|  | /* SCTP kernel implementation | 
|  | * (C) Copyright IBM Corp. 2001, 2004 | 
|  | * Copyright (c) 1999-2000 Cisco, Inc. | 
|  | * Copyright (c) 1999-2001 Motorola, Inc. | 
|  | * Copyright (c) 2001 Intel Corp. | 
|  | * Copyright (c) 2001 La Monte H.P. Yarroll | 
|  | * | 
|  | * This file is part of the SCTP kernel implementation | 
|  | * | 
|  | * This module provides the abstraction for an SCTP association. | 
|  | * | 
|  | * This SCTP implementation is free software; | 
|  | * you can redistribute it and/or modify it under the terms of | 
|  | * the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This SCTP implementation is distributed in the hope that it | 
|  | * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
|  | *                 ************************ | 
|  | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | * See the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with GNU CC; see the file COPYING.  If not, see | 
|  | * <http://www.gnu.org/licenses/>. | 
|  | * | 
|  | * Please send any bug reports or fixes you make to the | 
|  | * email address(es): | 
|  | *    lksctp developers <linux-sctp@vger.kernel.org> | 
|  | * | 
|  | * Written or modified by: | 
|  | *    La Monte H.P. Yarroll <piggy@acm.org> | 
|  | *    Karl Knutson          <karl@athena.chicago.il.us> | 
|  | *    Jon Grimm             <jgrimm@us.ibm.com> | 
|  | *    Xingang Guo           <xingang.guo@intel.com> | 
|  | *    Hui Huang             <hui.huang@nokia.com> | 
|  | *    Sridhar Samudrala	    <sri@us.ibm.com> | 
|  | *    Daisy Chang	    <daisyc@us.ibm.com> | 
|  | *    Ryan Layer	    <rmlayer@us.ibm.com> | 
|  | *    Kevin Gao             <kevin.gao@intel.com> | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/in.h> | 
|  | #include <net/ipv6.h> | 
|  | #include <net/sctp/sctp.h> | 
|  | #include <net/sctp/sm.h> | 
|  |  | 
|  | /* Forward declarations for internal functions. */ | 
|  | static void sctp_select_active_and_retran_path(struct sctp_association *asoc); | 
|  | static void sctp_assoc_bh_rcv(struct work_struct *work); | 
|  | static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc); | 
|  | static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc); | 
|  |  | 
|  | /* 1st Level Abstractions. */ | 
|  |  | 
|  | /* Initialize a new association from provided memory. */ | 
|  | static struct sctp_association *sctp_association_init(struct sctp_association *asoc, | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sock *sk, | 
|  | sctp_scope_t scope, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct net *net = sock_net(sk); | 
|  | struct sctp_sock *sp; | 
|  | int i; | 
|  | sctp_paramhdr_t *p; | 
|  | int err; | 
|  |  | 
|  | /* Retrieve the SCTP per socket area.  */ | 
|  | sp = sctp_sk((struct sock *)sk); | 
|  |  | 
|  | /* Discarding const is appropriate here.  */ | 
|  | asoc->ep = (struct sctp_endpoint *)ep; | 
|  | asoc->base.sk = (struct sock *)sk; | 
|  |  | 
|  | sctp_endpoint_hold(asoc->ep); | 
|  | sock_hold(asoc->base.sk); | 
|  |  | 
|  | /* Initialize the common base substructure.  */ | 
|  | asoc->base.type = SCTP_EP_TYPE_ASSOCIATION; | 
|  |  | 
|  | /* Initialize the object handling fields.  */ | 
|  | atomic_set(&asoc->base.refcnt, 1); | 
|  |  | 
|  | /* Initialize the bind addr area.  */ | 
|  | sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port); | 
|  |  | 
|  | asoc->state = SCTP_STATE_CLOSED; | 
|  | asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life); | 
|  | asoc->user_frag = sp->user_frag; | 
|  |  | 
|  | /* Set the association max_retrans and RTO values from the | 
|  | * socket values. | 
|  | */ | 
|  | asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt; | 
|  | asoc->pf_retrans  = net->sctp.pf_retrans; | 
|  |  | 
|  | asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial); | 
|  | asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max); | 
|  | asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min); | 
|  |  | 
|  | /* Initialize the association's heartbeat interval based on the | 
|  | * sock configured value. | 
|  | */ | 
|  | asoc->hbinterval = msecs_to_jiffies(sp->hbinterval); | 
|  |  | 
|  | /* Initialize path max retrans value. */ | 
|  | asoc->pathmaxrxt = sp->pathmaxrxt; | 
|  |  | 
|  | /* Initialize default path MTU. */ | 
|  | asoc->pathmtu = sp->pathmtu; | 
|  |  | 
|  | /* Set association default SACK delay */ | 
|  | asoc->sackdelay = msecs_to_jiffies(sp->sackdelay); | 
|  | asoc->sackfreq = sp->sackfreq; | 
|  |  | 
|  | /* Set the association default flags controlling | 
|  | * Heartbeat, SACK delay, and Path MTU Discovery. | 
|  | */ | 
|  | asoc->param_flags = sp->param_flags; | 
|  |  | 
|  | /* Initialize the maximum number of new data packets that can be sent | 
|  | * in a burst. | 
|  | */ | 
|  | asoc->max_burst = sp->max_burst; | 
|  |  | 
|  | /* initialize association timers */ | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial; | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial; | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial; | 
|  |  | 
|  | /* sctpimpguide Section 2.12.2 | 
|  | * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the | 
|  | * recommended value of 5 times 'RTO.Max'. | 
|  | */ | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD] | 
|  | = 5 * asoc->rto_max; | 
|  |  | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay; | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ; | 
|  |  | 
|  | /* Initializes the timers */ | 
|  | for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) | 
|  | setup_timer(&asoc->timers[i], sctp_timer_events[i], | 
|  | (unsigned long)asoc); | 
|  |  | 
|  | /* Pull default initialization values from the sock options. | 
|  | * Note: This assumes that the values have already been | 
|  | * validated in the sock. | 
|  | */ | 
|  | asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams; | 
|  | asoc->c.sinit_num_ostreams  = sp->initmsg.sinit_num_ostreams; | 
|  | asoc->max_init_attempts	= sp->initmsg.sinit_max_attempts; | 
|  |  | 
|  | asoc->max_init_timeo = | 
|  | msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo); | 
|  |  | 
|  | /* Set the local window size for receive. | 
|  | * This is also the rcvbuf space per association. | 
|  | * RFC 6 - A SCTP receiver MUST be able to receive a minimum of | 
|  | * 1500 bytes in one SCTP packet. | 
|  | */ | 
|  | if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW) | 
|  | asoc->rwnd = SCTP_DEFAULT_MINWINDOW; | 
|  | else | 
|  | asoc->rwnd = sk->sk_rcvbuf/2; | 
|  |  | 
|  | asoc->a_rwnd = asoc->rwnd; | 
|  |  | 
|  | /* Use my own max window until I learn something better.  */ | 
|  | asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW; | 
|  |  | 
|  | /* Initialize the receive memory counter */ | 
|  | atomic_set(&asoc->rmem_alloc, 0); | 
|  |  | 
|  | init_waitqueue_head(&asoc->wait); | 
|  |  | 
|  | asoc->c.my_vtag = sctp_generate_tag(ep); | 
|  | asoc->c.my_port = ep->base.bind_addr.port; | 
|  |  | 
|  | asoc->c.initial_tsn = sctp_generate_tsn(ep); | 
|  |  | 
|  | asoc->next_tsn = asoc->c.initial_tsn; | 
|  |  | 
|  | asoc->ctsn_ack_point = asoc->next_tsn - 1; | 
|  | asoc->adv_peer_ack_point = asoc->ctsn_ack_point; | 
|  | asoc->highest_sacked = asoc->ctsn_ack_point; | 
|  | asoc->last_cwr_tsn = asoc->ctsn_ack_point; | 
|  |  | 
