| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * This file is part of UBIFS. |
| * |
| * Copyright (C) 2006-2008 Nokia Corporation. |
| * |
| * Authors: Adrian Hunter |
| * Artem Bityutskiy (Битюцкий Артём) |
| */ |
| |
| /* This file implements TNC functions for committing */ |
| |
| #include <linux/random.h> |
| #include "ubifs.h" |
| |
| /** |
| * make_idx_node - make an index node for fill-the-gaps method of TNC commit. |
| * @c: UBIFS file-system description object |
| * @idx: buffer in which to place new index node |
| * @znode: znode from which to make new index node |
| * @lnum: LEB number where new index node will be written |
| * @offs: offset where new index node will be written |
| * @len: length of new index node |
| */ |
| static int make_idx_node(struct ubifs_info *c, struct ubifs_idx_node *idx, |
| struct ubifs_znode *znode, int lnum, int offs, int len) |
| { |
| struct ubifs_znode *zp; |
| u8 hash[UBIFS_HASH_ARR_SZ]; |
| int i, err; |
| |
| /* Make index node */ |
| idx->ch.node_type = UBIFS_IDX_NODE; |
| idx->child_cnt = cpu_to_le16(znode->child_cnt); |
| idx->level = cpu_to_le16(znode->level); |
| for (i = 0; i < znode->child_cnt; i++) { |
| struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); |
| struct ubifs_zbranch *zbr = &znode->zbranch[i]; |
| |
| key_write_idx(c, &zbr->key, &br->key); |
| br->lnum = cpu_to_le32(zbr->lnum); |
| br->offs = cpu_to_le32(zbr->offs); |
| br->len = cpu_to_le32(zbr->len); |
| ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br)); |
| if (!zbr->lnum || !zbr->len) { |
| ubifs_err(c, "bad ref in znode"); |
| ubifs_dump_znode(c, znode); |
| if (zbr->znode) |
| ubifs_dump_znode(c, zbr->znode); |
| |
| return -EINVAL; |
| } |
| } |
| ubifs_prepare_node(c, idx, len, 0); |
| ubifs_node_calc_hash(c, idx, hash); |
| |
| znode->lnum = lnum; |
| znode->offs = offs; |
| znode->len = len; |
| |
| err = insert_old_idx_znode(c, znode); |
| |
| /* Update the parent */ |
| zp = znode->parent; |
| if (zp) { |
| struct ubifs_zbranch *zbr; |
| |
| zbr = &zp->zbranch[znode->iip]; |
| zbr->lnum = lnum; |
| zbr->offs = offs; |
| zbr->len = len; |
| ubifs_copy_hash(c, hash, zbr->hash); |
| } else { |
| c->zroot.lnum = lnum; |
| c->zroot.offs = offs; |
| c->zroot.len = len; |
| ubifs_copy_hash(c, hash, c->zroot.hash); |
| } |
| c->calc_idx_sz += ALIGN(len, 8); |
| |
| atomic_long_dec(&c->dirty_zn_cnt); |
| |
| ubifs_assert(c, ubifs_zn_dirty(znode)); |
| ubifs_assert(c, ubifs_zn_cow(znode)); |
| |
| /* |
| * Note, unlike 'write_index()' we do not add memory barriers here |
| * because this function is called with @c->tnc_mutex locked. |
| */ |
| __clear_bit(DIRTY_ZNODE, &znode->flags); |
| __clear_bit(COW_ZNODE, &znode->flags); |
| |
| return err; |
| } |
| |
| /** |
| * fill_gap - make index nodes in gaps in dirty index LEBs. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number that gap appears in |
| * @gap_start: offset of start of gap |
| * @gap_end: offset of end of gap |
| * @dirt: adds dirty space to this |
| * |
| * This function returns the number of index nodes written into the gap. |
| */ |
| static int fill_gap(struct ubifs_info *c, int lnum, int gap_start, int gap_end, |
| int *dirt) |
| { |
| int len, gap_remains, gap_pos, written, pad_len; |
| |
| ubifs_assert(c, (gap_start & 7) == 0); |
| ubifs_assert(c, (gap_end & 7) == 0); |
| ubifs_assert(c, gap_end >= gap_start); |
| |
| gap_remains = gap_end - gap_start; |
| if (!gap_remains) |
| return 0; |
| gap_pos = gap_start; |
| written = 0; |
| while (c->enext) { |
| len = ubifs_idx_node_sz(c, c->enext->child_cnt); |
| if (len < gap_remains) { |
| struct ubifs_znode *znode = c->enext; |
| const int alen = ALIGN(len, 8); |
| int err; |
| |
| ubifs_assert(c, alen <= gap_remains); |
