blob: 0759c3a668de7a7fc38968be27c619672c8f6ece [file] [log] [blame]
/*
*
* Intel Management Engine Interface (Intel MEI) Linux driver
* Copyright (c) 2003-2012, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
*/
#include <linux/pci.h>
#include <linux/kthread.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/sizes.h>
#include "mei_dev.h"
#include "hbm.h"
#include "hw-me.h"
#include "hw-me-regs.h"
#include "mei-trace.h"
/**
* mei_me_reg_read - Reads 32bit data from the mei device
*
* @hw: the me hardware structure
* @offset: offset from which to read the data
*
* Return: register value (u32)
*/
static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
unsigned long offset)
{
return ioread32(hw->mem_addr + offset);
}
/**
* mei_me_reg_write - Writes 32bit data to the mei device
*
* @hw: the me hardware structure
* @offset: offset from which to write the data
* @value: register value to write (u32)
*/
static inline void mei_me_reg_write(const struct mei_me_hw *hw,
unsigned long offset, u32 value)
{
iowrite32(value, hw->mem_addr + offset);
}
/**
* mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
* read window register
*
* @dev: the device structure
*
* Return: ME_CB_RW register value (u32)
*/
static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
{
return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
}
/**
* mei_me_hcbww_write - write 32bit data to the host circular buffer
*
* @dev: the device structure
* @data: 32bit data to be written to the host circular buffer
*/
static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
{
mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
}
/**
* mei_me_mecsr_read - Reads 32bit data from the ME CSR
*
* @dev: the device structure
*
* Return: ME_CSR_HA register value (u32)
*/
static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
{
u32 reg;
reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
return reg;
}
/**
* mei_hcsr_read - Reads 32bit data from the host CSR
*
* @dev: the device structure
*
* Return: H_CSR register value (u32)
*/
static inline u32 mei_hcsr_read(const struct mei_device *dev)
{
u32 reg;
reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
return reg;
}
/**
* mei_hcsr_write - writes H_CSR register to the mei device
*
* @dev: the device structure
* @reg: new register value
*/
static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
{
trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
}
/**
* mei_hcsr_set - writes H_CSR register to the mei device,
* and ignores the H_IS bit for it is write-one-to-zero.
*
* @dev: the device structure
* @reg: new register value
*/
static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
{
reg &= ~H_CSR_IS_MASK;
mei_hcsr_write(dev, reg);
}
/**
* mei_hcsr_set_hig - set host interrupt (set H_IG)
*
* @dev: the device structure
*/
static inline void mei_hcsr_set_hig(struct mei_device *dev)
{
u32 hcsr;
hcsr = mei_hcsr_read(dev) | H_IG;
mei_hcsr_set(dev, hcsr);
}
/**
* mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
*
* @dev: the device structure
*
* Return: H_D0I3C register value (u32)
*/
static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
{
u32 reg;
reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
return reg;
}
/**
* mei_me_d0i3c_write - writes H_D0I3C register to device
*
* @dev: the device structure
* @reg: new register value
*/
static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
{
trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
}
/**
* mei_me_fw_status - read fw status register from pci config space
*
* @dev: mei device
* @fw_status: fw status register values
*
* Return: 0 on success, error otherwise
*/
static int mei_me_fw_status(struct mei_device *dev,
struct mei_fw_status *fw_status)
{
struct pci_dev *pdev = to_pci_dev(dev->dev);
struct mei_me_hw *hw = to_me_hw(dev);
const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
int ret;
int i;
if (!fw_status)
return -EINVAL;
fw_status->count = fw_src->count;
for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
ret = pci_read_config_dword(pdev, fw_src->status[i],
&fw_status->status[i]);
trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
fw_src->status[i],
fw_status->status[i]);
if (ret)
return ret;
}
return 0;
}
/**
* mei_me_hw_config - configure hw dependent settings
*
* @dev: mei device
*/
static void mei_me_hw_config(struct mei_device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev->dev);
struct mei_me_hw *hw = to_me_hw(dev);
u32 hcsr, reg;
/* Doesn't change in runtime */
hcsr = mei_hcsr_read(dev);
hw->hbuf_depth = (hcsr & H_CBD) >> 24;
reg = 0;
pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
hw->d0i3_supported =
((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
hw->pg_state = MEI_PG_OFF;
if (hw->d0i3_supported) {
reg = mei_me_d0i3c_read(dev);
if (reg & H_D0I3C_I3)
hw->pg_state = MEI_PG_ON;
}
}
/**
* mei_me_pg_state - translate internal pg state
* to the mei power gating state
*
* @dev: mei device
*
* Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
*/
static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
return hw->pg_state;
}
static inline u32 me_intr_src(u32 hcsr)
{
return hcsr & H_CSR_IS_MASK;
}
/**
* me_intr_disable - disables mei device interrupts
* using supplied hcsr register value.