|  | /* ADDIP Section 4.1 Asconf Chunk Procedures | 
|  | * | 
|  | * When an endpoint has an ASCONF signaled change to be sent to the | 
|  | * remote endpoint it should do the following: | 
|  | * ... | 
|  | * A2) a serial number should be assigned to the chunk. The serial | 
|  | * number SHOULD be a monotonically increasing number. The serial | 
|  | * numbers SHOULD be initialized at the start of the | 
|  | * association to the same value as the initial TSN. | 
|  | */ | 
|  | asoc->addip_serial = asoc->c.initial_tsn; | 
|  |  | 
|  | INIT_LIST_HEAD(&asoc->addip_chunk_list); | 
|  | INIT_LIST_HEAD(&asoc->asconf_ack_list); | 
|  |  | 
|  | /* Make an empty list of remote transport addresses.  */ | 
|  | INIT_LIST_HEAD(&asoc->peer.transport_addr_list); | 
|  |  | 
|  | /* RFC 2960 5.1 Normal Establishment of an Association | 
|  | * | 
|  | * After the reception of the first data chunk in an | 
|  | * association the endpoint must immediately respond with a | 
|  | * sack to acknowledge the data chunk.  Subsequent | 
|  | * acknowledgements should be done as described in Section | 
|  | * 6.2. | 
|  | * | 
|  | * [We implement this by telling a new association that it | 
|  | * already received one packet.] | 
|  | */ | 
|  | asoc->peer.sack_needed = 1; | 
|  | asoc->peer.sack_generation = 1; | 
|  |  | 
|  | /* Assume that the peer will tell us if he recognizes ASCONF | 
|  | * as part of INIT exchange. | 
|  | * The sctp_addip_noauth option is there for backward compatibility | 
|  | * and will revert old behavior. | 
|  | */ | 
|  | if (net->sctp.addip_noauth) | 
|  | asoc->peer.asconf_capable = 1; | 
|  |  | 
|  | /* Create an input queue.  */ | 
|  | sctp_inq_init(&asoc->base.inqueue); | 
|  | sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv); | 
|  |  | 
|  | /* Create an output queue.  */ | 
|  | sctp_outq_init(asoc, &asoc->outqueue); | 
|  |  | 
|  | if (!sctp_ulpq_init(&asoc->ulpq, asoc)) | 
|  | goto fail_init; | 
|  |  | 
|  | /* Assume that peer would support both address types unless we are | 
|  | * told otherwise. | 
|  | */ | 
|  | asoc->peer.ipv4_address = 1; | 
|  | if (asoc->base.sk->sk_family == PF_INET6) | 
|  | asoc->peer.ipv6_address = 1; | 
|  | INIT_LIST_HEAD(&asoc->asocs); | 
|  |  | 
|  | asoc->default_stream = sp->default_stream; | 
|  | asoc->default_ppid = sp->default_ppid; | 
|  | asoc->default_flags = sp->default_flags; | 
|  | asoc->default_context = sp->default_context; | 
|  | asoc->default_timetolive = sp->default_timetolive; | 
|  | asoc->default_rcv_context = sp->default_rcv_context; | 
|  |  | 
|  | /* AUTH related initializations */ | 
|  | INIT_LIST_HEAD(&asoc->endpoint_shared_keys); | 
|  | err = sctp_auth_asoc_copy_shkeys(ep, asoc, gfp); | 
|  | if (err) | 
|  | goto fail_init; | 
|  |  | 
|  | asoc->active_key_id = ep->active_key_id; | 
|  |  | 
|  | /* Save the hmacs and chunks list into this association */ | 
|  | if (ep->auth_hmacs_list) | 
|  | memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list, | 
|  | ntohs(ep->auth_hmacs_list->param_hdr.length)); | 
|  | if (ep->auth_chunk_list) | 
|  | memcpy(asoc->c.auth_chunks, ep->auth_chunk_list, | 
|  | ntohs(ep->auth_chunk_list->param_hdr.length)); | 
|  |  | 
|  | /* Get the AUTH random number for this association */ | 
|  | p = (sctp_paramhdr_t *)asoc->c.auth_random; | 
|  | p->type = SCTP_PARAM_RANDOM; | 
|  | p->length = htons(sizeof(sctp_paramhdr_t) + SCTP_AUTH_RANDOM_LENGTH); | 
|  | get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH); | 
|  |  | 
|  | return asoc; | 
|  |  | 
|  | fail_init: | 
|  | sock_put(asoc->base.sk); | 
|  | sctp_endpoint_put(asoc->ep); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a new association */ | 
|  | struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep, | 
|  | const struct sock *sk, | 
|  | sctp_scope_t scope, | 
|  | gfp_t gfp) | 
|  | { | 
|  | struct sctp_association *asoc; | 
|  |  | 
|  | asoc = kzalloc(sizeof(*asoc), gfp); | 
|  | if (!asoc) | 
|  | goto fail; | 
|  |  | 
|  | if (!sctp_association_init(asoc, ep, sk, scope, gfp)) | 
|  | goto fail_init; | 
|  |  | 
|  | SCTP_DBG_OBJCNT_INC(assoc); | 
|  |  | 
|  | pr_debug("Created asoc %p\n", asoc); | 
|  |  | 
|  | return asoc; | 
|  |  | 
|  | fail_init: | 
|  | kfree(asoc); | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Free this association if possible.  There may still be users, so | 
|  | * the actual deallocation may be delayed. | 
|  | */ | 
|  | void sctp_association_free(struct sctp_association *asoc) | 
|  | { | 
|  | struct sock *sk = asoc->base.sk; | 
|  | struct sctp_transport *transport; | 
|  | struct list_head *pos, *temp; | 
|  | int i; | 
|  |  | 
|  | /* Only real associations count against the endpoint, so | 
|  | * don't bother for if this is a temporary association. | 
|  | */ | 
|  | if (!list_empty(&asoc->asocs)) { | 
|  | list_del(&asoc->asocs); | 
|  |  | 
|  | /* Decrement the backlog value for a TCP-style listening | 
|  | * socket. | 
|  | */ | 
|  | if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) | 
|  | sk->sk_ack_backlog--; | 
|  | } | 
|  |  | 
|  | /* Mark as dead, so other users can know this structure is | 
|  | * going away. | 
|  | */ | 
|  | asoc->base.dead = true; | 
|  |  | 
|  | /* Dispose of any data lying around in the outqueue. */ | 
|  | sctp_outq_free(&asoc->outqueue); | 
|  |  | 
|  | /* Dispose of any pending messages for the upper layer. */ | 
|  | sctp_ulpq_free(&asoc->ulpq); | 
|  |  | 
|  | /* Dispose of any pending chunks on the inqueue. */ | 
|  | sctp_inq_free(&asoc->base.inqueue); | 
|  |  | 
|  | sctp_tsnmap_free(&asoc->peer.tsn_map); | 
|  |  | 
|  | /* Free ssnmap storage. */ | 
|  | sctp_ssnmap_free(asoc->ssnmap); | 
|  |  | 
|  | /* Clean up the bound address list. */ | 
|  | sctp_bind_addr_free(&asoc->base.bind_addr); | 
|  |  | 
|  | /* Do we need to go through all of our timers and | 
|  | * delete them?   To be safe we will try to delete all, but we | 
|  | * should be able to go through and make a guess based | 
|  | * on our state. | 
|  | */ | 
|  | for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) { | 
|  | if (del_timer(&asoc->timers[i])) | 
|  | sctp_association_put(asoc); | 
|  | } | 
|  |  | 
|  | /* Free peer's cached cookie. */ | 
|  | kfree(asoc->peer.cookie); | 
|  | kfree(asoc->peer.peer_random); | 
|  | kfree(asoc->peer.peer_chunks); | 
|  | kfree(asoc->peer.peer_hmacs); | 
|  |  | 
|  | /* Release the transport structures. */ | 
|  | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { | 
|  | transport = list_entry(pos, struct sctp_transport, transports); | 
|  | list_del_rcu(pos); | 
|  | sctp_transport_free(transport); | 
|  | } | 
|  |  | 
|  | asoc->peer.transport_count = 0; | 
|  |  | 
|  | sctp_asconf_queue_teardown(asoc); | 
|  |  | 
|  | /* Free pending address space being deleted */ | 
|  | kfree(asoc->asconf_addr_del_pending); | 
|  |  | 
|  | /* AUTH - Free the endpoint shared keys */ | 
|  | sctp_auth_destroy_keys(&asoc->endpoint_shared_keys); | 
|  |  | 
|  | /* AUTH - Free the association shared key */ | 
|  | sctp_auth_key_put(asoc->asoc_shared_key); | 
|  |  | 
|  | sctp_association_put(asoc); | 
|  | } | 
|  |  | 
|  | /* Cleanup and free up an association. */ | 
|  | static void sctp_association_destroy(struct sctp_association *asoc) | 
|  | { | 
|  | if (unlikely(!asoc->base.dead)) { | 