| err = make_idx_node(c, c->ileb_buf + gap_pos, znode, |
| lnum, gap_pos, len); |
| if (err) |
| return err; |
| gap_remains -= alen; |
| gap_pos += alen; |
| c->enext = znode->cnext; |
| if (c->enext == c->cnext) |
| c->enext = NULL; |
| written += 1; |
| } else |
| break; |
| } |
| if (gap_end == c->leb_size) { |
| c->ileb_len = ALIGN(gap_pos, c->min_io_size); |
| /* Pad to end of min_io_size */ |
| pad_len = c->ileb_len - gap_pos; |
| } else |
| /* Pad to end of gap */ |
| pad_len = gap_remains; |
| dbg_gc("LEB %d:%d to %d len %d nodes written %d wasted bytes %d", |
| lnum, gap_start, gap_end, gap_end - gap_start, written, pad_len); |
| ubifs_pad(c, c->ileb_buf + gap_pos, pad_len); |
| *dirt += pad_len; |
| return written; |
| } |
| |
| /** |
| * find_old_idx - find an index node obsoleted since the last commit start. |
| * @c: UBIFS file-system description object |
| * @lnum: LEB number of obsoleted index node |
| * @offs: offset of obsoleted index node |
| * |
| * Returns %1 if found and %0 otherwise. |
| */ |
| static int find_old_idx(struct ubifs_info *c, int lnum, int offs) |
| { |
| struct ubifs_old_idx *o; |
| struct rb_node *p; |
| |
| p = c->old_idx.rb_node; |
| while (p) { |
| o = rb_entry(p, struct ubifs_old_idx, rb); |
| if (lnum < o->lnum) |
| p = p->rb_left; |
| else if (lnum > o->lnum) |
| p = p->rb_right; |
| else if (offs < o->offs) |
| p = p->rb_left; |
| else if (offs > o->offs) |
| p = p->rb_right; |
| else |
| return 1; |
| } |
| return 0; |
| } |
| |
| /** |
| * is_idx_node_in_use - determine if an index node can be overwritten. |
| * @c: UBIFS file-system description object |
| * @key: key of index node |
| * @level: index node level |
| * @lnum: LEB number of index node |
| * @offs: offset of index node |
| * |
| * If @key / @lnum / @offs identify an index node that was not part of the old |
| * index, then this function returns %0 (obsolete). Else if the index node was |
| * part of the old index but is now dirty %1 is returned, else if it is clean %2 |
| * is returned. A negative error code is returned on failure. |
| */ |
| static int is_idx_node_in_use(struct ubifs_info *c, union ubifs_key *key, |
| int level, int lnum, int offs) |
| { |
| int ret; |
| |
| ret = is_idx_node_in_tnc(c, key, level, lnum, offs); |
| if (ret < 0) |
| return ret; /* Error code */ |
| if (ret == 0) |
| if (find_old_idx(c, lnum, offs)) |
| return 1; |
| return ret; |
| } |
| |
| /** |
| * layout_leb_in_gaps - layout index nodes using in-the-gaps method. |
| * @c: UBIFS file-system description object |
| * @p: return LEB number here |
| * |
| * This function lays out new index nodes for dirty znodes using in-the-gaps |
| * method of TNC commit. |
| * This function merely puts the next znode into the next gap, making no attempt |
| * to try to maximise the number of znodes that fit. |
| * This function returns the number of index nodes written into the gaps, or a |
| * negative error code on failure. |
| */ |
| static int layout_leb_in_gaps(struct ubifs_info *c, int *p) |
| { |
| struct ubifs_scan_leb *sleb; |
| struct ubifs_scan_node *snod; |
| int lnum, dirt = 0, gap_start, gap_end, err, written, tot_written; |
| |
| tot_written = 0; |
| /* Get an index LEB with lots of obsolete index nodes */ |
| lnum = ubifs_find_dirty_idx_leb(c); |
| if (lnum < 0) |
| /* |
| * There also may be dirt in the index head that could be |
| * filled, however we do not check there at present. |
| */ |
| return lnum; /* Error code */ |
| *p = lnum; |
| dbg_gc("LEB %d", lnum); |
| /* |
| * Scan the index LEB. We use the generic scan for this even though |
| * it is more comprehensive and less efficient than is needed for this |
| * purpose. |
| */ |
