|  | static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from, | 
|  | size_t len, size_t *retlen, | 
|  | u_char *buf) | 
|  | { | 
|  | return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf, | 
|  | do_otp_write, 1); | 
|  | } | 
|  |  | 
|  | static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, | 
|  | size_t len) | 
|  | { | 
|  | size_t retlen; | 
|  | return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL, | 
|  | do_otp_lock, 1); | 
|  | } | 
|  |  | 
|  | static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, map_word datum, | 
|  | int mode) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long timeo = jiffies + HZ; | 
|  | /* | 
|  | * We use a 1ms + 1 jiffies generic timeout for writes (most devices | 
|  | * have a max write time of a few hundreds usec). However, we should | 
|  | * use the maximum timeout value given by the chip at probe time | 
|  | * instead.  Unfortunately, struct flchip does have a field for | 
|  | * maximum timeout, only for typical which can be far too short | 
|  | * depending of the conditions.	 The ' + 1' is to avoid having a | 
|  | * timeout of 0 jiffies if HZ is smaller than 1000. | 
|  | */ | 
|  | unsigned long uWriteTimeout = (HZ / 1000) + 1; | 
|  | int ret = 0; | 
|  | map_word oldd; | 
|  | int retry_cnt = 0; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, adr, mode); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", | 
|  | __func__, adr, datum.x[0]); | 
|  |  | 
|  | if (mode == FL_OTP_WRITE) | 
|  | otp_enter(map, chip, adr, map_bankwidth(map)); | 
|  |  | 
|  | /* | 
|  | * Check for a NOP for the case when the datum to write is already | 
|  | * present - it saves time and works around buggy chips that corrupt | 
|  | * data at other locations when 0xff is written to a location that | 
|  | * already contains 0xff. | 
|  | */ | 
|  | oldd = map_read(map, adr); | 
|  | if (map_word_equal(map, oldd, datum)) { | 
|  | pr_debug("MTD %s(): NOP\n", | 
|  | __func__); | 
|  | goto op_done; | 
|  | } | 
|  |  | 
|  | XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map)); | 
|  | ENABLE_VPP(map); | 
|  | xip_disable(map, chip, adr); | 
|  |  | 
|  | retry: | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | map_write(map, datum, adr); | 
|  | chip->state = mode; | 
|  |  | 
|  | INVALIDATE_CACHE_UDELAY(map, chip, | 
|  | adr, map_bankwidth(map), | 
|  | chip->word_write_time); | 
|  |  | 
|  | /* See comment above for timeout value. */ | 
|  | timeo = jiffies + uWriteTimeout; | 
|  | for (;;) { | 
|  | if (chip->state != mode) { | 
|  | /* Someone's suspended the write. Sleep */ | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | mutex_unlock(&chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | timeo = jiffies + (HZ / 2); /* FIXME */ | 
|  | mutex_lock(&chip->mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (time_after(jiffies, timeo) && !chip_ready(map, adr)){ | 
|  | xip_enable(map, chip, adr); | 
|  | printk(KERN_WARNING "MTD %s(): software timeout\n", __func__); | 
|  | xip_disable(map, chip, adr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (chip_ready(map, adr)) | 
|  | break; | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | UDELAY(map, chip, adr, 1); | 
|  | } | 
|  | /* Did we succeed? */ | 
|  | if (!chip_good(map, adr, datum)) { | 
|  | /* reset on all failures. */ | 
|  | map_write(map, CMD(0xF0), chip->start); | 
|  | /* FIXME - should have reset delay before continuing */ | 
|  |  | 
|  | if (++retry_cnt <= MAX_RETRIES) | 
|  | goto retry; | 
|  |  | 
|  | ret = -EIO; | 
|  | } | 
|  | xip_enable(map, chip, adr); | 
|  | op_done: | 
|  | if (mode == FL_OTP_WRITE) | 
|  | otp_exit(map, chip, adr, map_bankwidth(map)); | 
|  | chip->state = FL_READY; | 
|  | DISABLE_VPP(map); | 
|  | put_chip(map, chip, adr); | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int ret = 0; | 
|  | int chipnum; | 
|  | unsigned long ofs, chipstart; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | chipnum = to >> cfi->chipshift; | 
|  | ofs = to  - (chipnum << cfi->chipshift); | 
|  | chipstart = cfi->chips[chipnum].start; | 
|  |  | 
|  | /* If it's not bus-aligned, do the first byte write */ | 
|  | if (ofs & (map_bankwidth(map)-1)) { | 
|  | unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1); | 
|  | int i = ofs - bus_ofs; | 
|  | int n = 0; | 
|  | map_word tmp_buf; | 
|  |  | 
|  | retry: | 
|  | mutex_lock(&cfi->chips[chipnum].mutex); | 
|  |  | 