*
* @dev: the device structure
* @hcsr: supplied hcsr register value
*/
static inline void me_intr_disable(struct mei_device *dev, u32 hcsr)
{
hcsr &= ~H_CSR_IE_MASK;
mei_hcsr_set(dev, hcsr);
}
/**
* mei_me_intr_clear - clear and stop interrupts
*
* @dev: the device structure
* @hcsr: supplied hcsr register value
*/
static inline void me_intr_clear(struct mei_device *dev, u32 hcsr)
{
if (me_intr_src(hcsr))
mei_hcsr_write(dev, hcsr);
}
/**
* mei_me_intr_clear - clear and stop interrupts
*
* @dev: the device structure
*/
static void mei_me_intr_clear(struct mei_device *dev)
{
u32 hcsr = mei_hcsr_read(dev);
me_intr_clear(dev, hcsr);
}
/**
* mei_me_intr_enable - enables mei device interrupts
*
* @dev: the device structure
*/
static void mei_me_intr_enable(struct mei_device *dev)
{
u32 hcsr = mei_hcsr_read(dev);
hcsr |= H_CSR_IE_MASK;
mei_hcsr_set(dev, hcsr);
}
/**
* mei_me_intr_disable - disables mei device interrupts
*
* @dev: the device structure
*/
static void mei_me_intr_disable(struct mei_device *dev)
{
u32 hcsr = mei_hcsr_read(dev);
me_intr_disable(dev, hcsr);
}
/**
* mei_me_synchronize_irq - wait for pending IRQ handlers
*
* @dev: the device structure
*/
static void mei_me_synchronize_irq(struct mei_device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev->dev);
synchronize_irq(pdev->irq);
}
/**
* mei_me_hw_reset_release - release device from the reset
*
* @dev: the device structure
*/
static void mei_me_hw_reset_release(struct mei_device *dev)
{
u32 hcsr = mei_hcsr_read(dev);
hcsr |= H_IG;
hcsr &= ~H_RST;
mei_hcsr_set(dev, hcsr);
/* complete this write before we set host ready on another CPU */
mmiowb();
}
/**
* mei_me_host_set_ready - enable device
*
* @dev: mei device
*/
static void mei_me_host_set_ready(struct mei_device *dev)
{
u32 hcsr = mei_hcsr_read(dev);
hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
mei_hcsr_set(dev, hcsr);
}
/**
* mei_me_host_is_ready - check whether the host has turned ready
*
* @dev: mei device
* Return: bool
*/
static bool mei_me_host_is_ready(struct mei_device *dev)
{
u32 hcsr = mei_hcsr_read(dev);
return (hcsr & H_RDY) == H_RDY;
}
/**
* mei_me_hw_is_ready - check whether the me(hw) has turned ready
*
* @dev: mei device
* Return: bool
*/
static bool mei_me_hw_is_ready(struct mei_device *dev)
{
u32 mecsr = mei_me_mecsr_read(dev);
return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
}
/**
* mei_me_hw_is_resetting - check whether the me(hw) is in reset
*
* @dev: mei device
* Return: bool
*/
static bool mei_me_hw_is_resetting(struct mei_device *dev)
{
u32 mecsr = mei_me_mecsr_read(dev);
return (mecsr & ME_RST_HRA) == ME_RST_HRA;
}
/**
* mei_me_hw_ready_wait - wait until the me(hw) has turned ready
* or timeout is reached
*
* @dev: mei device
* Return: 0 on success, error otherwise
*/
static int mei_me_hw_ready_wait(struct mei_device *dev)
{
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_hw_ready,
dev->recvd_hw_ready,
mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
mutex_lock(&dev->device_lock);
if (!dev->recvd_hw_ready) {
dev_err(dev->dev, "wait hw ready failed\n");
return -ETIME;
}
mei_me_hw_reset_release(dev);
dev->recvd_hw_ready = false;
return 0;
}
/**
* mei_me_hw_start - hw start routine
*
* @dev: mei device
* Return: 0 on success, error otherwise
*/
static int mei_me_hw_start(struct mei_device *dev)
{
int ret = mei_me_hw_ready_wait(dev);
if (ret)
return ret;
dev_dbg(dev->dev, "hw is ready\n");
mei_me_host_set_ready(dev);
return ret;
}
/**
* mei_hbuf_filled_slots - gets number of device filled buffer slots
*
* @dev: the device structure
*
* Return: number of filled slots
*/
static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
{
u32 hcsr;
char read_ptr, write_ptr;
hcsr = mei_hcsr_read(dev);
read_ptr = (char) ((hcsr & H_CBRP) >> 8);
write_ptr = (char) ((hcsr & H_CBWP) >> 16);
return (unsigned char) (write_ptr - read_ptr);
}
/**
* mei_me_hbuf_is_empty - checks if host buffer is empty.
