|  | /* | 
|  | * Performance events x86 architecture code | 
|  | * | 
|  | *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright (C) 2009 Jaswinder Singh Rajput | 
|  | *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter | 
|  | *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> | 
|  | *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> | 
|  | *  Copyright (C) 2009 Google, Inc., Stephane Eranian | 
|  | * | 
|  | *  For licencing details see kernel-base/COPYING | 
|  | */ | 
|  |  | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/device.h> | 
|  |  | 
|  | #include <asm/apic.h> | 
|  | #include <asm/stacktrace.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/alternative.h> | 
|  | #include <asm/timer.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/ldt.h> | 
|  |  | 
|  | #include "perf_event.h" | 
|  |  | 
|  | struct x86_pmu x86_pmu __read_mostly; | 
|  |  | 
|  | DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { | 
|  | .enabled = 1, | 
|  | }; | 
|  |  | 
|  | u64 __read_mostly hw_cache_event_ids | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX]; | 
|  | u64 __read_mostly hw_cache_extra_regs | 
|  | [PERF_COUNT_HW_CACHE_MAX] | 
|  | [PERF_COUNT_HW_CACHE_OP_MAX] | 
|  | [PERF_COUNT_HW_CACHE_RESULT_MAX]; | 
|  |  | 
|  | /* | 
|  | * Propagate event elapsed time into the generic event. | 
|  | * Can only be executed on the CPU where the event is active. | 
|  | * Returns the delta events processed. | 
|  | */ | 
|  | u64 x86_perf_event_update(struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | int shift = 64 - x86_pmu.cntval_bits; | 
|  | u64 prev_raw_count, new_raw_count; | 
|  | int idx = hwc->idx; | 
|  | s64 delta; | 
|  |  | 
|  | if (idx == INTEL_PMC_IDX_FIXED_BTS) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Careful: an NMI might modify the previous event value. | 
|  | * | 
|  | * Our tactic to handle this is to first atomically read and | 
|  | * exchange a new raw count - then add that new-prev delta | 
|  | * count to the generic event atomically: | 
|  | */ | 
|  | again: | 
|  | prev_raw_count = local64_read(&hwc->prev_count); | 
|  | rdpmcl(hwc->event_base_rdpmc, new_raw_count); | 
|  |  | 
|  | if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, | 
|  | new_raw_count) != prev_raw_count) | 
|  | goto again; | 
|  |  | 
|  | /* | 
|  | * Now we have the new raw value and have updated the prev | 
|  | * timestamp already. We can now calculate the elapsed delta | 
|  | * (event-)time and add that to the generic event. | 
|  | * | 
|  | * Careful, not all hw sign-extends above the physical width | 
|  | * of the count. | 
|  | */ | 
|  | delta = (new_raw_count << shift) - (prev_raw_count << shift); | 
|  | delta >>= shift; | 
|  |  | 
|  | local64_add(delta, &event->count); | 
|  | local64_sub(delta, &hwc->period_left); | 
|  |  | 
|  | return new_raw_count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find and validate any extra registers to set up. | 
|  | */ | 
|  | static int x86_pmu_extra_regs(u64 config, struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event_extra *reg; | 
|  | struct extra_reg *er; | 
|  |  | 
|  | reg = &event->hw.extra_reg; | 
|  |  | 
|  | if (!x86_pmu.extra_regs) | 
|  | return 0; | 
|  |  | 
|  | for (er = x86_pmu.extra_regs; er->msr; er++) { | 
|  | if (er->event != (config & er->config_mask)) | 
|  | continue; | 
|  | if (event->attr.config1 & ~er->valid_mask) | 
|  | return -EINVAL; | 
|  |  | 
|  | reg->idx = er->idx; | 
|  | reg->config = event->attr.config1; | 
|  | reg->reg = er->msr; | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static atomic_t active_events; | 
|  | static DEFINE_MUTEX(pmc_reserve_mutex); | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  |  | 
|  | static bool reserve_pmc_hardware(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < x86_pmu.num_counters; i++) { | 
|  | if (!reserve_perfctr_nmi(x86_pmu_event_addr(i))) | 
|  | goto perfctr_fail; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < x86_pmu.num_counters; i++) { | 
|  | if (!reserve_evntsel_nmi(x86_pmu_config_addr(i))) | 
|  | goto eventsel_fail; | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | eventsel_fail: | 
|  | for (i--; i >= 0; i--) | 
|  | release_evntsel_nmi(x86_pmu_config_addr(i)); | 
|  |  | 
|  | i = x86_pmu.num_counters; | 
|  |  | 
|  | perfctr_fail: | 
|  | for (i--; i >= 0; i--) | 
|  | release_perfctr_nmi(x86_pmu_event_addr(i)); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void release_pmc_hardware(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < x86_pmu.num_counters; i++) { | 