|  | if (cfi->chips[chipnum].state != FL_READY) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&cfi->chips[chipnum].wq, &wait); | 
|  |  | 
|  | mutex_unlock(&cfi->chips[chipnum].mutex); | 
|  |  | 
|  | schedule(); | 
|  | remove_wait_queue(&cfi->chips[chipnum].wq, &wait); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /* Load 'tmp_buf' with old contents of flash */ | 
|  | tmp_buf = map_read(map, bus_ofs+chipstart); | 
|  |  | 
|  | mutex_unlock(&cfi->chips[chipnum].mutex); | 
|  |  | 
|  | /* Number of bytes to copy from buffer */ | 
|  | n = min_t(int, len, map_bankwidth(map)-i); | 
|  |  | 
|  | tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); | 
|  |  | 
|  | ret = do_write_oneword(map, &cfi->chips[chipnum], | 
|  | bus_ofs, tmp_buf, FL_WRITING); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ofs += n; | 
|  | buf += n; | 
|  | (*retlen) += n; | 
|  | len -= n; | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum ++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We are now aligned, write as much as possible */ | 
|  | while(len >= map_bankwidth(map)) { | 
|  | map_word datum; | 
|  |  | 
|  | datum = map_word_load(map, buf); | 
|  |  | 
|  | ret = do_write_oneword(map, &cfi->chips[chipnum], | 
|  | ofs, datum, FL_WRITING); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ofs += map_bankwidth(map); | 
|  | buf += map_bankwidth(map); | 
|  | (*retlen) += map_bankwidth(map); | 
|  | len -= map_bankwidth(map); | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum ++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | chipstart = cfi->chips[chipnum].start; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write the trailing bytes if any */ | 
|  | if (len & (map_bankwidth(map)-1)) { | 
|  | map_word tmp_buf; | 
|  |  | 
|  | retry1: | 
|  | mutex_lock(&cfi->chips[chipnum].mutex); | 
|  |  | 
|  | if (cfi->chips[chipnum].state != FL_READY) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&cfi->chips[chipnum].wq, &wait); | 
|  |  | 
|  | mutex_unlock(&cfi->chips[chipnum].mutex); | 
|  |  | 
|  | schedule(); | 
|  | remove_wait_queue(&cfi->chips[chipnum].wq, &wait); | 
|  | goto retry1; | 
|  | } | 
|  |  | 
|  | tmp_buf = map_read(map, ofs + chipstart); | 
|  |  | 
|  | mutex_unlock(&cfi->chips[chipnum].mutex); | 
|  |  | 
|  | tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); | 
|  |  | 
|  | ret = do_write_oneword(map, &cfi->chips[chipnum], | 
|  | ofs, tmp_buf, FL_WRITING); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | (*retlen) += len; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * FIXME: interleaved mode not tested, and probably not supported! | 
|  | */ | 
|  | static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, const u_char *buf, | 
|  | int len) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long timeo = jiffies + HZ; | 
|  | /* | 
|  | * Timeout is calculated according to CFI data, if available. | 
|  | * See more comments in cfi_cmdset_0002(). | 
|  | */ | 
|  | unsigned long uWriteTimeout = | 
|  | usecs_to_jiffies(chip->buffer_write_time_max); | 
|  | int ret = -EIO; | 
|  | unsigned long cmd_adr; | 
|  | int z, words; | 
|  | map_word datum; | 
|  |  | 
|  | adr += chip->start; | 
|  | cmd_adr = adr; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, adr, FL_WRITING); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | datum = map_word_load(map, buf); | 
|  |  | 
|  | pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n", | 
|  | __func__, adr, datum.x[0]); | 
|  |  | 
|  | XIP_INVAL_CACHED_RANGE(map, adr, len); | 
|  | ENABLE_VPP(map); | 
|  | xip_disable(map, chip, cmd_adr); | 
|  |  | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 
|  |  | 
|  | /* Write Buffer Load */ | 
|  | map_write(map, CMD(0x25), cmd_adr); | 
|  |  | 
|  | chip->state = FL_WRITING_TO_BUFFER; | 
|  |  | 
|  | /* Write length of data to come */ | 
|  | words = len / map_bankwidth(map); | 
|  | map_write(map, CMD(words - 1), cmd_adr); | 
|  | /* Write data */ | 
|  | z = 0; | 
|  | while(z < words * map_bankwidth(map)) { | 
|  | datum = map_word_load(map, buf); | 
|  | map_write(map, datum, adr + z); | 
|  |  | 
|  | z += map_bankwidth(map); | 
|  | buf += map_bankwidth(map); | 
|  | } | 
|  | z -= map_bankwidth(map); | 
|  |  | 
|  | adr += z; | 
|  |  | 
|  | /* Write Buffer Program Confirm: GO GO GO */ | 
|  | map_write(map, CMD(0x29), cmd_adr); | 
|  | chip->state = FL_WRITING; | 
|  |  | 
|  | INVALIDATE_CACHE_UDELAY(map, chip, | 
|  | adr, map_bankwidth(map), | 
|  | chip->word_write_time); | 
|  |  | 