|  | WARN(1, "Attempt to destroy undead association %p!\n", asoc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sctp_endpoint_put(asoc->ep); | 
|  | sock_put(asoc->base.sk); | 
|  |  | 
|  | if (asoc->assoc_id != 0) { | 
|  | spin_lock_bh(&sctp_assocs_id_lock); | 
|  | idr_remove(&sctp_assocs_id, asoc->assoc_id); | 
|  | spin_unlock_bh(&sctp_assocs_id_lock); | 
|  | } | 
|  |  | 
|  | WARN_ON(atomic_read(&asoc->rmem_alloc)); | 
|  |  | 
|  | kfree(asoc); | 
|  | SCTP_DBG_OBJCNT_DEC(assoc); | 
|  | } | 
|  |  | 
|  | /* Change the primary destination address for the peer. */ | 
|  | void sctp_assoc_set_primary(struct sctp_association *asoc, | 
|  | struct sctp_transport *transport) | 
|  | { | 
|  | int changeover = 0; | 
|  |  | 
|  | /* it's a changeover only if we already have a primary path | 
|  | * that we are changing | 
|  | */ | 
|  | if (asoc->peer.primary_path != NULL && | 
|  | asoc->peer.primary_path != transport) | 
|  | changeover = 1 ; | 
|  |  | 
|  | asoc->peer.primary_path = transport; | 
|  |  | 
|  | /* Set a default msg_name for events. */ | 
|  | memcpy(&asoc->peer.primary_addr, &transport->ipaddr, | 
|  | sizeof(union sctp_addr)); | 
|  |  | 
|  | /* If the primary path is changing, assume that the | 
|  | * user wants to use this new path. | 
|  | */ | 
|  | if ((transport->state == SCTP_ACTIVE) || | 
|  | (transport->state == SCTP_UNKNOWN)) | 
|  | asoc->peer.active_path = transport; | 
|  |  | 
|  | /* | 
|  | * SFR-CACC algorithm: | 
|  | * Upon the receipt of a request to change the primary | 
|  | * destination address, on the data structure for the new | 
|  | * primary destination, the sender MUST do the following: | 
|  | * | 
|  | * 1) If CHANGEOVER_ACTIVE is set, then there was a switch | 
|  | * to this destination address earlier. The sender MUST set | 
|  | * CYCLING_CHANGEOVER to indicate that this switch is a | 
|  | * double switch to the same destination address. | 
|  | * | 
|  | * Really, only bother is we have data queued or outstanding on | 
|  | * the association. | 
|  | */ | 
|  | if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen) | 
|  | return; | 
|  |  | 
|  | if (transport->cacc.changeover_active) | 
|  | transport->cacc.cycling_changeover = changeover; | 
|  |  | 
|  | /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that | 
|  | * a changeover has occurred. | 
|  | */ | 
|  | transport->cacc.changeover_active = changeover; | 
|  |  | 
|  | /* 3) The sender MUST store the next TSN to be sent in | 
|  | * next_tsn_at_change. | 
|  | */ | 
|  | transport->cacc.next_tsn_at_change = asoc->next_tsn; | 
|  | } | 
|  |  | 
|  | /* Remove a transport from an association.  */ | 
|  | void sctp_assoc_rm_peer(struct sctp_association *asoc, | 
|  | struct sctp_transport *peer) | 
|  | { | 
|  | struct list_head	*pos; | 
|  | struct sctp_transport	*transport; | 
|  |  | 
|  | pr_debug("%s: association:%p addr:%pISpc\n", | 
|  | __func__, asoc, &peer->ipaddr.sa); | 
|  |  | 
|  | /* If we are to remove the current retran_path, update it | 
|  | * to the next peer before removing this peer from the list. | 
|  | */ | 
|  | if (asoc->peer.retran_path == peer) | 
|  | sctp_assoc_update_retran_path(asoc); | 
|  |  | 
|  | /* Remove this peer from the list. */ | 
|  | list_del_rcu(&peer->transports); | 
|  |  | 
|  | /* Get the first transport of asoc. */ | 
|  | pos = asoc->peer.transport_addr_list.next; | 
|  | transport = list_entry(pos, struct sctp_transport, transports); | 
|  |  | 
|  | /* Update any entries that match the peer to be deleted. */ | 
|  | if (asoc->peer.primary_path == peer) | 
|  | sctp_assoc_set_primary(asoc, transport); | 
|  | if (asoc->peer.active_path == peer) | 
|  | asoc->peer.active_path = transport; | 
|  | if (asoc->peer.retran_path == peer) | 
|  | asoc->peer.retran_path = transport; | 
|  | if (asoc->peer.last_data_from == peer) | 
|  | asoc->peer.last_data_from = transport; | 
|  |  | 
|  | /* If we remove the transport an INIT was last sent to, set it to | 
|  | * NULL. Combined with the update of the retran path above, this | 
|  | * will cause the next INIT to be sent to the next available | 
|  | * transport, maintaining the cycle. | 
|  | */ | 
|  | if (asoc->init_last_sent_to == peer) | 
|  | asoc->init_last_sent_to = NULL; | 
|  |  | 
|  | /* If we remove the transport an SHUTDOWN was last sent to, set it | 
|  | * to NULL. Combined with the update of the retran path above, this | 
|  | * will cause the next SHUTDOWN to be sent to the next available | 
|  | * transport, maintaining the cycle. | 
|  | */ | 
|  | if (asoc->shutdown_last_sent_to == peer) | 
|  | asoc->shutdown_last_sent_to = NULL; | 
|  |  | 
|  | /* If we remove the transport an ASCONF was last sent to, set it to | 
|  | * NULL. | 
|  | */ | 
|  | if (asoc->addip_last_asconf && | 
|  | asoc->addip_last_asconf->transport == peer) | 
|  | asoc->addip_last_asconf->transport = NULL; | 
|  |  | 
|  | /* If we have something on the transmitted list, we have to | 
|  | * save it off.  The best place is the active path. | 
|  | */ | 
|  | if (!list_empty(&peer->transmitted)) { | 
|  | struct sctp_transport *active = asoc->peer.active_path; | 
|  | struct sctp_chunk *ch; | 
|  |  | 
|  | /* Reset the transport of each chunk on this list */ | 
|  | list_for_each_entry(ch, &peer->transmitted, | 
|  | transmitted_list) { | 
|  | ch->transport = NULL; | 
|  | ch->rtt_in_progress = 0; | 
|  | } | 
|  |  | 
|  | list_splice_tail_init(&peer->transmitted, | 
|  | &active->transmitted); | 
|  |  | 
|  | /* Start a T3 timer here in case it wasn't running so | 
|  | * that these migrated packets have a chance to get | 
|  | * retransmitted. | 
|  | */ | 
|  | if (!timer_pending(&active->T3_rtx_timer)) | 
|  | if (!mod_timer(&active->T3_rtx_timer, | 
|  | jiffies + active->rto)) | 
|  | sctp_transport_hold(active); | 
|  | } | 
|  |  | 
|  | asoc->peer.transport_count--; | 
|  |  | 
|  | sctp_transport_free(peer); | 
|  | } | 
|  |  | 
|  | /* Add a transport address to an association.  */ | 
|  | struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc, | 
|  | const union sctp_addr *addr, | 
|  | const gfp_t gfp, | 
|  | const int peer_state) | 
|  | { | 
|  | struct net *net = sock_net(asoc->base.sk); | 
|  | struct sctp_transport *peer; | 
|  | struct sctp_sock *sp; | 
|  | unsigned short port; | 
|  |  | 
|  | sp = sctp_sk(asoc->base.sk); | 
|  |  | 
|  | /* AF_INET and AF_INET6 share common port field. */ | 
|  | port = ntohs(addr->v4.sin_port); | 
|  |  | 
|  | pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__, | 
|  | asoc, &addr->sa, peer_state); | 
|  |  | 
|  | /* Set the port if it has not been set yet.  */ | 
|  | if (0 == asoc->peer.port) | 
|  | asoc->peer.port = port; | 
|  |  | 
|  | /* Check to see if this is a duplicate. */ | 
|  | peer = sctp_assoc_lookup_paddr(asoc, addr); | 
|  | if (peer) { | 
|  | /* An UNKNOWN state is only set on transports added by | 
|  | * user in sctp_connectx() call.  Such transports should be | 
|  | * considered CONFIRMED per RFC 4960, Section 5.4. | 
|  | */ | 
|  | if (peer->state == SCTP_UNKNOWN) { | 
|  | peer->state = SCTP_ACTIVE; | 
|  | } | 
|  | return peer; | 
|  | } | 
|  |  | 
|  | peer = sctp_transport_new(net, addr, gfp); | 
|  | if (!peer) | 
|  | return NULL; | 
|  |  | 
|  | sctp_transport_set_owner(peer, asoc); | 
|  |  | 
|  | /* Initialize the peer's heartbeat interval based on the | 