|  | release_perfctr_nmi(x86_pmu_event_addr(i)); | 
|  | release_evntsel_nmi(x86_pmu_config_addr(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static bool reserve_pmc_hardware(void) { return true; } | 
|  | static void release_pmc_hardware(void) {} | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static bool check_hw_exists(void) | 
|  | { | 
|  | u64 val, val_fail, val_new= ~0; | 
|  | int i, reg, reg_fail, ret = 0; | 
|  | int bios_fail = 0; | 
|  |  | 
|  | /* | 
|  | * Check to see if the BIOS enabled any of the counters, if so | 
|  | * complain and bail. | 
|  | */ | 
|  | for (i = 0; i < x86_pmu.num_counters; i++) { | 
|  | reg = x86_pmu_config_addr(i); | 
|  | ret = rdmsrl_safe(reg, &val); | 
|  | if (ret) | 
|  | goto msr_fail; | 
|  | if (val & ARCH_PERFMON_EVENTSEL_ENABLE) { | 
|  | bios_fail = 1; | 
|  | val_fail = val; | 
|  | reg_fail = reg; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (x86_pmu.num_counters_fixed) { | 
|  | reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; | 
|  | ret = rdmsrl_safe(reg, &val); | 
|  | if (ret) | 
|  | goto msr_fail; | 
|  | for (i = 0; i < x86_pmu.num_counters_fixed; i++) { | 
|  | if (val & (0x03 << i*4)) { | 
|  | bios_fail = 1; | 
|  | val_fail = val; | 
|  | reg_fail = reg; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read the current value, change it and read it back to see if it | 
|  | * matches, this is needed to detect certain hardware emulators | 
|  | * (qemu/kvm) that don't trap on the MSR access and always return 0s. | 
|  | */ | 
|  | reg = x86_pmu_event_addr(0); | 
|  | if (rdmsrl_safe(reg, &val)) | 
|  | goto msr_fail; | 
|  | val ^= 0xffffUL; | 
|  | ret = wrmsrl_safe(reg, val); | 
|  | ret |= rdmsrl_safe(reg, &val_new); | 
|  | if (ret || val != val_new) | 
|  | goto msr_fail; | 
|  |  | 
|  | /* | 
|  | * We still allow the PMU driver to operate: | 
|  | */ | 
|  | if (bios_fail) { | 
|  | printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n"); | 
|  | printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail); | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | msr_fail: | 
|  | printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n"); | 
|  | printk(KERN_ERR "Failed to access perfctr msr (MSR %x is %Lx)\n", reg, val_new); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void hw_perf_event_destroy(struct perf_event *event) | 
|  | { | 
|  | if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) { | 
|  | release_pmc_hardware(); | 
|  | release_ds_buffers(); | 
|  | mutex_unlock(&pmc_reserve_mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int x86_pmu_initialized(void) | 
|  | { | 
|  | return x86_pmu.handle_irq != NULL; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | unsigned int cache_type, cache_op, cache_result; | 
|  | u64 config, val; | 
|  |  | 
|  | config = attr->config; | 
|  |  | 
|  | cache_type = (config >>  0) & 0xff; | 
|  | if (cache_type >= PERF_COUNT_HW_CACHE_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_op = (config >>  8) & 0xff; | 
|  | if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_result = (config >> 16) & 0xff; | 
|  | if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | val = hw_cache_event_ids[cache_type][cache_op][cache_result]; | 
|  |  | 
|  | if (val == 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (val == -1) | 
|  | return -EINVAL; | 
|  |  | 
|  | hwc->config |= val; | 
|  | attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result]; | 
|  | return x86_pmu_extra_regs(val, event); | 
|  | } | 
|  |  | 
|  | int x86_setup_perfctr(struct perf_event *event) | 
|  | { | 
|  | struct perf_event_attr *attr = &event->attr; | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | u64 config; | 
|  |  | 
|  | if (!is_sampling_event(event)) { | 
|  | hwc->sample_period = x86_pmu.max_period; | 
|  | hwc->last_period = hwc->sample_period; | 
|  | local64_set(&hwc->period_left, hwc->sample_period); | 
|  | } else { | 
|  | /* | 
|  | * If we have a PMU initialized but no APIC | 
|  | * interrupts, we cannot sample hardware | 
|  | * events (user-space has to fall back and | 
|  | * sample via a hrtimer based software event): | 
|  | */ | 
|  | if (!x86_pmu.apic) | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (attr->type == PERF_TYPE_RAW) | 
|  | return x86_pmu_extra_regs(event->attr.config, event); | 
|  |  | 
|  | if (attr->type == PERF_TYPE_HW_CACHE) | 
|  | return set_ext_hw_attr(hwc, event); | 
|  |  | 
|  | if (attr->config >= x86_pmu.max_events) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * The generic map: | 