|  | timeo = jiffies + uWriteTimeout; | 
|  |  | 
|  | for (;;) { | 
|  | if (chip->state != FL_WRITING) { | 
|  | /* Someone's suspended the write. Sleep */ | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | mutex_unlock(&chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | timeo = jiffies + (HZ / 2); /* FIXME */ | 
|  | mutex_lock(&chip->mutex); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We check "time_after" and "!chip_good" before checking "chip_good" to avoid | 
|  | * the failure due to scheduling. | 
|  | */ | 
|  | if (time_after(jiffies, timeo) && !chip_good(map, adr, datum)) | 
|  | break; | 
|  |  | 
|  | if (chip_good(map, adr, datum)) { | 
|  | xip_enable(map, chip, adr); | 
|  | goto op_done; | 
|  | } | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | UDELAY(map, chip, adr, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recovery from write-buffer programming failures requires | 
|  | * the write-to-buffer-reset sequence.  Since the last part | 
|  | * of the sequence also works as a normal reset, we can run | 
|  | * the same commands regardless of why we are here. | 
|  | * See e.g. | 
|  | * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf | 
|  | */ | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | xip_enable(map, chip, adr); | 
|  | /* FIXME - should have reset delay before continuing */ | 
|  |  | 
|  | printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n", | 
|  | __func__, adr); | 
|  |  | 
|  | ret = -EIO; | 
|  | op_done: | 
|  | chip->state = FL_READY; | 
|  | DISABLE_VPP(map); | 
|  | put_chip(map, chip, adr); | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize; | 
|  | int ret = 0; | 
|  | int chipnum; | 
|  | unsigned long ofs; | 
|  |  | 
|  | chipnum = to >> cfi->chipshift; | 
|  | ofs = to  - (chipnum << cfi->chipshift); | 
|  |  | 
|  | /* If it's not bus-aligned, do the first word write */ | 
|  | if (ofs & (map_bankwidth(map)-1)) { | 
|  | size_t local_len = (-ofs)&(map_bankwidth(map)-1); | 
|  | if (local_len > len) | 
|  | local_len = len; | 
|  | ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), | 
|  | local_len, retlen, buf); | 
|  | if (ret) | 
|  | return ret; | 
|  | ofs += local_len; | 
|  | buf += local_len; | 
|  | len -= local_len; | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum ++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write buffer is worth it only if more than one word to write... */ | 
|  | while (len >= map_bankwidth(map) * 2) { | 
|  | /* We must not cross write block boundaries */ | 
|  | int size = wbufsize - (ofs & (wbufsize-1)); | 
|  |  | 
|  | if (size > len) | 
|  | size = len; | 
|  | if (size % map_bankwidth(map)) | 
|  | size -= size % map_bankwidth(map); | 
|  |  | 
|  | ret = do_write_buffer(map, &cfi->chips[chipnum], | 
|  | ofs, buf, size); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ofs += size; | 
|  | buf += size; | 
|  | (*retlen) += size; | 
|  | len -= size; | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum ++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (len) { | 
|  | size_t retlen_dregs = 0; | 
|  |  | 
|  | ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift), | 
|  | len, &retlen_dregs, buf); | 
|  |  | 
|  | *retlen += retlen_dregs; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for the flash chip to become ready to write data | 
|  | * | 
|  | * This is only called during the panic_write() path. When panic_write() | 
|  | * is called, the kernel is in the process of a panic, and will soon be | 
|  | * dead. Therefore we don't take any locks, and attempt to get access | 
|  | * to the chip as soon as possible. | 
|  | */ | 
|  | static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int retries = 10; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * If the driver thinks the chip is idle, and no toggle bits | 
|  | * are changing, then the chip is actually idle for sure. | 
|  | */ | 
|  | if (chip->state == FL_READY && chip_ready(map, adr)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Try several times to reset the chip and then wait for it | 
|  | * to become idle. The upper limit of a few milliseconds of | 
|  | * delay isn't a big problem: the kernel is dying anyway. It | 
|  | * is more important to save the messages. | 
|  | */ | 
|  | while (retries > 0) { | 
|  | const unsigned long timeo = (HZ / 1000) + 1; | 
|  |  | 
|  | /* send the reset command */ | 
|  | map_write(map, CMD(0xF0), chip->start); | 
|  |  | 
|  | /* wait for the chip to become ready */ | 