*
* @dev: the device structure
*
* Return: true if empty, false - otherwise.
*/
static bool mei_me_hbuf_is_empty(struct mei_device *dev)
{
return mei_hbuf_filled_slots(dev) == 0;
}
/**
* mei_me_hbuf_empty_slots - counts write empty slots.
*
* @dev: the device structure
*
* Return: -EOVERFLOW if overflow, otherwise empty slots count
*/
static int mei_me_hbuf_empty_slots(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
unsigned char filled_slots, empty_slots;
filled_slots = mei_hbuf_filled_slots(dev);
empty_slots = hw->hbuf_depth - filled_slots;
/* check for overflow */
if (filled_slots > hw->hbuf_depth)
return -EOVERFLOW;
return empty_slots;
}
/**
* mei_me_hbuf_depth - returns depth of the hw buffer.
*
* @dev: the device structure
*
* Return: size of hw buffer in slots
*/
static u32 mei_me_hbuf_depth(const struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
return hw->hbuf_depth;
}
/**
* mei_me_hbuf_write - writes a message to host hw buffer.
*
* @dev: the device structure
* @hdr: header of message
* @hdr_len: header length in bytes: must be multiplication of a slot (4bytes)
* @data: payload
* @data_len: payload length in bytes
*
* Return: 0 if success, < 0 - otherwise.
*/
static int mei_me_hbuf_write(struct mei_device *dev,
const void *hdr, size_t hdr_len,
const void *data, size_t data_len)
{
unsigned long rem;
unsigned long i;
const u32 *reg_buf;
u32 dw_cnt;
int empty_slots;
if (WARN_ON(!hdr || !data || hdr_len & 0x3))
return -EINVAL;
dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM((struct mei_msg_hdr *)hdr));
empty_slots = mei_hbuf_empty_slots(dev);
dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
if (empty_slots < 0)
return -EOVERFLOW;
dw_cnt = mei_data2slots(hdr_len + data_len);
if (dw_cnt > (u32)empty_slots)
return -EMSGSIZE;
reg_buf = hdr;
for (i = 0; i < hdr_len / MEI_SLOT_SIZE; i++)
mei_me_hcbww_write(dev, reg_buf[i]);
reg_buf = data;
for (i = 0; i < data_len / MEI_SLOT_SIZE; i++)
mei_me_hcbww_write(dev, reg_buf[i]);
rem = data_len & 0x3;
if (rem > 0) {
u32 reg = 0;
memcpy(&reg, (const u8 *)data + data_len - rem, rem);
mei_me_hcbww_write(dev, reg);
}
mei_hcsr_set_hig(dev);
if (!mei_me_hw_is_ready(dev))
return -EIO;
return 0;
}
/**
* mei_me_count_full_read_slots - counts read full slots.