| sleb = ubifs_scan(c, lnum, 0, c->ileb_buf, 0); |
| c->ileb_len = 0; |
| if (IS_ERR(sleb)) |
| return PTR_ERR(sleb); |
| gap_start = 0; |
| list_for_each_entry(snod, &sleb->nodes, list) { |
| struct ubifs_idx_node *idx; |
| int in_use, level; |
| |
| ubifs_assert(c, snod->type == UBIFS_IDX_NODE); |
| idx = snod->node; |
| key_read(c, ubifs_idx_key(c, idx), &snod->key); |
| level = le16_to_cpu(idx->level); |
| /* Determine if the index node is in use (not obsolete) */ |
| in_use = is_idx_node_in_use(c, &snod->key, level, lnum, |
| snod->offs); |
| if (in_use < 0) { |
| ubifs_scan_destroy(sleb); |
| return in_use; /* Error code */ |
| } |
| if (in_use) { |
| if (in_use == 1) |
| dirt += ALIGN(snod->len, 8); |
| /* |
| * The obsolete index nodes form gaps that can be |
| * overwritten. This gap has ended because we have |
| * found an index node that is still in use |
| * i.e. not obsolete |
| */ |
| gap_end = snod->offs; |
| /* Try to fill gap */ |
| written = fill_gap(c, lnum, gap_start, gap_end, &dirt); |
| if (written < 0) { |
| ubifs_scan_destroy(sleb); |
| return written; /* Error code */ |
| } |
| tot_written += written; |
| gap_start = ALIGN(snod->offs + snod->len, 8); |
| } |
| } |
| ubifs_scan_destroy(sleb); |
| c->ileb_len = c->leb_size; |
| gap_end = c->leb_size; |
| /* Try to fill gap */ |
| written = fill_gap(c, lnum, gap_start, gap_end, &dirt); |
| if (written < 0) |
| return written; /* Error code */ |
| tot_written += written; |
| if (tot_written == 0) { |
| struct ubifs_lprops lp; |
| |
| dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); |
| err = ubifs_read_one_lp(c, lnum, &lp); |
| if (err) |
| return err; |
| if (lp.free == c->leb_size) { |
| /* |
| * We must have snatched this LEB from the idx_gc list |
| * so we need to correct the free and dirty space. |
| */ |
| err = ubifs_change_one_lp(c, lnum, |
| c->leb_size - c->ileb_len, |
| dirt, 0, 0, 0); |
| if (err) |
| return err; |
| } |
| return 0; |
| } |
| err = ubifs_change_one_lp(c, lnum, c->leb_size - c->ileb_len, dirt, |
| 0, 0, 0); |
| if (err) |
| return err; |
| err = ubifs_leb_change(c, lnum, c->ileb_buf, c->ileb_len); |
| if (err) |
| return err; |
| dbg_gc("LEB %d wrote %d index nodes", lnum, tot_written); |
| return tot_written; |
| } |
| |
| /** |
| * get_leb_cnt - calculate the number of empty LEBs needed to commit. |
| * @c: UBIFS file-system description object |
| * @cnt: number of znodes to commit |
| * |
| * This function returns the number of empty LEBs needed to commit @cnt znodes |
| * to the current index head. The number is not exact and may be more than |
| * needed. |
| */ |
| static int get_leb_cnt(struct ubifs_info *c, int cnt) |
| { |
| int d; |
| |
| /* Assume maximum index node size (i.e. overestimate space needed) */ |
| cnt -= (c->leb_size - c->ihead_offs) / c->max_idx_node_sz; |
| if (cnt < 0) |
| cnt = 0; |
| d = c->leb_size / c->max_idx_node_sz; |
| return DIV_ROUND_UP(cnt, d); |
| } |
| |
| /** |
| * layout_in_gaps - in-the-gaps method of committing TNC. |
| * @c: UBIFS file-system description object |
| * @cnt: number of dirty znodes to commit. |
| * |
| * This function lays out new index nodes for dirty znodes using in-the-gaps |
| * method of TNC commit. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int layout_in_gaps(struct ubifs_info *c, int cnt) |
| { |
| int err, leb_needed_cnt, written, *p; |
| |
| dbg_gc("%d znodes to write", cnt); |
| |
| c->gap_lebs = kmalloc_array(c->lst.idx_lebs + 1, sizeof(int), |
| GFP_NOFS); |
| if (!c->gap_lebs) |
| return -ENOMEM; |
| |
| p = c->gap_lebs; |
| do { |
| ubifs_assert(c, p < c->gap_lebs + c->lst.idx_lebs); |
| written = layout_leb_in_gaps(c, p); |
| if (written < 0) { |
| err = written; |
| if (err != -ENOSPC) { |