|  | for (i = 0; i < jiffies_to_usecs(timeo); i++) { | 
|  | if (chip_ready(map, adr)) | 
|  | return 0; | 
|  |  | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | retries--; | 
|  | } | 
|  |  | 
|  | /* the chip never became ready */ | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out one word of data to a single flash chip during a kernel panic | 
|  | * | 
|  | * This is only called during the panic_write() path. When panic_write() | 
|  | * is called, the kernel is in the process of a panic, and will soon be | 
|  | * dead. Therefore we don't take any locks, and attempt to get access | 
|  | * to the chip as soon as possible. | 
|  | * | 
|  | * The implementation of this routine is intentionally similar to | 
|  | * do_write_oneword(), in order to ease code maintenance. | 
|  | */ | 
|  | static int do_panic_write_oneword(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, map_word datum) | 
|  | { | 
|  | const unsigned long uWriteTimeout = (HZ / 1000) + 1; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int retry_cnt = 0; | 
|  | map_word oldd; | 
|  | int ret = 0; | 
|  | int i; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | ret = cfi_amdstd_panic_wait(map, chip, adr); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n", | 
|  | __func__, adr, datum.x[0]); | 
|  |  | 
|  | /* | 
|  | * Check for a NOP for the case when the datum to write is already | 
|  | * present - it saves time and works around buggy chips that corrupt | 
|  | * data at other locations when 0xff is written to a location that | 
|  | * already contains 0xff. | 
|  | */ | 
|  | oldd = map_read(map, adr); | 
|  | if (map_word_equal(map, oldd, datum)) { | 
|  | pr_debug("MTD %s(): NOP\n", __func__); | 
|  | goto op_done; | 
|  | } | 
|  |  | 
|  | ENABLE_VPP(map); | 
|  |  | 
|  | retry: | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | map_write(map, datum, adr); | 
|  |  | 
|  | for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) { | 
|  | if (chip_ready(map, adr)) | 
|  | break; | 
|  |  | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | if (!chip_good(map, adr, datum)) { | 
|  | /* reset on all failures. */ | 
|  | map_write(map, CMD(0xF0), chip->start); | 
|  | /* FIXME - should have reset delay before continuing */ | 
|  |  | 
|  | if (++retry_cnt <= MAX_RETRIES) | 
|  | goto retry; | 
|  |  | 
|  | ret = -EIO; | 
|  | } | 
|  |  | 
|  | op_done: | 
|  | DISABLE_VPP(map); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out some data during a kernel panic | 
|  | * | 
|  | * This is used by the mtdoops driver to save the dying messages from a | 
|  | * kernel which has panic'd. | 
|  | * | 
|  | * This routine ignores all of the locking used throughout the rest of the | 
|  | * driver, in order to ensure that the data gets written out no matter what | 
|  | * state this driver (and the flash chip itself) was in when the kernel crashed. | 
|  | * | 
|  | * The implementation of this routine is intentionally similar to | 
|  | * cfi_amdstd_write_words(), in order to ease code maintenance. | 
|  | */ | 
|  | static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long ofs, chipstart; | 
|  | int ret = 0; | 
|  | int chipnum; | 
|  |  | 
|  | chipnum = to >> cfi->chipshift; | 
|  | ofs = to - (chipnum << cfi->chipshift); | 
|  | chipstart = cfi->chips[chipnum].start; | 
|  |  | 
|  | /* If it's not bus aligned, do the first byte write */ | 
|  | if (ofs & (map_bankwidth(map) - 1)) { | 
|  | unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1); | 
|  | int i = ofs - bus_ofs; | 
|  | int n = 0; | 
|  | map_word tmp_buf; | 
|  |  | 
|  | ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* Load 'tmp_buf' with old contents of flash */ | 
|  | tmp_buf = map_read(map, bus_ofs + chipstart); | 
|  |  | 
|  | /* Number of bytes to copy from buffer */ | 
|  | n = min_t(int, len, map_bankwidth(map) - i); | 
|  |  | 
|  | tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n); | 
|  |  | 
|  | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], | 
|  | bus_ofs, tmp_buf); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ofs += n; | 
|  | buf += n; | 
|  | (*retlen) += n; | 
|  | len -= n; | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We are now aligned, write as much as possible */ | 
|  | while (len >= map_bankwidth(map)) { | 
|  | map_word datum; | 
|  |  | 
|  | datum = map_word_load(map, buf); | 
|  |  | 
|  | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], | 