|  | * association configured value. | 
|  | */ | 
|  | peer->hbinterval = asoc->hbinterval; | 
|  |  | 
|  | /* Set the path max_retrans.  */ | 
|  | peer->pathmaxrxt = asoc->pathmaxrxt; | 
|  |  | 
|  | /* And the partial failure retrans threshold */ | 
|  | peer->pf_retrans = asoc->pf_retrans; | 
|  |  | 
|  | /* Initialize the peer's SACK delay timeout based on the | 
|  | * association configured value. | 
|  | */ | 
|  | peer->sackdelay = asoc->sackdelay; | 
|  | peer->sackfreq = asoc->sackfreq; | 
|  |  | 
|  | /* Enable/disable heartbeat, SACK delay, and path MTU discovery | 
|  | * based on association setting. | 
|  | */ | 
|  | peer->param_flags = asoc->param_flags; | 
|  |  | 
|  | sctp_transport_route(peer, NULL, sp); | 
|  |  | 
|  | /* Initialize the pmtu of the transport. */ | 
|  | if (peer->param_flags & SPP_PMTUD_DISABLE) { | 
|  | if (asoc->pathmtu) | 
|  | peer->pathmtu = asoc->pathmtu; | 
|  | else | 
|  | peer->pathmtu = SCTP_DEFAULT_MAXSEGMENT; | 
|  | } | 
|  |  | 
|  | /* If this is the first transport addr on this association, | 
|  | * initialize the association PMTU to the peer's PMTU. | 
|  | * If not and the current association PMTU is higher than the new | 
|  | * peer's PMTU, reset the association PMTU to the new peer's PMTU. | 
|  | */ | 
|  | if (asoc->pathmtu) | 
|  | asoc->pathmtu = min_t(int, peer->pathmtu, asoc->pathmtu); | 
|  | else | 
|  | asoc->pathmtu = peer->pathmtu; | 
|  |  | 
|  | pr_debug("%s: association:%p PMTU set to %d\n", __func__, asoc, | 
|  | asoc->pathmtu); | 
|  |  | 
|  | peer->pmtu_pending = 0; | 
|  |  | 
|  | asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu); | 
|  |  | 
|  | /* The asoc->peer.port might not be meaningful yet, but | 
|  | * initialize the packet structure anyway. | 
|  | */ | 
|  | sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port, | 
|  | asoc->peer.port); | 
|  |  | 
|  | /* 7.2.1 Slow-Start | 
|  | * | 
|  | * o The initial cwnd before DATA transmission or after a sufficiently | 
|  | *   long idle period MUST be set to | 
|  | *      min(4*MTU, max(2*MTU, 4380 bytes)) | 
|  | * | 
|  | * o The initial value of ssthresh MAY be arbitrarily high | 
|  | *   (for example, implementations MAY use the size of the | 
|  | *   receiver advertised window). | 
|  | */ | 
|  | peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380)); | 
|  |  | 
|  | /* At this point, we may not have the receiver's advertised window, | 
|  | * so initialize ssthresh to the default value and it will be set | 
|  | * later when we process the INIT. | 
|  | */ | 
|  | peer->ssthresh = SCTP_DEFAULT_MAXWINDOW; | 
|  |  | 
|  | peer->partial_bytes_acked = 0; | 
|  | peer->flight_size = 0; | 
|  | peer->burst_limited = 0; | 
|  |  | 
|  | /* Set the transport's RTO.initial value */ | 
|  | peer->rto = asoc->rto_initial; | 
|  | sctp_max_rto(asoc, peer); | 
|  |  | 
|  | /* Set the peer's active state. */ | 
|  | peer->state = peer_state; | 
|  |  | 
|  | /* Attach the remote transport to our asoc.  */ | 
|  | list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list); | 
|  | asoc->peer.transport_count++; | 
|  |  | 
|  | /* If we do not yet have a primary path, set one.  */ | 
|  | if (!asoc->peer.primary_path) { | 
|  | sctp_assoc_set_primary(asoc, peer); | 
|  | asoc->peer.retran_path = peer; | 
|  | } | 
|  |  | 
|  | if (asoc->peer.active_path == asoc->peer.retran_path && | 
|  | peer->state != SCTP_UNCONFIRMED) { | 
|  | asoc->peer.retran_path = peer; | 
|  | } | 
|  |  | 
|  | return peer; | 
|  | } | 
|  |  | 
|  | /* Delete a transport address from an association.  */ | 
|  | void sctp_assoc_del_peer(struct sctp_association *asoc, | 
|  | const union sctp_addr *addr) | 
|  | { | 
|  | struct list_head	*pos; | 
|  | struct list_head	*temp; | 
|  | struct sctp_transport	*transport; | 
|  |  | 
|  | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { | 
|  | transport = list_entry(pos, struct sctp_transport, transports); | 
|  | if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) { | 
|  | /* Do book keeping for removing the peer and free it. */ | 
|  | sctp_assoc_rm_peer(asoc, transport); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Lookup a transport by address. */ | 
|  | struct sctp_transport *sctp_assoc_lookup_paddr( | 
|  | const struct sctp_association *asoc, | 
|  | const union sctp_addr *address) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  |  | 
|  | /* Cycle through all transports searching for a peer address. */ | 
|  |  | 
|  | list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | if (sctp_cmp_addr_exact(address, &t->ipaddr)) | 
|  | return t; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Remove all transports except a give one */ | 
|  | void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc, | 
|  | struct sctp_transport *primary) | 
|  | { | 
|  | struct sctp_transport	*temp; | 
|  | struct sctp_transport	*t; | 
|  |  | 
|  | list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | /* if the current transport is not the primary one, delete it */ | 
|  | if (t != primary) | 
|  | sctp_assoc_rm_peer(asoc, t); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Engage in transport control operations. | 
|  | * Mark the transport up or down and send a notification to the user. | 
|  | * Select and update the new active and retran paths. | 
|  | */ | 
|  | void sctp_assoc_control_transport(struct sctp_association *asoc, | 
|  | struct sctp_transport *transport, | 
|  | sctp_transport_cmd_t command, | 
|  | sctp_sn_error_t error) | 
|  | { | 
|  | struct sctp_ulpevent *event; | 
|  | struct sockaddr_storage addr; | 
|  | int spc_state = 0; | 
|  | bool ulp_notify = true; | 
|  |  | 
|  | /* Record the transition on the transport.  */ | 
|  | switch (command) { | 
|  | case SCTP_TRANSPORT_UP: | 
|  | /* If we are moving from UNCONFIRMED state due | 
|  | * to heartbeat success, report the SCTP_ADDR_CONFIRMED | 
|  | * state to the user, otherwise report SCTP_ADDR_AVAILABLE. | 
|  | */ | 
|  | if (SCTP_UNCONFIRMED == transport->state && | 
|  | SCTP_HEARTBEAT_SUCCESS == error) | 
|  | spc_state = SCTP_ADDR_CONFIRMED; | 
|  | else | 
|  | spc_state = SCTP_ADDR_AVAILABLE; | 
|  | /* Don't inform ULP about transition from PF to | 
|  | * active state and set cwnd to 1 MTU, see SCTP | 
|  | * Quick failover draft section 5.1, point 5 | 
|  | */ | 
|  | if (transport->state == SCTP_PF) { | 
|  | ulp_notify = false; | 
|  | transport->cwnd = asoc->pathmtu; | 
|  | } | 
|  | transport->state = SCTP_ACTIVE; | 
|  | break; | 
|  |  | 
|  | case SCTP_TRANSPORT_DOWN: | 
|  | /* If the transport was never confirmed, do not transition it | 
|  | * to inactive state.  Also, release the cached route since | 
|  | * there may be a better route next time. | 
|  | */ | 
|  | if (transport->state != SCTP_UNCONFIRMED) | 
|  | transport->state = SCTP_INACTIVE; | 
|  | else { | 
|  | dst_release(transport->dst); | 
|  | transport->dst = NULL; | 
|  | ulp_notify = false; | 
|  | } | 
|  |  | 
|  | spc_state = SCTP_ADDR_UNREACHABLE; | 
|  | break; | 
|  |  | 
|  | case SCTP_TRANSPORT_PF: | 
|  | transport->state = SCTP_PF; | 
|  | ulp_notify = false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Generate and send a SCTP_PEER_ADDR_CHANGE notification | 
|  | * to the user. | 
|  | */ | 
|  | if (ulp_notify) { | 