| kfree(c->gap_lebs); |
| c->gap_lebs = NULL; |
| return err; |
| } |
| if (!dbg_is_chk_index(c)) { |
| /* |
| * Do not print scary warnings if the debugging |
| * option which forces in-the-gaps is enabled. |
| */ |
| ubifs_warn(c, "out of space"); |
| ubifs_dump_budg(c, &c->bi); |
| ubifs_dump_lprops(c); |
| } |
| /* Try to commit anyway */ |
| break; |
| } |
| p++; |
| cnt -= written; |
| leb_needed_cnt = get_leb_cnt(c, cnt); |
| dbg_gc("%d znodes remaining, need %d LEBs, have %d", cnt, |
| leb_needed_cnt, c->ileb_cnt); |
| } while (leb_needed_cnt > c->ileb_cnt); |
| |
| *p = -1; |
| return 0; |
| } |
| |
| /** |
| * layout_in_empty_space - layout index nodes in empty space. |
| * @c: UBIFS file-system description object |
| * |
| * This function lays out new index nodes for dirty znodes using empty LEBs. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int layout_in_empty_space(struct ubifs_info *c) |
| { |
| struct ubifs_znode *znode, *cnext, *zp; |
| int lnum, offs, len, next_len, buf_len, buf_offs, used, avail; |
| int wlen, blen, err; |
| |
| cnext = c->enext; |
| if (!cnext) |
| return 0; |
| |
| lnum = c->ihead_lnum; |
| buf_offs = c->ihead_offs; |
| |
| buf_len = ubifs_idx_node_sz(c, c->fanout); |
| buf_len = ALIGN(buf_len, c->min_io_size); |
| used = 0; |
| avail = buf_len; |
| |
| /* Ensure there is enough room for first write */ |
| next_len = ubifs_idx_node_sz(c, cnext->child_cnt); |
| if (buf_offs + next_len > c->leb_size) |
| lnum = -1; |
| |
| while (1) { |
| znode = cnext; |
| |
| len = ubifs_idx_node_sz(c, znode->child_cnt); |
| |
| /* Determine the index node position */ |
| if (lnum == -1) { |
| if (c->ileb_nxt >= c->ileb_cnt) { |
| ubifs_err(c, "out of space"); |
| return -ENOSPC; |
| } |
| lnum = c->ilebs[c->ileb_nxt++]; |
| buf_offs = 0; |
| used = 0; |
| avail = buf_len; |
| } |
| |
| offs = buf_offs + used; |
| |
| znode->lnum = lnum; |
| znode->offs = offs; |
| znode->len = len; |
| |
| /* Update the parent */ |
| zp = znode->parent; |
| if (zp) { |
| struct ubifs_zbranch *zbr; |
| int i; |
| |
| i = znode->iip; |
| zbr = &zp->zbranch[i]; |
| zbr->lnum = lnum; |
| zbr->offs = offs; |
| zbr->len = len; |
| } else { |
| c->zroot.lnum = lnum; |
| c->zroot.offs = offs; |
| c->zroot.len = len; |
| } |
| c->calc_idx_sz += ALIGN(len, 8); |
| |
| /* |
| * Once lprops is updated, we can decrease the dirty znode count |
| * but it is easier to just do it here. |
| */ |
| atomic_long_dec(&c->dirty_zn_cnt); |
| |
| /* |
| * Calculate the next index node length to see if there is |
| * enough room for it |
| */ |
| cnext = znode->cnext; |
| if (cnext == c->cnext) |
| next_len = 0; |
| else |
| next_len = ubifs_idx_node_sz(c, cnext->child_cnt); |
| |
| /* Update buffer positions */ |
| wlen = used + len; |
| used += ALIGN(len, 8); |
| avail -= ALIGN(len, 8); |
| |
| if (next_len != 0 && |
| buf_offs + used + next_len <= c->leb_size && |
| avail > 0) |
| continue; |
| |
| if (avail <= 0 && next_len && |
| buf_offs + used + next_len <= c->leb_size) |
| blen = buf_len; |
| else |
| blen = ALIGN(wlen, c->min_io_size); |
| |
| /* The buffer is full or there are no more znodes to do */ |
| buf_offs += blen; |
| if (next_len) { |
| if (buf_offs + next_len > c->leb_size) { |
| err = ubifs_update_one_lp(c, lnum, |
| c->leb_size - buf_offs, blen - used, |
| 0, 0); |
| if (err) |
| return err; |
| lnum = -1; |
| } |
| used -= blen; |
| if (used < 0) |
| used = 0; |
| avail = buf_len - used; |
| continue; |
| } |
| err = ubifs_update_one_lp(c, lnum, c->leb_size - buf_offs, |
| blen - used, 0, 0); |
| if (err) |
| return err; |
| break; |
| } |
| |
| c->dbg->new_ihead_lnum = lnum; |
| c->dbg->new_ihead_offs = buf_offs; |
| |
| return 0; |
| } |
| |
| /** |