|  | ofs, datum); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ofs += map_bankwidth(map); | 
|  | buf += map_bankwidth(map); | 
|  | (*retlen) += map_bankwidth(map); | 
|  | len -= map_bankwidth(map); | 
|  |  | 
|  | if (ofs >> cfi->chipshift) { | 
|  | chipnum++; | 
|  | ofs = 0; | 
|  | if (chipnum == cfi->numchips) | 
|  | return 0; | 
|  |  | 
|  | chipstart = cfi->chips[chipnum].start; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write the trailing bytes if any */ | 
|  | if (len & (map_bankwidth(map) - 1)) { | 
|  | map_word tmp_buf; | 
|  |  | 
|  | ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | tmp_buf = map_read(map, ofs + chipstart); | 
|  |  | 
|  | tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len); | 
|  |  | 
|  | ret = do_panic_write_oneword(map, &cfi->chips[chipnum], | 
|  | ofs, tmp_buf); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | (*retlen) += len; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Handle devices with one erase region, that only implement | 
|  | * the chip erase command. | 
|  | */ | 
|  | static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long timeo = jiffies + HZ; | 
|  | unsigned long int adr; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | int ret = 0; | 
|  | int retry_cnt = 0; | 
|  |  | 
|  | adr = cfi->addr_unlock1; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, adr, FL_WRITING); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pr_debug("MTD %s(): ERASE 0x%.8lx\n", | 
|  | __func__, chip->start); | 
|  |  | 
|  | XIP_INVAL_CACHED_RANGE(map, adr, map->size); | 
|  | ENABLE_VPP(map); | 
|  | xip_disable(map, chip, adr); | 
|  |  | 
|  | retry: | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  |  | 
|  | chip->state = FL_ERASING; | 
|  | chip->erase_suspended = 0; | 
|  | chip->in_progress_block_addr = adr; | 
|  | chip->in_progress_block_mask = ~(map->size - 1); | 
|  |  | 
|  | INVALIDATE_CACHE_UDELAY(map, chip, | 
|  | adr, map->size, | 
|  | chip->erase_time*500); | 
|  |  | 
|  | timeo = jiffies + (HZ*20); | 
|  |  | 
|  | for (;;) { | 
|  | if (chip->state != FL_ERASING) { | 
|  | /* Someone's suspended the erase. Sleep */ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | mutex_unlock(&chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | mutex_lock(&chip->mutex); | 
|  | continue; | 
|  | } | 
|  | if (chip->erase_suspended) { | 
|  | /* This erase was suspended and resumed. | 
|  | Adjust the timeout */ | 
|  | timeo = jiffies + (HZ*20); /* FIXME */ | 
|  | chip->erase_suspended = 0; | 
|  | } | 
|  |  | 
|  | if (chip_good(map, adr, map_word_ff(map))) | 
|  | break; | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | printk(KERN_WARNING "MTD %s(): software timeout\n", | 
|  | __func__); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | UDELAY(map, chip, adr, 1000000/HZ); | 
|  | } | 
|  | /* Did we succeed? */ | 
|  | if (ret) { | 
|  | /* reset on all failures. */ | 
|  | map_write(map, CMD(0xF0), chip->start); | 
|  | /* FIXME - should have reset delay before continuing */ | 
|  |  | 
|  | if (++retry_cnt <= MAX_RETRIES) { | 
|  | ret = 0; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | chip->state = FL_READY; | 
|  | xip_enable(map, chip, adr); | 
|  | DISABLE_VPP(map); | 
|  | put_chip(map, chip, adr); | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long timeo = jiffies + HZ; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | int ret = 0; | 
|  | int retry_cnt = 0; | 
|  |  | 
|  | adr += chip->start; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, adr, FL_ERASING); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pr_debug("MTD %s(): ERASE 0x%.8lx\n", | 
|  | __func__, adr); | 
|  |  | 
|  | XIP_INVAL_CACHED_RANGE(map, adr, len); | 
|  | ENABLE_VPP(map); | 
|  | xip_disable(map, chip, adr); | 
|  |  | 
|  | retry: | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL); | 
|  | map_write(map, cfi->sector_erase_cmd, adr); | 
|  |  | 
|  | chip->state = FL_ERASING; | 
|  | chip->erase_suspended = 0; | 
|  | chip->in_progress_block_addr = adr; | 
|  | chip->in_progress_block_mask = ~(len - 1); | 
|  |  | 
|  | INVALIDATE_CACHE_UDELAY(map, chip, | 
|  | adr, len, | 
|  | chip->erase_time*500); | 
|  |  | 
|  | timeo = jiffies + (HZ*20); | 
|  |  | 
|  | for (;;) { | 
|  | if (chip->state != FL_ERASING) { | 
|  | /* Someone's suspended the erase. Sleep */ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  | mutex_unlock(&chip->mutex); | 
|  | schedule(); | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  | mutex_lock(&chip->mutex); | 