|  | memset(&addr, 0, sizeof(struct sockaddr_storage)); | 
|  | memcpy(&addr, &transport->ipaddr, | 
|  | transport->af_specific->sockaddr_len); | 
|  |  | 
|  | event = sctp_ulpevent_make_peer_addr_change(asoc, &addr, | 
|  | 0, spc_state, error, GFP_ATOMIC); | 
|  | if (event) | 
|  | sctp_ulpq_tail_event(&asoc->ulpq, event); | 
|  | } | 
|  |  | 
|  | /* Select new active and retran paths. */ | 
|  | sctp_select_active_and_retran_path(asoc); | 
|  | } | 
|  |  | 
|  | /* Hold a reference to an association. */ | 
|  | void sctp_association_hold(struct sctp_association *asoc) | 
|  | { | 
|  | atomic_inc(&asoc->base.refcnt); | 
|  | } | 
|  |  | 
|  | /* Release a reference to an association and cleanup | 
|  | * if there are no more references. | 
|  | */ | 
|  | void sctp_association_put(struct sctp_association *asoc) | 
|  | { | 
|  | if (atomic_dec_and_test(&asoc->base.refcnt)) | 
|  | sctp_association_destroy(asoc); | 
|  | } | 
|  |  | 
|  | /* Allocate the next TSN, Transmission Sequence Number, for the given | 
|  | * association. | 
|  | */ | 
|  | __u32 sctp_association_get_next_tsn(struct sctp_association *asoc) | 
|  | { | 
|  | /* From Section 1.6 Serial Number Arithmetic: | 
|  | * Transmission Sequence Numbers wrap around when they reach | 
|  | * 2**32 - 1.  That is, the next TSN a DATA chunk MUST use | 
|  | * after transmitting TSN = 2*32 - 1 is TSN = 0. | 
|  | */ | 
|  | __u32 retval = asoc->next_tsn; | 
|  | asoc->next_tsn++; | 
|  | asoc->unack_data++; | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* Compare two addresses to see if they match.  Wildcard addresses | 
|  | * only match themselves. | 
|  | */ | 
|  | int sctp_cmp_addr_exact(const union sctp_addr *ss1, | 
|  | const union sctp_addr *ss2) | 
|  | { | 
|  | struct sctp_af *af; | 
|  |  | 
|  | af = sctp_get_af_specific(ss1->sa.sa_family); | 
|  | if (unlikely(!af)) | 
|  | return 0; | 
|  |  | 
|  | return af->cmp_addr(ss1, ss2); | 
|  | } | 
|  |  | 
|  | /* Return an ecne chunk to get prepended to a packet. | 
|  | * Note:  We are sly and return a shared, prealloced chunk.  FIXME: | 
|  | * No we don't, but we could/should. | 
|  | */ | 
|  | struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc) | 
|  | { | 
|  | if (!asoc->need_ecne) | 
|  | return NULL; | 
|  |  | 
|  | /* Send ECNE if needed. | 
|  | * Not being able to allocate a chunk here is not deadly. | 
|  | */ | 
|  | return sctp_make_ecne(asoc, asoc->last_ecne_tsn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find which transport this TSN was sent on. | 
|  | */ | 
|  | struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc, | 
|  | __u32 tsn) | 
|  | { | 
|  | struct sctp_transport *active; | 
|  | struct sctp_transport *match; | 
|  | struct sctp_transport *transport; | 
|  | struct sctp_chunk *chunk; | 
|  | __be32 key = htonl(tsn); | 
|  |  | 
|  | match = NULL; | 
|  |  | 
|  | /* | 
|  | * FIXME: In general, find a more efficient data structure for | 
|  | * searching. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The general strategy is to search each transport's transmitted | 
|  | * list.   Return which transport this TSN lives on. | 
|  | * | 
|  | * Let's be hopeful and check the active_path first. | 
|  | * Another optimization would be to know if there is only one | 
|  | * outbound path and not have to look for the TSN at all. | 
|  | * | 
|  | */ | 
|  |  | 
|  | active = asoc->peer.active_path; | 
|  |  | 
|  | list_for_each_entry(chunk, &active->transmitted, | 
|  | transmitted_list) { | 
|  |  | 
|  | if (key == chunk->subh.data_hdr->tsn) { | 
|  | match = active; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If not found, go search all the other transports. */ | 
|  | list_for_each_entry(transport, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  |  | 
|  | if (transport == active) | 
|  | continue; | 
|  | list_for_each_entry(chunk, &transport->transmitted, | 
|  | transmitted_list) { | 
|  | if (key == chunk->subh.data_hdr->tsn) { | 
|  | match = transport; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | out: | 
|  | return match; | 
|  | } | 
|  |  | 
|  | /* Is this the association we are looking for? */ | 
|  | struct sctp_transport *sctp_assoc_is_match(struct sctp_association *asoc, | 
|  | struct net *net, | 
|  | const union sctp_addr *laddr, | 
|  | const union sctp_addr *paddr) | 
|  | { | 
|  | struct sctp_transport *transport; | 
|  |  | 
|  | if ((htons(asoc->base.bind_addr.port) == laddr->v4.sin_port) && | 
|  | (htons(asoc->peer.port) == paddr->v4.sin_port) && | 
|  | net_eq(sock_net(asoc->base.sk), net)) { | 
|  | transport = sctp_assoc_lookup_paddr(asoc, paddr); | 
|  | if (!transport) | 
|  | goto out; | 
|  |  | 
|  | if (sctp_bind_addr_match(&asoc->base.bind_addr, laddr, | 
|  | sctp_sk(asoc->base.sk))) | 
|  | goto out; | 
|  | } | 
|  | transport = NULL; | 
|  |  | 
|  | out: | 
|  | return transport; | 
|  | } | 
|  |  | 
|  | /* Do delayed input processing.  This is scheduled by sctp_rcv(). */ | 
|  | static void sctp_assoc_bh_rcv(struct work_struct *work) | 
|  | { | 
|  | struct sctp_association *asoc = | 
|  | container_of(work, struct sctp_association, | 
|  | base.inqueue.immediate); | 
|  | struct net *net = sock_net(asoc->base.sk); | 
|  | struct sctp_endpoint *ep; | 
|  | struct sctp_chunk *chunk; | 
|  | struct sctp_inq *inqueue; | 
|  | int state; | 
|  | sctp_subtype_t subtype; | 
|  | int error = 0; | 
|  |  | 
|  | /* The association should be held so we should be safe. */ | 
|  | ep = asoc->ep; | 
|  |  | 
|  | inqueue = &asoc->base.inqueue; | 
|  | sctp_association_hold(asoc); | 
|  | while (NULL != (chunk = sctp_inq_pop(inqueue))) { | 
|  | state = asoc->state; | 
|  | subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type); | 
|  |  | 
|  | /* SCTP-AUTH, Section 6.3: | 
|  | *    The receiver has a list of chunk types which it expects | 
|  | *    to be received only after an AUTH-chunk.  This list has | 
|  | *    been sent to the peer during the association setup.  It | 
|  | *    MUST silently discard these chunks if they are not placed | 
|  | *    after an AUTH chunk in the packet. | 
|  | */ | 
|  | if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth) | 
|  | continue; | 
|  |  | 
|  | /* Remember where the last DATA chunk came from so we | 
|  | * know where to send the SACK. | 
|  | */ | 
|  | if (sctp_chunk_is_data(chunk)) | 
|  | asoc->peer.last_data_from = chunk->transport; | 
|  | else { | 
|  | SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS); | 
|  | asoc->stats.ictrlchunks++; | 
|  | if (chunk->chunk_hdr->type == SCTP_CID_SACK) | 
|  | asoc->stats.isacks++; | 
|  | } | 
|  |  | 
|  | if (chunk->transport) | 
|  | chunk->transport->last_time_heard = ktime_get(); | 
|  |  | 
|  | /* Run through the state machine. */ | 
|  | error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype, | 
|  | state, ep, asoc, chunk, GFP_ATOMIC); | 
|  |  | 
|  | /* Check to see if the association is freed in response to | 
|  | * the incoming chunk.  If so, get out of the while loop. | 
|  | */ | 
|  | if (asoc->base.dead) | 
|  | break; | 
|  |  | 
|  | /* If there is an error on chunk, discard this packet. */ | 
|  | if (error && chunk) | 
|  | chunk->pdiscard = 1; | 
|  | } | 
|  | sctp_association_put(asoc); | 
|  | } | 
|  |  | 
|  | /* This routine moves an association from its old sk to a new sk.  */ | 