*
* @dev: the device structure
*
* Return: -EOVERFLOW if overflow, otherwise filled slots count
*/
static int mei_me_count_full_read_slots(struct mei_device *dev)
{
u32 me_csr;
char read_ptr, write_ptr;
unsigned char buffer_depth, filled_slots;
me_csr = mei_me_mecsr_read(dev);
buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
filled_slots = (unsigned char) (write_ptr - read_ptr);
/* check for overflow */
if (filled_slots > buffer_depth)
return -EOVERFLOW;
dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
return (int)filled_slots;
}
/**
* mei_me_read_slots - reads a message from mei device.
*
* @dev: the device structure
* @buffer: message buffer will be written
* @buffer_length: message size will be read
*
* Return: always 0
*/
static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
unsigned long buffer_length)
{
u32 *reg_buf = (u32 *)buffer;
for (; buffer_length >= MEI_SLOT_SIZE; buffer_length -= MEI_SLOT_SIZE)
*reg_buf++ = mei_me_mecbrw_read(dev);
if (buffer_length > 0) {
u32 reg = mei_me_mecbrw_read(dev);
memcpy(reg_buf, &reg, buffer_length);
}
mei_hcsr_set_hig(dev);
return 0;
}
/**
* mei_me_pg_set - write pg enter register
*
* @dev: the device structure
*/
static void mei_me_pg_set(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 reg;
reg = mei_me_reg_read(hw, H_HPG_CSR);
trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
reg |= H_HPG_CSR_PGI;
trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
mei_me_reg_write(hw, H_HPG_CSR, reg);
}
/**
* mei_me_pg_unset - write pg exit register
*
* @dev: the device structure
*/
static void mei_me_pg_unset(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 reg;
reg = mei_me_reg_read(hw, H_HPG_CSR);
trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
reg |= H_HPG_CSR_PGIHEXR;
trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
mei_me_reg_write(hw, H_HPG_CSR, reg);
}
/**
* mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
int ret;
dev->pg_event = MEI_PG_EVENT_WAIT;
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
if (ret)
return ret;
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_pg,
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
mutex_lock(&dev->device_lock);
if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
mei_me_pg_set(dev);
ret = 0;
} else {
ret = -ETIME;
}
dev->pg_event = MEI_PG_EVENT_IDLE;
hw->pg_state = MEI_PG_ON;
return ret;
}
/**
* mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
int ret;
if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
goto reply;
dev->pg_event = MEI_PG_EVENT_WAIT;
mei_me_pg_unset(dev);
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_pg,
dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
mutex_lock(&dev->device_lock);
reply:
if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
ret = -ETIME;
goto out;
}
dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
if (ret)
return ret;
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_pg,
dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
mutex_lock(&dev->device_lock);
if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
ret = 0;
else
ret = -ETIME;
out:
dev->pg_event = MEI_PG_EVENT_IDLE;
hw->pg_state = MEI_PG_OFF;
return ret;
}
/**
* mei_me_pg_in_transition - is device now in pg transition
*
* @dev: the device structure
*
* Return: true if in pg transition, false otherwise
*/
static bool mei_me_pg_in_transition(struct mei_device *dev)
{
return dev->pg_event >= MEI_PG_EVENT_WAIT &&
dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
}
/**
* mei_me_pg_is_enabled - detect if PG is supported by HW
*
* @dev: the device structure
*
* Return: true is pg supported, false otherwise
*/
static bool mei_me_pg_is_enabled(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 reg = mei_me_mecsr_read(dev);
if (hw->d0i3_supported)
return true;
if ((reg & ME_PGIC_HRA) == 0)
goto notsupported;
if (!dev->hbm_f_pg_supported)
goto notsupported;
return true;
notsupported:
dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
hw->d0i3_supported,
!!(reg & ME_PGIC_HRA),
dev->version.major_version,
dev->version.minor_version,
HBM_MAJOR_VERSION_PGI,
HBM_MINOR_VERSION_PGI);
return false;
}
/**
* mei_me_d0i3_set - write d0i3 register bit on mei device.
*
* @dev: the device structure
* @intr: ask for interrupt
*
* Return: D0I3C register value
*/
static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
{
u32 reg = mei_me_d0i3c_read(dev);
reg |= H_D0I3C_I3;
if (intr)
reg |= H_D0I3C_IR;
else
reg &= ~H_D0I3C_IR;
mei_me_d0i3c_write(dev, reg);
/* read it to ensure HW consistency */
reg = mei_me_d0i3c_read(dev);
return reg;
}
/**
* mei_me_d0i3_unset - clean d0i3 register bit on mei device.