|  | continue; | 
|  | } | 
|  | if (chip->erase_suspended) { | 
|  | /* This erase was suspended and resumed. | 
|  | Adjust the timeout */ | 
|  | timeo = jiffies + (HZ*20); /* FIXME */ | 
|  | chip->erase_suspended = 0; | 
|  | } | 
|  |  | 
|  | if (chip_good(map, adr, map_word_ff(map))) | 
|  | break; | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | printk(KERN_WARNING "MTD %s(): software timeout\n", | 
|  | __func__); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Latency issues. Drop the lock, wait a while and retry */ | 
|  | UDELAY(map, chip, adr, 1000000/HZ); | 
|  | } | 
|  | /* Did we succeed? */ | 
|  | if (ret) { | 
|  | /* reset on all failures. */ | 
|  | map_write(map, CMD(0xF0), chip->start); | 
|  | /* FIXME - should have reset delay before continuing */ | 
|  |  | 
|  | if (++retry_cnt <= MAX_RETRIES) { | 
|  | ret = 0; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | chip->state = FL_READY; | 
|  | xip_enable(map, chip, adr); | 
|  | DISABLE_VPP(map); | 
|  | put_chip(map, chip, adr); | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr, | 
|  | instr->len, NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | if (instr->addr != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (instr->len != mtd->size) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_erase_chip(map, &cfi->chips[0]); | 
|  | } | 
|  |  | 
|  | static int do_atmel_lock(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, int len, void *thunk) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, adr + chip->start, FL_LOCKING); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | chip->state = FL_LOCKING; | 
|  |  | 
|  | pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); | 
|  |  | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | map_write(map, CMD(0x40), chip->start + adr); | 
|  |  | 
|  | chip->state = FL_READY; | 
|  | put_chip(map, chip, adr + chip->start); | 
|  | ret = 0; | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int do_atmel_unlock(struct map_info *map, struct flchip *chip, | 
|  | unsigned long adr, int len, void *thunk) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | chip->state = FL_UNLOCKING; | 
|  |  | 
|  | pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len); | 
|  |  | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | map_write(map, CMD(0x70), adr); | 
|  |  | 
|  | chip->state = FL_READY; | 
|  | put_chip(map, chip, adr + chip->start); | 
|  | ret = 0; | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | 
|  | { | 
|  | return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL); | 
|  | } | 
|  |  | 
|  | static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len) | 
|  | { | 
|  | return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Advanced Sector Protection - PPB (Persistent Protection Bit) locking | 
|  | */ | 
|  |  | 
|  | struct ppb_lock { | 
|  | struct flchip *chip; | 
|  | unsigned long adr; | 
|  | int locked; | 
|  | }; | 
|  |  | 
|  | #define MAX_SECTORS			512 | 
|  |  | 
|  | #define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1) | 
|  | #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2) | 
|  | #define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3) | 
|  |  | 
|  | static int __maybe_unused do_ppb_xxlock(struct map_info *map, | 
|  | struct flchip *chip, | 
|  | unsigned long adr, int len, void *thunk) | 
|  | { | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | unsigned long timeo; | 
|  | int ret; | 
|  |  | 
|  | adr += chip->start; | 
|  | mutex_lock(&chip->mutex); | 
|  | ret = get_chip(map, chip, adr, FL_LOCKING); | 
|  | if (ret) { | 
|  | mutex_unlock(&chip->mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len); | 
|  |  | 
|  | cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  | /* PPB entry command */ | 
|  | cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi, | 
|  | cfi->device_type, NULL); | 
|  |  | 
|  | if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) { | 
|  | chip->state = FL_LOCKING; | 
|  | map_write(map, CMD(0xA0), adr); | 
|  | map_write(map, CMD(0x00), adr); | 
|  | } else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) { | 
|  | /* | 
|  | * Unlocking of one specific sector is not supported, so we | 
|  | * have to unlock all sectors of this device instead | 
|  | */ | 
|  | chip->state = FL_UNLOCKING; | 
|  | map_write(map, CMD(0x80), chip->start); | 
|  | map_write(map, CMD(0x30), chip->start); | 