| * layout_commit - determine positions of index nodes to commit. |
| * @c: UBIFS file-system description object |
| * @no_space: indicates that insufficient empty LEBs were allocated |
| * @cnt: number of znodes to commit |
| * |
| * Calculate and update the positions of index nodes to commit. If there were |
| * an insufficient number of empty LEBs allocated, then index nodes are placed |
| * into the gaps created by obsolete index nodes in non-empty index LEBs. For |
| * this purpose, an obsolete index node is one that was not in the index as at |
| * the end of the last commit. To write "in-the-gaps" requires that those index |
| * LEBs are updated atomically in-place. |
| */ |
| static int layout_commit(struct ubifs_info *c, int no_space, int cnt) |
| { |
| int err; |
| |
| if (no_space) { |
| err = layout_in_gaps(c, cnt); |
| if (err) |
| return err; |
| } |
| err = layout_in_empty_space(c); |
| return err; |
| } |
| |
| /** |
| * find_first_dirty - find first dirty znode. |
| * @znode: znode to begin searching from |
| */ |
| static struct ubifs_znode *find_first_dirty(struct ubifs_znode *znode) |
| { |
| int i, cont; |
| |
| if (!znode) |
| return NULL; |
| |
| while (1) { |
| if (znode->level == 0) { |
| if (ubifs_zn_dirty(znode)) |
| return znode; |
| return NULL; |
| } |
| cont = 0; |
| for (i = 0; i < znode->child_cnt; i++) { |
| struct ubifs_zbranch *zbr = &znode->zbranch[i]; |
| |
| if (zbr->znode && ubifs_zn_dirty(zbr->znode)) { |
| znode = zbr->znode; |
| cont = 1; |
| break; |
| } |
| } |
| if (!cont) { |
| if (ubifs_zn_dirty(znode)) |
| return znode; |
| return NULL; |
| } |
| } |
| } |
| |
| /** |
| * find_next_dirty - find next dirty znode. |
| * @znode: znode to begin searching from |
| */ |
| static struct ubifs_znode *find_next_dirty(struct ubifs_znode *znode) |
| { |
| int n = znode->iip + 1; |
| |
| znode = znode->parent; |
| if (!znode) |
| return NULL; |
| for (; n < znode->child_cnt; n++) { |
| struct ubifs_zbranch *zbr = &znode->zbranch[n]; |
| |
| if (zbr->znode && ubifs_zn_dirty(zbr->znode)) |
| return find_first_dirty(zbr->znode); |
| } |
| return znode; |
| } |
| |
| /** |
| * get_znodes_to_commit - create list of dirty znodes to commit. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns the number of znodes to commit. |
| */ |
| static int get_znodes_to_commit(struct ubifs_info *c) |
| { |
| struct ubifs_znode *znode, *cnext; |
| int cnt = 0; |
| |
| c->cnext = find_first_dirty(c->zroot.znode); |
| znode = c->enext = c->cnext; |
| if (!znode) { |
| dbg_cmt("no znodes to commit"); |
| return 0; |
| } |
| cnt += 1; |
| while (1) { |
| ubifs_assert(c, !ubifs_zn_cow(znode)); |
| __set_bit(COW_ZNODE, &znode->flags); |
| znode->alt = 0; |
| cnext = find_next_dirty(znode); |
| if (!cnext) { |
| znode->cnext = c->cnext; |
| break; |
| } |
| znode->cparent = znode->parent; |
| znode->ciip = znode->iip; |
| znode->cnext = cnext; |
| znode = cnext; |
| cnt += 1; |
| } |
| dbg_cmt("committing %d znodes", cnt); |
| ubifs_assert(c, cnt == atomic_long_read(&c->dirty_zn_cnt)); |
| return cnt; |
| } |
| |
| /** |
| * alloc_idx_lebs - allocate empty LEBs to be used to commit. |
| * @c: UBIFS file-system description object |
| * @cnt: number of znodes to commit |
| * |
| * This function returns %-ENOSPC if it cannot allocate a sufficient number of |
| * empty LEBs. %0 is returned on success, otherwise a negative error code |
| * is returned. |
| */ |
| static int alloc_idx_lebs(struct ubifs_info *c, int cnt) |
| { |
| int i, leb_cnt, lnum; |
| |
| c->ileb_cnt = 0; |
| c->ileb_nxt = 0; |
| leb_cnt = get_leb_cnt(c, cnt); |
| dbg_cmt("need about %d empty LEBS for TNC commit", leb_cnt); |
| if (!leb_cnt) |
| return 0; |
| c->ilebs = kmalloc_array(leb_cnt, sizeof(int), GFP_NOFS); |