*
* @dev: the device structure
*
* Return: D0I3C register value
*/
static u32 mei_me_d0i3_unset(struct mei_device *dev)
{
u32 reg = mei_me_d0i3c_read(dev);
reg &= ~H_D0I3C_I3;
reg |= H_D0I3C_IR;
mei_me_d0i3c_write(dev, reg);
/* read it to ensure HW consistency */
reg = mei_me_d0i3c_read(dev);
return reg;
}
/**
* mei_me_d0i3_enter_sync - perform d0i3 entry procedure
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
static int mei_me_d0i3_enter_sync(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
int ret;
u32 reg;
reg = mei_me_d0i3c_read(dev);
if (reg & H_D0I3C_I3) {
/* we are in d0i3, nothing to do */
dev_dbg(dev->dev, "d0i3 set not needed\n");
ret = 0;
goto on;
}
/* PGI entry procedure */
dev->pg_event = MEI_PG_EVENT_WAIT;
ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
if (ret)
/* FIXME: should we reset here? */
goto out;
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_pg,
dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
mutex_lock(&dev->device_lock);
if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
ret = -ETIME;
goto out;
}
/* end PGI entry procedure */
dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
reg = mei_me_d0i3_set(dev, true);
if (!(reg & H_D0I3C_CIP)) {
dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
ret = 0;
goto on;
}
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_pg,
dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
mutex_lock(&dev->device_lock);
if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
reg = mei_me_d0i3c_read(dev);
if (!(reg & H_D0I3C_I3)) {
ret = -ETIME;
goto out;
}
}
ret = 0;
on:
hw->pg_state = MEI_PG_ON;
out:
dev->pg_event = MEI_PG_EVENT_IDLE;
dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
return ret;
}
/**
* mei_me_d0i3_enter - perform d0i3 entry procedure
* no hbm PG handshake
* no waiting for confirmation; runs with interrupts
* disabled
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
static int mei_me_d0i3_enter(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
u32 reg;
reg = mei_me_d0i3c_read(dev);
if (reg & H_D0I3C_I3) {
/* we are in d0i3, nothing to do */
dev_dbg(dev->dev, "already d0i3 : set not needed\n");
goto on;
}
mei_me_d0i3_set(dev, false);
on:
hw->pg_state = MEI_PG_ON;
dev->pg_event = MEI_PG_EVENT_IDLE;
dev_dbg(dev->dev, "d0i3 enter\n");
return 0;
}
/**
* mei_me_d0i3_exit_sync - perform d0i3 exit procedure
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
static int mei_me_d0i3_exit_sync(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
int ret;
u32 reg;
dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
reg = mei_me_d0i3c_read(dev);
if (!(reg & H_D0I3C_I3)) {
/* we are not in d0i3, nothing to do */
dev_dbg(dev->dev, "d0i3 exit not needed\n");
ret = 0;
goto off;
}
reg = mei_me_d0i3_unset(dev);
if (!(reg & H_D0I3C_CIP)) {
dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
ret = 0;
goto off;
}
mutex_unlock(&dev->device_lock);
wait_event_timeout(dev->wait_pg,
dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
mutex_lock(&dev->device_lock);
if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
reg = mei_me_d0i3c_read(dev);
if (reg & H_D0I3C_I3) {
ret = -ETIME;
goto out;
}
}
ret = 0;
off:
hw->pg_state = MEI_PG_OFF;
out:
dev->pg_event = MEI_PG_EVENT_IDLE;
dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
return ret;
}
/**
* mei_me_pg_legacy_intr - perform legacy pg processing
* in interrupt thread handler
*
* @dev: the device structure
*/
static void mei_me_pg_legacy_intr(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
return;
dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
hw->pg_state = MEI_PG_OFF;
if (waitqueue_active(&dev->wait_pg))
wake_up(&dev->wait_pg);
}
/**
* mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
*
* @dev: the device structure
* @intr_source: interrupt source
*/
static void mei_me_d0i3_intr(struct mei_device *dev, u32 intr_source)
{
struct mei_me_hw *hw = to_me_hw(dev);
if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
(intr_source & H_D0I3C_IS)) {
dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
if (hw->pg_state == MEI_PG_ON) {
hw->pg_state = MEI_PG_OFF;
if (dev->hbm_state != MEI_HBM_IDLE) {
/*
* force H_RDY because it could be
* wiped off during PG
*/
dev_dbg(dev->dev, "d0i3 set host ready\n");
mei_me_host_set_ready(dev);
}
} else {
hw->pg_state = MEI_PG_ON;
}
wake_up(&dev->wait_pg);
}
if (hw->pg_state == MEI_PG_ON && (intr_source & H_IS)) {
/*
* HW sent some data and we are in D0i3, so
* we got here because of HW initiated exit from D0i3.