|  | void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk) | 
|  | { | 
|  | struct sctp_sock *newsp = sctp_sk(newsk); | 
|  | struct sock *oldsk = assoc->base.sk; | 
|  |  | 
|  | /* Delete the association from the old endpoint's list of | 
|  | * associations. | 
|  | */ | 
|  | list_del_init(&assoc->asocs); | 
|  |  | 
|  | /* Decrement the backlog value for a TCP-style socket. */ | 
|  | if (sctp_style(oldsk, TCP)) | 
|  | oldsk->sk_ack_backlog--; | 
|  |  | 
|  | /* Release references to the old endpoint and the sock.  */ | 
|  | sctp_endpoint_put(assoc->ep); | 
|  | sock_put(assoc->base.sk); | 
|  |  | 
|  | /* Get a reference to the new endpoint.  */ | 
|  | assoc->ep = newsp->ep; | 
|  | sctp_endpoint_hold(assoc->ep); | 
|  |  | 
|  | /* Get a reference to the new sock.  */ | 
|  | assoc->base.sk = newsk; | 
|  | sock_hold(assoc->base.sk); | 
|  |  | 
|  | /* Add the association to the new endpoint's list of associations.  */ | 
|  | sctp_endpoint_add_asoc(newsp->ep, assoc); | 
|  | } | 
|  |  | 
|  | /* Update an association (possibly from unexpected COOKIE-ECHO processing).  */ | 
|  | void sctp_assoc_update(struct sctp_association *asoc, | 
|  | struct sctp_association *new) | 
|  | { | 
|  | struct sctp_transport *trans; | 
|  | struct list_head *pos, *temp; | 
|  |  | 
|  | /* Copy in new parameters of peer. */ | 
|  | asoc->c = new->c; | 
|  | asoc->peer.rwnd = new->peer.rwnd; | 
|  | asoc->peer.sack_needed = new->peer.sack_needed; | 
|  | asoc->peer.auth_capable = new->peer.auth_capable; | 
|  | asoc->peer.i = new->peer.i; | 
|  | sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL, | 
|  | asoc->peer.i.initial_tsn, GFP_ATOMIC); | 
|  |  | 
|  | /* Remove any peer addresses not present in the new association. */ | 
|  | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { | 
|  | trans = list_entry(pos, struct sctp_transport, transports); | 
|  | if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) { | 
|  | sctp_assoc_rm_peer(asoc, trans); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (asoc->state >= SCTP_STATE_ESTABLISHED) | 
|  | sctp_transport_reset(trans); | 
|  | } | 
|  |  | 
|  | /* If the case is A (association restart), use | 
|  | * initial_tsn as next_tsn. If the case is B, use | 
|  | * current next_tsn in case data sent to peer | 
|  | * has been discarded and needs retransmission. | 
|  | */ | 
|  | if (asoc->state >= SCTP_STATE_ESTABLISHED) { | 
|  | asoc->next_tsn = new->next_tsn; | 
|  | asoc->ctsn_ack_point = new->ctsn_ack_point; | 
|  | asoc->adv_peer_ack_point = new->adv_peer_ack_point; | 
|  |  | 
|  | /* Reinitialize SSN for both local streams | 
|  | * and peer's streams. | 
|  | */ | 
|  | sctp_ssnmap_clear(asoc->ssnmap); | 
|  |  | 
|  | /* Flush the ULP reassembly and ordered queue. | 
|  | * Any data there will now be stale and will | 
|  | * cause problems. | 
|  | */ | 
|  | sctp_ulpq_flush(&asoc->ulpq); | 
|  |  | 
|  | /* reset the overall association error count so | 
|  | * that the restarted association doesn't get torn | 
|  | * down on the next retransmission timer. | 
|  | */ | 
|  | asoc->overall_error_count = 0; | 
|  |  | 
|  | } else { | 
|  | /* Add any peer addresses from the new association. */ | 
|  | list_for_each_entry(trans, &new->peer.transport_addr_list, | 
|  | transports) { | 
|  | if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr)) | 
|  | sctp_assoc_add_peer(asoc, &trans->ipaddr, | 
|  | GFP_ATOMIC, trans->state); | 
|  | } | 
|  |  | 
|  | asoc->ctsn_ack_point = asoc->next_tsn - 1; | 
|  | asoc->adv_peer_ack_point = asoc->ctsn_ack_point; | 
|  | if (!asoc->ssnmap) { | 
|  | /* Move the ssnmap. */ | 
|  | asoc->ssnmap = new->ssnmap; | 
|  | new->ssnmap = NULL; | 
|  | } | 
|  |  | 
|  | if (!asoc->assoc_id) { | 
|  | /* get a new association id since we don't have one | 
|  | * yet. | 
|  | */ | 
|  | sctp_assoc_set_id(asoc, GFP_ATOMIC); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* SCTP-AUTH: Save the peer parameters from the new associations | 
|  | * and also move the association shared keys over | 
|  | */ | 
|  | kfree(asoc->peer.peer_random); | 
|  | asoc->peer.peer_random = new->peer.peer_random; | 
|  | new->peer.peer_random = NULL; | 
|  |  | 
|  | kfree(asoc->peer.peer_chunks); | 
|  | asoc->peer.peer_chunks = new->peer.peer_chunks; | 
|  | new->peer.peer_chunks = NULL; | 
|  |  | 
|  | kfree(asoc->peer.peer_hmacs); | 
|  | asoc->peer.peer_hmacs = new->peer.peer_hmacs; | 
|  | new->peer.peer_hmacs = NULL; | 
|  |  | 
|  | sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /* Update the retran path for sending a retransmitted packet. | 
|  | * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints: | 
|  | * | 
|  | *   When there is outbound data to send and the primary path | 
|  | *   becomes inactive (e.g., due to failures), or where the | 
|  | *   SCTP user explicitly requests to send data to an | 
|  | *   inactive destination transport address, before reporting | 
|  | *   an error to its ULP, the SCTP endpoint should try to send | 
|  | *   the data to an alternate active destination transport | 
|  | *   address if one exists. | 
|  | * | 
|  | *   When retransmitting data that timed out, if the endpoint | 
|  | *   is multihomed, it should consider each source-destination | 
|  | *   address pair in its retransmission selection policy. | 
|  | *   When retransmitting timed-out data, the endpoint should | 
|  | *   attempt to pick the most divergent source-destination | 
|  | *   pair from the original source-destination pair to which | 
|  | *   the packet was transmitted. | 
|  | * | 
|  | *   Note: Rules for picking the most divergent source-destination | 
|  | *   pair are an implementation decision and are not specified | 
|  | *   within this document. | 
|  | * | 
|  | * Our basic strategy is to round-robin transports in priorities | 
|  | * according to sctp_state_prio_map[] e.g., if no such | 
|  | * transport with state SCTP_ACTIVE exists, round-robin through | 
|  | * SCTP_UNKNOWN, etc. You get the picture. | 
|  | */ | 
|  | static const u8 sctp_trans_state_to_prio_map[] = { | 
|  | [SCTP_ACTIVE]	= 3,	/* best case */ | 
|  | [SCTP_UNKNOWN]	= 2, | 
|  | [SCTP_PF]	= 1, | 
|  | [SCTP_INACTIVE] = 0,	/* worst case */ | 
|  | }; | 
|  |  | 
|  | static u8 sctp_trans_score(const struct sctp_transport *trans) | 
|  | { | 
|  | return sctp_trans_state_to_prio_map[trans->state]; | 
|  | } | 
|  |  | 
|  | static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1, | 
|  | struct sctp_transport *trans2) | 
|  | { | 
|  | if (trans1->error_count > trans2->error_count) { | 
|  | return trans2; | 
|  | } else if (trans1->error_count == trans2->error_count && | 
|  | ktime_after(trans2->last_time_heard, | 
|  | trans1->last_time_heard)) { | 
|  | return trans2; | 
|  | } else { | 
|  | return trans1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr, | 
|  | struct sctp_transport *best) | 
|  | { | 
|  | u8 score_curr, score_best; | 
|  |  | 
|  | if (best == NULL || curr == best) | 
|  | return curr; | 
|  |  | 
|  | score_curr = sctp_trans_score(curr); | 
|  | score_best = sctp_trans_score(best); | 
|  |  | 
|  | /* First, try a score-based selection if both transport states | 
|  | * differ. If we're in a tie, lets try to make a more clever | 
|  | * decision here based on error counts and last time heard. | 