| if (!c->ilebs) |
| return -ENOMEM; |
| for (i = 0; i < leb_cnt; i++) { |
| lnum = ubifs_find_free_leb_for_idx(c); |
| if (lnum < 0) |
| return lnum; |
| c->ilebs[c->ileb_cnt++] = lnum; |
| dbg_cmt("LEB %d", lnum); |
| } |
| if (dbg_is_chk_index(c) && !(prandom_u32() & 7)) |
| return -ENOSPC; |
| return 0; |
| } |
| |
| /** |
| * free_unused_idx_lebs - free unused LEBs that were allocated for the commit. |
| * @c: UBIFS file-system description object |
| * |
| * It is possible that we allocate more empty LEBs for the commit than we need. |
| * This functions frees the surplus. |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int free_unused_idx_lebs(struct ubifs_info *c) |
| { |
| int i, err = 0, lnum, er; |
| |
| for (i = c->ileb_nxt; i < c->ileb_cnt; i++) { |
| lnum = c->ilebs[i]; |
| dbg_cmt("LEB %d", lnum); |
| er = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, |
| LPROPS_INDEX | LPROPS_TAKEN, 0); |
| if (!err) |
| err = er; |
| } |
| return err; |
| } |
| |
| /** |
| * free_idx_lebs - free unused LEBs after commit end. |
| * @c: UBIFS file-system description object |
| * |
| * This function returns %0 on success and a negative error code on failure. |
| */ |
| static int free_idx_lebs(struct ubifs_info *c) |
| { |
| int err; |
| |
| err = free_unused_idx_lebs(c); |
| kfree(c->ilebs); |
| c->ilebs = NULL; |
| return err; |
| } |
| |
| /** |
| * ubifs_tnc_start_commit - start TNC commit. |
| * @c: UBIFS file-system description object |
| * @zroot: new index root position is returned here |
| * |
| * This function prepares the list of indexing nodes to commit and lays out |
| * their positions on flash. If there is not enough free space it uses the |
| * in-gap commit method. Returns zero in case of success and a negative error |
| * code in case of failure. |
| */ |
| int ubifs_tnc_start_commit(struct ubifs_info *c, struct ubifs_zbranch *zroot) |
| { |
| int err = 0, cnt; |
| |
| mutex_lock(&c->tnc_mutex); |
| err = dbg_check_tnc(c, 1); |
| if (err) |
| goto out; |
| cnt = get_znodes_to_commit(c); |
| if (cnt != 0) { |
| int no_space = 0; |
| |
| err = alloc_idx_lebs(c, cnt); |
| if (err == -ENOSPC) |
| no_space = 1; |
| else if (err) |
| goto out_free; |
| err = layout_commit(c, no_space, cnt); |
| if (err) |
| goto out_free; |
| ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0); |
| err = free_unused_idx_lebs(c); |
| if (err) |
| goto out; |
| } |
| destroy_old_idx(c); |
| memcpy(zroot, &c->zroot, sizeof(struct ubifs_zbranch)); |
| |
| err = ubifs_save_dirty_idx_lnums(c); |
| if (err) |
| goto out; |
| |
| spin_lock(&c->space_lock); |
| /* |
| * Although we have not finished committing yet, update size of the |
| * committed index ('c->bi.old_idx_sz') and zero out the index growth |
| * budget. It is OK to do this now, because we've reserved all the |
| * space which is needed to commit the index, and it is save for the |
| * budgeting subsystem to assume the index is already committed, |
| * even though it is not. |
| */ |
| ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c)); |
| c->bi.old_idx_sz = c->calc_idx_sz; |
| c->bi.uncommitted_idx = 0; |
| c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); |
| spin_unlock(&c->space_lock); |
| mutex_unlock(&c->tnc_mutex); |
| |
| dbg_cmt("number of index LEBs %d", c->lst.idx_lebs); |
| dbg_cmt("size of index %llu", c->calc_idx_sz); |
| return err; |
| |
| out_free: |
| free_idx_lebs(c); |
| out: |
| mutex_unlock(&c->tnc_mutex); |
| return err; |
| } |
| |
| /** |
| * write_index - write index nodes. |
| * @c: UBIFS file-system description object |
| * |
| * This function writes the index nodes whose positions were laid out in the |
| * layout_in_empty_space function. |
| */ |