* Start runtime pm resume sequence to exit low power state.
*/
dev_dbg(dev->dev, "d0i3 want resume\n");
mei_hbm_pg_resume(dev);
}
}
/**
* mei_me_pg_intr - perform pg processing in interrupt thread handler
*
* @dev: the device structure
* @intr_source: interrupt source
*/
static void mei_me_pg_intr(struct mei_device *dev, u32 intr_source)
{
struct mei_me_hw *hw = to_me_hw(dev);
if (hw->d0i3_supported)
mei_me_d0i3_intr(dev, intr_source);
else
mei_me_pg_legacy_intr(dev);
}
/**
* mei_me_pg_enter_sync - perform runtime pm entry procedure
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
int mei_me_pg_enter_sync(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
if (hw->d0i3_supported)
return mei_me_d0i3_enter_sync(dev);
else
return mei_me_pg_legacy_enter_sync(dev);
}
/**
* mei_me_pg_exit_sync - perform runtime pm exit procedure
*
* @dev: the device structure
*
* Return: 0 on success an error code otherwise
*/
int mei_me_pg_exit_sync(struct mei_device *dev)
{
struct mei_me_hw *hw = to_me_hw(dev);
if (hw->d0i3_supported)
return mei_me_d0i3_exit_sync(dev);
else
return mei_me_pg_legacy_exit_sync(dev);
}
/**
* mei_me_hw_reset - resets fw via mei csr register.
*
* @dev: the device structure
* @intr_enable: if interrupt should be enabled after reset.
*
* Return: 0 on success an error code otherwise
*/
static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
{
struct mei_me_hw *hw = to_me_hw(dev);
int ret;
u32 hcsr;
if (intr_enable) {
mei_me_intr_enable(dev);
if (hw->d0i3_supported) {
ret = mei_me_d0i3_exit_sync(dev);
if (ret)
return ret;
}
}
pm_runtime_set_active(dev->dev);
hcsr = mei_hcsr_read(dev);
/* H_RST may be found lit before reset is started,
* for example if preceding reset flow hasn't completed.
* In that case asserting H_RST will be ignored, therefore
* we need to clean H_RST bit to start a successful reset sequence.
*/
if ((hcsr & H_RST) == H_RST) {
dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
hcsr &= ~H_RST;
mei_hcsr_set(dev, hcsr);
hcsr = mei_hcsr_read(dev);
}
hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
if (!intr_enable)
hcsr &= ~H_CSR_IE_MASK;
dev->recvd_hw_ready = false;
mei_hcsr_write(dev, hcsr);
/*
* Host reads the H_CSR once to ensure that the
* posted write to H_CSR completes.
*/
hcsr = mei_hcsr_read(dev);
if ((hcsr & H_RST) == 0)
dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
if ((hcsr & H_RDY) == H_RDY)
dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
if (!intr_enable) {
mei_me_hw_reset_release(dev);
if (hw->d0i3_supported) {
ret = mei_me_d0i3_enter(dev);
if (ret)
return ret;
}
}
return 0;
}
/**
* mei_me_irq_quick_handler - The ISR of the MEI device
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: irqreturn_t
*/
irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
{
struct mei_device *dev = (struct mei_device *)dev_id;
u32 hcsr;
hcsr = mei_hcsr_read(dev);
if (!me_intr_src(hcsr))
return IRQ_NONE;
dev_dbg(dev->dev, "interrupt source 0x%08X\n", me_intr_src(hcsr));
/* disable interrupts on device */
me_intr_disable(dev, hcsr);
return IRQ_WAKE_THREAD;
}
/**
* mei_me_irq_thread_handler - function called after ISR to handle the interrupt
* processing.