|  | */ | 
|  | if (score_curr > score_best) | 
|  | return curr; | 
|  | else if (score_curr == score_best) | 
|  | return sctp_trans_elect_tie(curr, best); | 
|  | else | 
|  | return best; | 
|  | } | 
|  |  | 
|  | void sctp_assoc_update_retran_path(struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_transport *trans = asoc->peer.retran_path; | 
|  | struct sctp_transport *trans_next = NULL; | 
|  |  | 
|  | /* We're done as we only have the one and only path. */ | 
|  | if (asoc->peer.transport_count == 1) | 
|  | return; | 
|  | /* If active_path and retran_path are the same and active, | 
|  | * then this is the only active path. Use it. | 
|  | */ | 
|  | if (asoc->peer.active_path == asoc->peer.retran_path && | 
|  | asoc->peer.active_path->state == SCTP_ACTIVE) | 
|  | return; | 
|  |  | 
|  | /* Iterate from retran_path's successor back to retran_path. */ | 
|  | for (trans = list_next_entry(trans, transports); 1; | 
|  | trans = list_next_entry(trans, transports)) { | 
|  | /* Manually skip the head element. */ | 
|  | if (&trans->transports == &asoc->peer.transport_addr_list) | 
|  | continue; | 
|  | if (trans->state == SCTP_UNCONFIRMED) | 
|  | continue; | 
|  | trans_next = sctp_trans_elect_best(trans, trans_next); | 
|  | /* Active is good enough for immediate return. */ | 
|  | if (trans_next->state == SCTP_ACTIVE) | 
|  | break; | 
|  | /* We've reached the end, time to update path. */ | 
|  | if (trans == asoc->peer.retran_path) | 
|  | break; | 
|  | } | 
|  |  | 
|  | asoc->peer.retran_path = trans_next; | 
|  |  | 
|  | pr_debug("%s: association:%p updated new path to addr:%pISpc\n", | 
|  | __func__, asoc, &asoc->peer.retran_path->ipaddr.sa); | 
|  | } | 
|  |  | 
|  | static void sctp_select_active_and_retran_path(struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL; | 
|  | struct sctp_transport *trans_pf = NULL; | 
|  |  | 
|  | /* Look for the two most recently used active transports. */ | 
|  | list_for_each_entry(trans, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | /* Skip uninteresting transports. */ | 
|  | if (trans->state == SCTP_INACTIVE || | 
|  | trans->state == SCTP_UNCONFIRMED) | 
|  | continue; | 
|  | /* Keep track of the best PF transport from our | 
|  | * list in case we don't find an active one. | 
|  | */ | 
|  | if (trans->state == SCTP_PF) { | 
|  | trans_pf = sctp_trans_elect_best(trans, trans_pf); | 
|  | continue; | 
|  | } | 
|  | /* For active transports, pick the most recent ones. */ | 
|  | if (trans_pri == NULL || | 
|  | ktime_after(trans->last_time_heard, | 
|  | trans_pri->last_time_heard)) { | 
|  | trans_sec = trans_pri; | 
|  | trans_pri = trans; | 
|  | } else if (trans_sec == NULL || | 
|  | ktime_after(trans->last_time_heard, | 
|  | trans_sec->last_time_heard)) { | 
|  | trans_sec = trans; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* RFC 2960 6.4 Multi-Homed SCTP Endpoints | 
|  | * | 
|  | * By default, an endpoint should always transmit to the primary | 
|  | * path, unless the SCTP user explicitly specifies the | 
|  | * destination transport address (and possibly source transport | 
|  | * address) to use. [If the primary is active but not most recent, | 
|  | * bump the most recently used transport.] | 
|  | */ | 
|  | if ((asoc->peer.primary_path->state == SCTP_ACTIVE || | 
|  | asoc->peer.primary_path->state == SCTP_UNKNOWN) && | 
|  | asoc->peer.primary_path != trans_pri) { | 
|  | trans_sec = trans_pri; | 
|  | trans_pri = asoc->peer.primary_path; | 
|  | } | 
|  |  | 
|  | /* We did not find anything useful for a possible retransmission | 
|  | * path; either primary path that we found is the the same as | 
|  | * the current one, or we didn't generally find an active one. | 
|  | */ | 
|  | if (trans_sec == NULL) | 
|  | trans_sec = trans_pri; | 
|  |  | 
|  | /* If we failed to find a usable transport, just camp on the | 
|  | * active or pick a PF iff it's the better choice. | 
|  | */ | 
|  | if (trans_pri == NULL) { | 
|  | trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf); | 
|  | trans_sec = trans_pri; | 
|  | } | 
|  |  | 
|  | /* Set the active and retran transports. */ | 
|  | asoc->peer.active_path = trans_pri; | 
|  | asoc->peer.retran_path = trans_sec; | 
|  | } | 
|  |  | 
|  | struct sctp_transport * | 
|  | sctp_assoc_choose_alter_transport(struct sctp_association *asoc, | 
|  | struct sctp_transport *last_sent_to) | 
|  | { | 
|  | /* If this is the first time packet is sent, use the active path, | 
|  | * else use the retran path. If the last packet was sent over the | 
|  | * retran path, update the retran path and use it. | 
|  | */ | 
|  | if (last_sent_to == NULL) { | 
|  | return asoc->peer.active_path; | 
|  | } else { | 
|  | if (last_sent_to == asoc->peer.retran_path) | 
|  | sctp_assoc_update_retran_path(asoc); | 
|  |  | 
|  | return asoc->peer.retran_path; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update the association's pmtu and frag_point by going through all the | 
|  | * transports. This routine is called when a transport's PMTU has changed. | 
|  | */ | 
|  | void sctp_assoc_sync_pmtu(struct sock *sk, struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  | __u32 pmtu = 0; | 
|  |  | 
|  | if (!asoc) | 
|  | return; | 
|  |  | 
|  | /* Get the lowest pmtu of all the transports. */ | 
|  | list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | if (t->pmtu_pending && t->dst) { | 
|  | sctp_transport_update_pmtu(sk, t, dst_mtu(t->dst)); | 
|  | t->pmtu_pending = 0; | 
|  | } | 
|  | if (!pmtu || (t->pathmtu < pmtu)) | 
|  | pmtu = t->pathmtu; | 
|  | } | 
|  |  | 
|  | if (pmtu) { | 
|  | asoc->pathmtu = pmtu; | 
|  | asoc->frag_point = sctp_frag_point(asoc, pmtu); | 
|  | } | 
|  |  | 
|  | pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc, | 
|  | asoc->pathmtu, asoc->frag_point); | 
|  | } | 
|  |  | 
|  | /* Should we send a SACK to update our peer? */ | 
|  | static inline bool sctp_peer_needs_update(struct sctp_association *asoc) | 
|  | { | 
|  | struct net *net = sock_net(asoc->base.sk); | 
|  | switch (asoc->state) { | 
|  | case SCTP_STATE_ESTABLISHED: | 
|  | case SCTP_STATE_SHUTDOWN_PENDING: | 
|  | case SCTP_STATE_SHUTDOWN_RECEIVED: | 
|  | case SCTP_STATE_SHUTDOWN_SENT: | 
|  | if ((asoc->rwnd > asoc->a_rwnd) && | 
|  | ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32, | 
|  | (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift), | 
|  | asoc->pathmtu))) | 
|  | return true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Increase asoc's rwnd by len and send any window update SACK if needed. */ | 
|  | void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len) | 
|  | { | 
|  | struct sctp_chunk *sack; | 
|  | struct timer_list *timer; | 
|  |  | 
|  | if (asoc->rwnd_over) { | 
|  | if (asoc->rwnd_over >= len) { | 
|  | asoc->rwnd_over -= len; | 
|  | } else { | 
|  | asoc->rwnd += (len - asoc->rwnd_over); | 
|  | asoc->rwnd_over = 0; | 
|  | } | 
|  | } else { | 
|  | asoc->rwnd += len; | 
|  | } | 
|  |  | 
|  | /* If we had window pressure, start recovering it | 
|  | * once our rwnd had reached the accumulated pressure | 
|  | * threshold.  The idea is to recover slowly, but up | 
|  | * to the initial advertised window. | 
|  | */ | 
|  | if (asoc->rwnd_press && asoc->rwnd >= asoc->rwnd_press) { | 
|  | int change = min(asoc->pathmtu, asoc->rwnd_press); | 