|  | } else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) { | 
|  | chip->state = FL_JEDEC_QUERY; | 
|  | /* Return locked status: 0->locked, 1->unlocked */ | 
|  | ret = !cfi_read_query(map, adr); | 
|  | } else | 
|  | BUG(); | 
|  |  | 
|  | /* | 
|  | * Wait for some time as unlocking of all sectors takes quite long | 
|  | */ | 
|  | timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */ | 
|  | for (;;) { | 
|  | if (chip_ready(map, adr)) | 
|  | break; | 
|  |  | 
|  | if (time_after(jiffies, timeo)) { | 
|  | printk(KERN_ERR "Waiting for chip to be ready timed out.\n"); | 
|  | ret = -EIO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | UDELAY(map, chip, adr, 1); | 
|  | } | 
|  |  | 
|  | /* Exit BC commands */ | 
|  | map_write(map, CMD(0x90), chip->start); | 
|  | map_write(map, CMD(0x00), chip->start); | 
|  |  | 
|  | chip->state = FL_READY; | 
|  | put_chip(map, chip, adr); | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, | 
|  | uint64_t len) | 
|  | { | 
|  | return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, | 
|  | DO_XXLOCK_ONEBLOCK_LOCK); | 
|  | } | 
|  |  | 
|  | static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, | 
|  | uint64_t len) | 
|  | { | 
|  | struct mtd_erase_region_info *regions = mtd->eraseregions; | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | struct ppb_lock *sect; | 
|  | unsigned long adr; | 
|  | loff_t offset; | 
|  | uint64_t length; | 
|  | int chipnum; | 
|  | int i; | 
|  | int sectors; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * PPB unlocking always unlocks all sectors of the flash chip. | 
|  | * We need to re-lock all previously locked sectors. So lets | 
|  | * first check the locking status of all sectors and save | 
|  | * it for future use. | 
|  | */ | 
|  | sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL); | 
|  | if (!sect) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * This code to walk all sectors is a slightly modified version | 
|  | * of the cfi_varsize_frob() code. | 
|  | */ | 
|  | i = 0; | 
|  | chipnum = 0; | 
|  | adr = 0; | 
|  | sectors = 0; | 
|  | offset = 0; | 
|  | length = mtd->size; | 
|  |  | 
|  | while (length) { | 
|  | int size = regions[i].erasesize; | 
|  |  | 
|  | /* | 
|  | * Only test sectors that shall not be unlocked. The other | 
|  | * sectors shall be unlocked, so lets keep their locking | 
|  | * status at "unlocked" (locked=0) for the final re-locking. | 
|  | */ | 
|  | if ((offset < ofs) || (offset >= (ofs + len))) { | 
|  | sect[sectors].chip = &cfi->chips[chipnum]; | 
|  | sect[sectors].adr = adr; | 
|  | sect[sectors].locked = do_ppb_xxlock( | 
|  | map, &cfi->chips[chipnum], adr, 0, | 
|  | DO_XXLOCK_ONEBLOCK_GETLOCK); | 
|  | } | 
|  |  | 
|  | adr += size; | 
|  | offset += size; | 
|  | length -= size; | 
|  |  | 
|  | if (offset == regions[i].offset + size * regions[i].numblocks) | 
|  | i++; | 
|  |  | 
|  | if (adr >> cfi->chipshift) { | 
|  | if (offset >= (ofs + len)) | 
|  | break; | 
|  | adr = 0; | 
|  | chipnum++; | 
|  |  | 
|  | if (chipnum >= cfi->numchips) | 
|  | break; | 
|  | } | 
|  |  | 
|  | sectors++; | 
|  | if (sectors >= MAX_SECTORS) { | 
|  | printk(KERN_ERR "Only %d sectors for PPB locking supported!\n", | 
|  | MAX_SECTORS); | 
|  | kfree(sect); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now unlock the whole chip */ | 
|  | ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, | 
|  | DO_XXLOCK_ONEBLOCK_UNLOCK); | 
|  | if (ret) { | 
|  | kfree(sect); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PPB unlocking always unlocks all sectors of the flash chip. | 
|  | * We need to re-lock all previously locked sectors. | 
|  | */ | 
|  | for (i = 0; i < sectors; i++) { | 
|  | if (sect[i].locked) | 
|  | do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0, | 
|  | DO_XXLOCK_ONEBLOCK_LOCK); | 
|  | } | 
|  |  | 
|  | kfree(sect); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, | 
|  | uint64_t len) | 
|  | { | 
|  | return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len, | 
|  | DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | static void cfi_amdstd_sync (struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int i; | 
|  | struct flchip *chip; | 
|  | int ret = 0; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | for (i=0; !ret && i<cfi->numchips; i++) { | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | retry: | 
|  | mutex_lock(&chip->mutex); | 
|  |  | 
|  | switch(chip->state) { | 
|  | case FL_READY: | 