*
* @irq: The irq number
* @dev_id: pointer to the device structure
*
* Return: irqreturn_t
*
*/
irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
{
struct mei_device *dev = (struct mei_device *) dev_id;
struct list_head cmpl_list;
s32 slots;
u32 hcsr;
int rets = 0;
dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
/* initialize our complete list */
mutex_lock(&dev->device_lock);
hcsr = mei_hcsr_read(dev);
me_intr_clear(dev, hcsr);
INIT_LIST_HEAD(&cmpl_list);
/* check if ME wants a reset */
if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
dev_warn(dev->dev, "FW not ready: resetting.\n");
schedule_work(&dev->reset_work);
goto end;
}
if (mei_me_hw_is_resetting(dev))
mei_hcsr_set_hig(dev);
mei_me_pg_intr(dev, me_intr_src(hcsr));
/* check if we need to start the dev */
if (!mei_host_is_ready(dev)) {
if (mei_hw_is_ready(dev)) {
dev_dbg(dev->dev, "we need to start the dev.\n");
dev->recvd_hw_ready = true;
wake_up(&dev->wait_hw_ready);
} else {
dev_dbg(dev->dev, "Spurious Interrupt\n");
}
goto end;
}
/* check slots available for reading */
slots = mei_count_full_read_slots(dev);
while (slots > 0) {
dev_dbg(dev->dev, "slots to read = %08x\n", slots);
rets = mei_irq_read_handler(dev, &cmpl_list, &slots);
/* There is a race between ME write and interrupt delivery:
* Not all data is always available immediately after the
* interrupt, so try to read again on the next interrupt.
*/
if (rets == -ENODATA)
break;
if (rets &&
(dev->dev_state != MEI_DEV_RESETTING &&
dev->dev_state != MEI_DEV_POWER_DOWN)) {
dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
rets);
schedule_work(&dev->reset_work);
goto end;
}
}
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
/*
* During PG handshake only allowed write is the replay to the
* PG exit message, so block calling write function
* if the pg event is in PG handshake
*/
if (dev->pg_event != MEI_PG_EVENT_WAIT &&
dev->pg_event != MEI_PG_EVENT_RECEIVED) {
rets = mei_irq_write_handler(dev, &cmpl_list);
dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
}
mei_irq_compl_handler(dev, &cmpl_list);
end:
dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
mei_me_intr_enable(dev);
mutex_unlock(&dev->device_lock);
return IRQ_HANDLED;
}
static const struct mei_hw_ops mei_me_hw_ops = {
.fw_status = mei_me_fw_status,
.pg_state = mei_me_pg_state,
.host_is_ready = mei_me_host_is_ready,
.hw_is_ready = mei_me_hw_is_ready,
.hw_reset = mei_me_hw_reset,
.hw_config = mei_me_hw_config,
.hw_start = mei_me_hw_start,
.pg_in_transition = mei_me_pg_in_transition,
.pg_is_enabled = mei_me_pg_is_enabled,
.intr_clear = mei_me_intr_clear,
.intr_enable = mei_me_intr_enable,
.intr_disable = mei_me_intr_disable,
.synchronize_irq = mei_me_synchronize_irq,
.hbuf_free_slots = mei_me_hbuf_empty_slots,
.hbuf_is_ready = mei_me_hbuf_is_empty,
.hbuf_depth = mei_me_hbuf_depth,
.write = mei_me_hbuf_write,
.rdbuf_full_slots = mei_me_count_full_read_slots,
.read_hdr = mei_me_mecbrw_read,
.read = mei_me_read_slots
};
static bool mei_me_fw_type_nm(struct pci_dev *pdev)
{
u32 reg;
pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
/* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
return (reg & 0x600) == 0x200;
}