| static int write_index(struct ubifs_info *c) |
| { |
| struct ubifs_idx_node *idx; |
| struct ubifs_znode *znode, *cnext; |
| int i, lnum, offs, len, next_len, buf_len, buf_offs, used; |
| int avail, wlen, err, lnum_pos = 0, blen, nxt_offs; |
| |
| cnext = c->enext; |
| if (!cnext) |
| return 0; |
| |
| /* |
| * Always write index nodes to the index head so that index nodes and |
| * other types of nodes are never mixed in the same erase block. |
| */ |
| lnum = c->ihead_lnum; |
| buf_offs = c->ihead_offs; |
| |
| /* Allocate commit buffer */ |
| buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); |
| used = 0; |
| avail = buf_len; |
| |
| /* Ensure there is enough room for first write */ |
| next_len = ubifs_idx_node_sz(c, cnext->child_cnt); |
| if (buf_offs + next_len > c->leb_size) { |
| err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, |
| LPROPS_TAKEN); |
| if (err) |
| return err; |
| lnum = -1; |
| } |
| |
| while (1) { |
| u8 hash[UBIFS_HASH_ARR_SZ]; |
| |
| cond_resched(); |
| |
| znode = cnext; |
| idx = c->cbuf + used; |
| |
| /* Make index node */ |
| idx->ch.node_type = UBIFS_IDX_NODE; |
| idx->child_cnt = cpu_to_le16(znode->child_cnt); |
| idx->level = cpu_to_le16(znode->level); |
| for (i = 0; i < znode->child_cnt; i++) { |
| struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); |
| struct ubifs_zbranch *zbr = &znode->zbranch[i]; |
| |
| key_write_idx(c, &zbr->key, &br->key); |
| br->lnum = cpu_to_le32(zbr->lnum); |
| br->offs = cpu_to_le32(zbr->offs); |
| br->len = cpu_to_le32(zbr->len); |
| ubifs_copy_hash(c, zbr->hash, ubifs_branch_hash(c, br)); |
| if (!zbr->lnum || !zbr->len) { |
| ubifs_err(c, "bad ref in znode"); |
| ubifs_dump_znode(c, znode); |
| if (zbr->znode) |
| ubifs_dump_znode(c, zbr->znode); |
| |
| return -EINVAL; |
| } |
| } |
| len = ubifs_idx_node_sz(c, znode->child_cnt); |
| ubifs_prepare_node(c, idx, len, 0); |
| ubifs_node_calc_hash(c, idx, hash); |
| |
| mutex_lock(&c->tnc_mutex); |
| |
| if (znode->cparent) |
| ubifs_copy_hash(c, hash, |
| znode->cparent->zbranch[znode->ciip].hash); |
| |
| if (znode->parent) { |
| if (!ubifs_zn_obsolete(znode)) |
| ubifs_copy_hash(c, hash, |
| znode->parent->zbranch[znode->iip].hash); |
| } else { |
| ubifs_copy_hash(c, hash, c->zroot.hash); |
| } |
| |
| mutex_unlock(&c->tnc_mutex); |
| |
| /* Determine the index node position */ |
| if (lnum == -1) { |
| lnum = c->ilebs[lnum_pos++]; |
| buf_offs = 0; |
| used = 0; |
| avail = buf_len; |
| } |
| offs = buf_offs + used; |
| |
| if (lnum != znode->lnum || offs != znode->offs || |
| len != znode->len) { |
| ubifs_err(c, "inconsistent znode posn"); |
| return -EINVAL; |
| } |
| |
| /* Grab some stuff from znode while we still can */ |
| cnext = znode->cnext; |
| |
| ubifs_assert(c, ubifs_zn_dirty(znode)); |
| ubifs_assert(c, ubifs_zn_cow(znode)); |
| |
| /* |
| * It is important that other threads should see %DIRTY_ZNODE |
| * flag cleared before %COW_ZNODE. Specifically, it matters in |
| * the 'dirty_cow_znode()' function. This is the reason for the |
| * first barrier. Also, we want the bit changes to be seen to |
| * other threads ASAP, to avoid unnecesarry copying, which is |
| * the reason for the second barrier. |
| */ |
| clear_bit(DIRTY_ZNODE, &znode->flags); |
| smp_mb__before_atomic(); |
| clear_bit(COW_ZNODE, &znode->flags); |
| smp_mb__after_atomic(); |
| |
| /* |
| * We have marked the znode as clean but have not updated the |
| * @c->clean_zn_cnt counter. If this znode becomes dirty again |
| * before 'free_obsolete_znodes()' is called, then |
| * @c->clean_zn_cnt will be decremented before it gets |
| * incremented (resulting in 2 decrements for the same znode). |
| * This means that @c->clean_zn_cnt may become negative for a |