|  | asoc->rwnd += change; | 
|  | asoc->rwnd_press -= change; | 
|  | } | 
|  |  | 
|  | pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n", | 
|  | __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, | 
|  | asoc->a_rwnd); | 
|  |  | 
|  | /* Send a window update SACK if the rwnd has increased by at least the | 
|  | * minimum of the association's PMTU and half of the receive buffer. | 
|  | * The algorithm used is similar to the one described in | 
|  | * Section 4.2.3.3 of RFC 1122. | 
|  | */ | 
|  | if (sctp_peer_needs_update(asoc)) { | 
|  | asoc->a_rwnd = asoc->rwnd; | 
|  |  | 
|  | pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u " | 
|  | "a_rwnd:%u\n", __func__, asoc, asoc->rwnd, | 
|  | asoc->a_rwnd); | 
|  |  | 
|  | sack = sctp_make_sack(asoc); | 
|  | if (!sack) | 
|  | return; | 
|  |  | 
|  | asoc->peer.sack_needed = 0; | 
|  |  | 
|  | sctp_outq_tail(&asoc->outqueue, sack); | 
|  |  | 
|  | /* Stop the SACK timer.  */ | 
|  | timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK]; | 
|  | if (del_timer(timer)) | 
|  | sctp_association_put(asoc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Decrease asoc's rwnd by len. */ | 
|  | void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len) | 
|  | { | 
|  | int rx_count; | 
|  | int over = 0; | 
|  |  | 
|  | if (unlikely(!asoc->rwnd || asoc->rwnd_over)) | 
|  | pr_debug("%s: association:%p has asoc->rwnd:%u, " | 
|  | "asoc->rwnd_over:%u!\n", __func__, asoc, | 
|  | asoc->rwnd, asoc->rwnd_over); | 
|  |  | 
|  | if (asoc->ep->rcvbuf_policy) | 
|  | rx_count = atomic_read(&asoc->rmem_alloc); | 
|  | else | 
|  | rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc); | 
|  |  | 
|  | /* If we've reached or overflowed our receive buffer, announce | 
|  | * a 0 rwnd if rwnd would still be positive.  Store the | 
|  | * the potential pressure overflow so that the window can be restored | 
|  | * back to original value. | 
|  | */ | 
|  | if (rx_count >= asoc->base.sk->sk_rcvbuf) | 
|  | over = 1; | 
|  |  | 
|  | if (asoc->rwnd >= len) { | 
|  | asoc->rwnd -= len; | 
|  | if (over) { | 
|  | asoc->rwnd_press += asoc->rwnd; | 
|  | asoc->rwnd = 0; | 
|  | } | 
|  | } else { | 
|  | asoc->rwnd_over = len - asoc->rwnd; | 
|  | asoc->rwnd = 0; | 
|  | } | 
|  |  | 
|  | pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n", | 
|  | __func__, asoc, len, asoc->rwnd, asoc->rwnd_over, | 
|  | asoc->rwnd_press); | 
|  | } | 
|  |  | 
|  | /* Build the bind address list for the association based on info from the | 
|  | * local endpoint and the remote peer. | 
|  | */ | 
|  | int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, | 
|  | sctp_scope_t scope, gfp_t gfp) | 
|  | { | 
|  | int flags; | 
|  |  | 
|  | /* Use scoping rules to determine the subset of addresses from | 
|  | * the endpoint. | 
|  | */ | 
|  | flags = (PF_INET6 == asoc->base.sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0; | 
|  | if (asoc->peer.ipv4_address) | 
|  | flags |= SCTP_ADDR4_PEERSUPP; | 
|  | if (asoc->peer.ipv6_address) | 
|  | flags |= SCTP_ADDR6_PEERSUPP; | 
|  |  | 
|  | return sctp_bind_addr_copy(sock_net(asoc->base.sk), | 
|  | &asoc->base.bind_addr, | 
|  | &asoc->ep->base.bind_addr, | 
|  | scope, gfp, flags); | 
|  | } | 
|  |  | 
|  | /* Build the association's bind address list from the cookie.  */ | 
|  | int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc, | 
|  | struct sctp_cookie *cookie, | 
|  | gfp_t gfp) | 
|  | { | 
|  | int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length); | 
|  | int var_size3 = cookie->raw_addr_list_len; | 
|  | __u8 *raw = (__u8 *)cookie->peer_init + var_size2; | 
|  |  | 
|  | return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3, | 
|  | asoc->ep->base.bind_addr.port, gfp); | 
|  | } | 
|  |  | 
|  | /* Lookup laddr in the bind address list of an association. */ | 
|  | int sctp_assoc_lookup_laddr(struct sctp_association *asoc, | 
|  | const union sctp_addr *laddr) | 
|  | { | 
|  | int found = 0; | 
|  |  | 
|  | if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) && | 
|  | sctp_bind_addr_match(&asoc->base.bind_addr, laddr, | 
|  | sctp_sk(asoc->base.sk))) | 
|  | found = 1; | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /* Set an association id for a given association */ | 
|  | int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp) | 
|  | { | 
|  | bool preload = !!(gfp & __GFP_WAIT); | 
|  | int ret; | 
|  |  | 
|  | /* If the id is already assigned, keep it. */ | 
|  | if (asoc->assoc_id) | 
|  | return 0; | 
|  |  | 
|  | if (preload) | 
|  | idr_preload(gfp); | 
|  | spin_lock_bh(&sctp_assocs_id_lock); | 
|  | /* 0 is not a valid assoc_id, must be >= 1 */ | 
|  | ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, 1, 0, GFP_NOWAIT); | 
|  | spin_unlock_bh(&sctp_assocs_id_lock); | 
|  | if (preload) | 
|  | idr_preload_end(); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | asoc->assoc_id = (sctp_assoc_t)ret; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Free the ASCONF queue */ | 
|  | static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_chunk *asconf; | 
|  | struct sctp_chunk *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) { | 
|  | list_del_init(&asconf->list); | 
|  | sctp_chunk_free(asconf); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Free asconf_ack cache */ | 
|  | static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_chunk *ack; | 
|  | struct sctp_chunk *tmp; | 
|  |  | 
|  | list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, | 
|  | transmitted_list) { | 
|  | list_del_init(&ack->transmitted_list); | 
|  | sctp_chunk_free(ack); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clean up the ASCONF_ACK queue */ | 
|  | void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_chunk *ack; | 
|  | struct sctp_chunk *tmp; | 
|  |  | 
|  | /* We can remove all the entries from the queue up to | 
|  | * the "Peer-Sequence-Number". | 
|  | */ | 
|  | list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list, | 
|  | transmitted_list) { | 
|  | if (ack->subh.addip_hdr->serial == | 
|  | htonl(asoc->peer.addip_serial)) | 
|  | break; | 
|  |  | 
|  | list_del_init(&ack->transmitted_list); | 
|  | sctp_chunk_free(ack); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find the ASCONF_ACK whose serial number matches ASCONF */ | 
|  | struct sctp_chunk *sctp_assoc_lookup_asconf_ack( | 
|  | const struct sctp_association *asoc, | 
|  | __be32 serial) | 
|  | { | 
|  | struct sctp_chunk *ack; | 
|  |  | 
|  | /* Walk through the list of cached ASCONF-ACKs and find the | 
|  | * ack chunk whose serial number matches that of the request. | 
|  | */ | 
|  | list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) { | 
|  | if (sctp_chunk_pending(ack)) | 
|  | continue; | 
|  | if (ack->subh.addip_hdr->serial == serial) { | 
|  | sctp_chunk_hold(ack); | 
|  | return ack; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void sctp_asconf_queue_teardown(struct sctp_association *asoc) | 
|  | { | 
|  | /* Free any cached ASCONF_ACK chunk. */ | 
|  | sctp_assoc_free_asconf_acks(asoc); | 
|  |  | 
|  | /* Free the ASCONF queue. */ | 
|  | sctp_assoc_free_asconf_queue(asoc); | 
|  |  | 
|  | /* Free any cached ASCONF chunk. */ | 
|  | if (asoc->addip_last_asconf) | 
|  | sctp_chunk_free(asoc->addip_last_asconf); | 
|  | } |