#define MEI_CFG_FW_NM \
.quirk_probe = mei_me_fw_type_nm
static bool mei_me_fw_type_sps(struct pci_dev *pdev)
{
u32 reg;
unsigned int devfn;
/*
* Read ME FW Status register to check for SPS Firmware
* The SPS FW is only signaled in pci function 0
*/
devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
/* if bits [19:16] = 15, running SPS Firmware */
return (reg & 0xf0000) == 0xf0000;
}
#define MEI_CFG_FW_SPS \
.quirk_probe = mei_me_fw_type_sps
#define MEI_CFG_ICH_HFS \
.fw_status.count = 0
#define MEI_CFG_ICH10_HFS \
.fw_status.count = 1, \
.fw_status.status[0] = PCI_CFG_HFS_1
#define MEI_CFG_PCH_HFS \
.fw_status.count = 2, \
.fw_status.status[0] = PCI_CFG_HFS_1, \
.fw_status.status[1] = PCI_CFG_HFS_2
#define MEI_CFG_PCH8_HFS \
.fw_status.count = 6, \
.fw_status.status[0] = PCI_CFG_HFS_1, \
.fw_status.status[1] = PCI_CFG_HFS_2, \
.fw_status.status[2] = PCI_CFG_HFS_3, \
.fw_status.status[3] = PCI_CFG_HFS_4, \
.fw_status.status[4] = PCI_CFG_HFS_5, \
.fw_status.status[5] = PCI_CFG_HFS_6
#define MEI_CFG_DMA_128 \
.dma_size[DMA_DSCR_HOST] = SZ_128K, \
.dma_size[DMA_DSCR_DEVICE] = SZ_128K, \
.dma_size[DMA_DSCR_CTRL] = PAGE_SIZE
/* ICH Legacy devices */
static const struct mei_cfg mei_me_ich_cfg = {
MEI_CFG_ICH_HFS,
};
/* ICH devices */
static const struct mei_cfg mei_me_ich10_cfg = {
MEI_CFG_ICH10_HFS,
};
/* PCH devices */
static const struct mei_cfg mei_me_pch_cfg = {
MEI_CFG_PCH_HFS,
};
/* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
static const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
MEI_CFG_PCH_HFS,
MEI_CFG_FW_NM,
};
/* PCH8 Lynx Point and newer devices */
static const struct mei_cfg mei_me_pch8_cfg = {
MEI_CFG_PCH8_HFS,
};
/* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
static const struct mei_cfg mei_me_pch8_sps_cfg = {
MEI_CFG_PCH8_HFS,
MEI_CFG_FW_SPS,
};
/* Cannon Lake and newer devices */
static const struct mei_cfg mei_me_pch12_cfg = {
MEI_CFG_PCH8_HFS,
MEI_CFG_DMA_128,
};
/*
* mei_cfg_list - A list of platform platform specific configurations.
* Note: has to be synchronized with enum mei_cfg_idx.
*/
static const struct mei_cfg *const mei_cfg_list[] = {
[MEI_ME_UNDEF_CFG] = NULL,
[MEI_ME_ICH_CFG] = &mei_me_ich_cfg,
[MEI_ME_ICH10_CFG] = &mei_me_ich10_cfg,
[MEI_ME_PCH_CFG] = &mei_me_pch_cfg,
[MEI_ME_PCH_CPT_PBG_CFG] = &mei_me_pch_cpt_pbg_cfg,
[MEI_ME_PCH8_CFG] = &mei_me_pch8_cfg,
[MEI_ME_PCH8_SPS_CFG] = &mei_me_pch8_sps_cfg,
[MEI_ME_PCH12_CFG] = &mei_me_pch12_cfg,
};
const struct mei_cfg *mei_me_get_cfg(kernel_ulong_t idx)
{
BUILD_BUG_ON(ARRAY_SIZE(mei_cfg_list) != MEI_ME_NUM_CFG);
if (idx >= MEI_ME_NUM_CFG)
return NULL;
return mei_cfg_list[idx];
};
/**
* mei_me_dev_init - allocates and initializes the mei device structure
*
* @pdev: The pci device structure
* @cfg: per device generation config
*
* Return: The mei_device pointer on success, NULL on failure.
*/
struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
const struct mei_cfg *cfg)
{
struct mei_device *dev;
struct mei_me_hw *hw;
dev = devm_kzalloc(&pdev->dev, sizeof(struct mei_device) +
sizeof(struct mei_me_hw), GFP_KERNEL);
if (!dev)
return NULL;
hw = to_me_hw(dev);
mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
hw->cfg = cfg;
return dev;
}