| * while. |
| * |
| * Q: why we cannot increment @c->clean_zn_cnt? |
| * A: because we do not have the @c->tnc_mutex locked, and the |
| * following code would be racy and buggy: |
| * |
| * if (!ubifs_zn_obsolete(znode)) { |
| * atomic_long_inc(&c->clean_zn_cnt); |
| * atomic_long_inc(&ubifs_clean_zn_cnt); |
| * } |
| * |
| * Thus, we just delay the @c->clean_zn_cnt update until we |
| * have the mutex locked. |
| */ |
| |
| /* Do not access znode from this point on */ |
| |
| /* Update buffer positions */ |
| wlen = used + len; |
| used += ALIGN(len, 8); |
| avail -= ALIGN(len, 8); |
| |
| /* |
| * Calculate the next index node length to see if there is |
| * enough room for it |
| */ |
| if (cnext == c->cnext) |
| next_len = 0; |
| else |
| next_len = ubifs_idx_node_sz(c, cnext->child_cnt); |
| |
| nxt_offs = buf_offs + used + next_len; |
| if (next_len && nxt_offs <= c->leb_size) { |
| if (avail > 0) |
| continue; |
| else |
| blen = buf_len; |
| } else { |
| wlen = ALIGN(wlen, 8); |
| blen = ALIGN(wlen, c->min_io_size); |
| ubifs_pad(c, c->cbuf + wlen, blen - wlen); |
| } |
| |
| /* The buffer is full or there are no more znodes to do */ |
| err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen); |
| if (err) |
| return err; |
| buf_offs += blen; |
| if (next_len) { |
| if (nxt_offs > c->leb_size) { |
| err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, |
| 0, LPROPS_TAKEN); |
| if (err) |
| return err; |
| lnum = -1; |
| } |
| used -= blen; |
| if (used < 0) |
| used = 0; |
| avail = buf_len - used; |
| memmove(c->cbuf, c->cbuf + blen, used); |
| continue; |
| } |
| break; |
| } |
| |
| if (lnum != c->dbg->new_ihead_lnum || |
| buf_offs != c->dbg->new_ihead_offs) { |
| ubifs_err(c, "inconsistent ihead"); |
| return -EINVAL; |
| } |
| |
| c->ihead_lnum = lnum; |
| c->ihead_offs = buf_offs; |
| |
| return 0; |
| } |
| |
| /** |
| * free_obsolete_znodes - free obsolete znodes. |
| * @c: UBIFS file-system description object |
| * |
| * At the end of commit end, obsolete znodes are freed. |
| */ |
| static void free_obsolete_znodes(struct ubifs_info *c) |
| { |
| struct ubifs_znode *znode, *cnext; |
| |
| cnext = c->cnext; |
| do { |
| znode = cnext; |
| cnext = znode->cnext; |
| if (ubifs_zn_obsolete(znode)) |
| kfree(znode); |
| else { |
| znode->cnext = NULL; |
| atomic_long_inc(&c->clean_zn_cnt); |
| atomic_long_inc(&ubifs_clean_zn_cnt); |
| } |
| } while (cnext != c->cnext); |
| } |
| |
| /** |
| * return_gap_lebs - return LEBs used by the in-gap commit method. |
| * @c: UBIFS file-system description object |
| * |
| * This function clears the "taken" flag for the LEBs which were used by the |
| * "commit in-the-gaps" method. |
| */ |
| static int return_gap_lebs(struct ubifs_info *c) |
| { |
| int *p, err; |
| |
| if (!c->gap_lebs) |
| return 0; |
| |
| dbg_cmt(""); |
| for (p = c->gap_lebs; *p != -1; p++) { |
| err = ubifs_change_one_lp(c, *p, LPROPS_NC, LPROPS_NC, 0, |
| LPROPS_TAKEN, 0); |
| if (err) |
| return err; |
| } |
| |
| kfree(c->gap_lebs); |
| c->gap_lebs = NULL; |
| return 0; |
| } |
| |
| /** |
| * ubifs_tnc_end_commit - update the TNC for commit end. |
| * @c: UBIFS file-system description object |
| * |
| * Write the dirty znodes. |
| */ |
| int ubifs_tnc_end_commit(struct ubifs_info *c) |
| { |
| int err; |
| |
| if (!c->cnext) |
| return 0; |
| |
| err = return_gap_lebs(c); |
| if (err) |
| return err; |
| |
| err = write_index(c); |
| if (err) |
| return err; |
| |
| mutex_lock(&c->tnc_mutex); |
| |
| dbg_cmt("TNC height is %d", c->zroot.znode->level + 1); |
| |
| free_obsolete_znodes(c); |
| |
| c->cnext = NULL; |
| kfree(c->ilebs); |
| c->ilebs = NULL; |
| |
| mutex_unlock(&c->tnc_mutex); |
| |
| return 0; |
| } |