|  | case FL_STATUS: | 
|  | case FL_CFI_QUERY: | 
|  | case FL_JEDEC_QUERY: | 
|  | chip->oldstate = chip->state; | 
|  | chip->state = FL_SYNCING; | 
|  | /* No need to wake_up() on this state change - | 
|  | * as the whole point is that nobody can do anything | 
|  | * with the chip now anyway. | 
|  | */ | 
|  | case FL_SYNCING: | 
|  | mutex_unlock(&chip->mutex); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Not an idle state */ | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | mutex_unlock(&chip->mutex); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | remove_wait_queue(&chip->wq, &wait); | 
|  |  | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Unlock the chips again */ | 
|  |  | 
|  | for (i--; i >=0; i--) { | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  |  | 
|  | if (chip->state == FL_SYNCING) { | 
|  | chip->state = chip->oldstate; | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  | mutex_unlock(&chip->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static int cfi_amdstd_suspend(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int i; | 
|  | struct flchip *chip; | 
|  | int ret = 0; | 
|  |  | 
|  | for (i=0; !ret && i<cfi->numchips; i++) { | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  |  | 
|  | switch(chip->state) { | 
|  | case FL_READY: | 
|  | case FL_STATUS: | 
|  | case FL_CFI_QUERY: | 
|  | case FL_JEDEC_QUERY: | 
|  | chip->oldstate = chip->state; | 
|  | chip->state = FL_PM_SUSPENDED; | 
|  | /* No need to wake_up() on this state change - | 
|  | * as the whole point is that nobody can do anything | 
|  | * with the chip now anyway. | 
|  | */ | 
|  | case FL_PM_SUSPENDED: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ret = -EAGAIN; | 
|  | break; | 
|  | } | 
|  | mutex_unlock(&chip->mutex); | 
|  | } | 
|  |  | 
|  | /* Unlock the chips again */ | 
|  |  | 
|  | if (ret) { | 
|  | for (i--; i >=0; i--) { | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  |  | 
|  | if (chip->state == FL_PM_SUSPENDED) { | 
|  | chip->state = chip->oldstate; | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  | mutex_unlock(&chip->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void cfi_amdstd_resume(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int i; | 
|  | struct flchip *chip; | 
|  |  | 
|  | for (i=0; i<cfi->numchips; i++) { | 
|  |  | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  |  | 
|  | if (chip->state == FL_PM_SUSPENDED) { | 
|  | chip->state = FL_READY; | 
|  | map_write(map, CMD(0xF0), chip->start); | 
|  | wake_up(&chip->wq); | 
|  | } | 
|  | else | 
|  | printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n"); | 
|  |  | 
|  | mutex_unlock(&chip->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Ensure that the flash device is put back into read array mode before | 
|  | * unloading the driver or rebooting.  On some systems, rebooting while | 
|  | * the flash is in query/program/erase mode will prevent the CPU from | 
|  | * fetching the bootloader code, requiring a hard reset or power cycle. | 
|  | */ | 
|  | static int cfi_amdstd_reset(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  | int i, ret; | 
|  | struct flchip *chip; | 
|  |  | 
|  | for (i = 0; i < cfi->numchips; i++) { | 
|  |  | 
|  | chip = &cfi->chips[i]; | 
|  |  | 
|  | mutex_lock(&chip->mutex); | 
|  |  | 
|  | ret = get_chip(map, chip, chip->start, FL_SHUTDOWN); | 
|  | if (!ret) { | 
|  | map_write(map, CMD(0xF0), chip->start); | 
|  | chip->state = FL_SHUTDOWN; | 
|  | put_chip(map, chip, chip->start); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&chip->mutex); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val, | 
|  | void *v) | 
|  | { | 
|  | struct mtd_info *mtd; | 
|  |  | 
|  | mtd = container_of(nb, struct mtd_info, reboot_notifier); | 
|  | cfi_amdstd_reset(mtd); | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  |  | 
|  | static void cfi_amdstd_destroy(struct mtd_info *mtd) | 
|  | { | 
|  | struct map_info *map = mtd->priv; | 
|  | struct cfi_private *cfi = map->fldrv_priv; | 
|  |  | 
|  | cfi_amdstd_reset(mtd); | 
|  | unregister_reboot_notifier(&mtd->reboot_notifier); | 
|  | kfree(cfi->cmdset_priv); | 
|  | kfree(cfi->cfiq); | 
|  | kfree(cfi); | 
|  | kfree(mtd->eraseregions); | 
|  | } | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al."); | 
|  | MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips"); | 
|  | MODULE_ALIAS("cfi_cmdset_0006"); | 
|  | MODULE_ALIAS("cfi_cmdset_0701"); |