|  | */ | 
|  | config = x86_pmu.event_map(attr->config); | 
|  |  | 
|  | if (config == 0) | 
|  | return -ENOENT; | 
|  |  | 
|  | if (config == -1LL) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Branch tracing: | 
|  | */ | 
|  | if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS && | 
|  | !attr->freq && hwc->sample_period == 1) { | 
|  | /* BTS is not supported by this architecture. */ | 
|  | if (!x86_pmu.bts_active) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* BTS is currently only allowed for user-mode. */ | 
|  | if (!attr->exclude_kernel) | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | hwc->config |= config; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check that branch_sample_type is compatible with | 
|  | * settings needed for precise_ip > 1 which implies | 
|  | * using the LBR to capture ALL taken branches at the | 
|  | * priv levels of the measurement | 
|  | */ | 
|  | static inline int precise_br_compat(struct perf_event *event) | 
|  | { | 
|  | u64 m = event->attr.branch_sample_type; | 
|  | u64 b = 0; | 
|  |  | 
|  | /* must capture all branches */ | 
|  | if (!(m & PERF_SAMPLE_BRANCH_ANY)) | 
|  | return 0; | 
|  |  | 
|  | m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER; | 
|  |  | 
|  | if (!event->attr.exclude_user) | 
|  | b |= PERF_SAMPLE_BRANCH_USER; | 
|  |  | 
|  | if (!event->attr.exclude_kernel) | 
|  | b |= PERF_SAMPLE_BRANCH_KERNEL; | 
|  |  | 
|  | /* | 
|  | * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86 | 
|  | */ | 
|  |  | 
|  | return m == b; | 
|  | } | 
|  |  | 
|  | int x86_pmu_hw_config(struct perf_event *event) | 
|  | { | 
|  | if (event->attr.precise_ip) { | 
|  | int precise = 0; | 
|  |  | 
|  | /* Support for constant skid */ | 
|  | if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) { | 
|  | precise++; | 
|  |  | 
|  | /* Support for IP fixup */ | 
|  | if (x86_pmu.lbr_nr) | 
|  | precise++; | 
|  | } | 
|  |  | 
|  | if (event->attr.precise_ip > precise) | 
|  | return -EOPNOTSUPP; | 
|  | /* | 
|  | * check that PEBS LBR correction does not conflict with | 
|  | * whatever the user is asking with attr->branch_sample_type | 
|  | */ | 
|  | if (event->attr.precise_ip > 1) { | 
|  | u64 *br_type = &event->attr.branch_sample_type; | 
|  |  | 
|  | if (has_branch_stack(event)) { | 
|  | if (!precise_br_compat(event)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | /* branch_sample_type is compatible */ | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * user did not specify  branch_sample_type | 
|  | * | 
|  | * For PEBS fixups, we capture all | 
|  | * the branches at the priv level of the | 
|  | * event. | 
|  | */ | 
|  | *br_type = PERF_SAMPLE_BRANCH_ANY; | 
|  |  | 
|  | if (!event->attr.exclude_user) | 
|  | *br_type |= PERF_SAMPLE_BRANCH_USER; | 
|  |  | 
|  | if (!event->attr.exclude_kernel) | 
|  | *br_type |= PERF_SAMPLE_BRANCH_KERNEL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate PMC IRQs: | 
|  | * (keep 'enabled' bit clear for now) | 
|  | */ | 
|  | event->hw.config = ARCH_PERFMON_EVENTSEL_INT; | 
|  |  | 
|  | /* | 
|  | * Count user and OS events unless requested not to | 
|  | */ | 
|  | if (!event->attr.exclude_user) | 
|  | event->hw.config |= ARCH_PERFMON_EVENTSEL_USR; | 
|  | if (!event->attr.exclude_kernel) | 
|  | event->hw.config |= ARCH_PERFMON_EVENTSEL_OS; | 
|  |  | 
|  | if (event->attr.type == PERF_TYPE_RAW) | 
|  | event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK; | 
|  |  | 
|  | return x86_setup_perfctr(event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the hardware configuration for a given attr_type | 
|  | */ | 
|  | static int __x86_pmu_event_init(struct perf_event *event) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!x86_pmu_initialized()) | 
|  | return -ENODEV; | 
|  |  | 
|  | err = 0; | 
|  | if (!atomic_inc_not_zero(&active_events)) { | 
|  | mutex_lock(&pmc_reserve_mutex); | 
|  | if (atomic_read(&active_events) == 0) { | 
|  | if (!reserve_pmc_hardware()) | 
|  | err = -EBUSY; | 
|  | else | 
|  | reserve_ds_buffers(); | 
|  | } | 
|  | if (!err) | 
|  | atomic_inc(&active_events); | 
|  | mutex_unlock(&pmc_reserve_mutex); | 
|  | } | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | event->destroy = hw_perf_event_destroy; | 
|  |  | 
|  | event->hw.idx = -1; | 
|  | event->hw.last_cpu = -1; | 
|  | event->hw.last_tag = ~0ULL; | 
|  |  | 
|  | /* mark unused */ | 
|  | event->hw.extra_reg.idx = EXTRA_REG_NONE; | 
|  | event->hw.branch_reg.idx = EXTRA_REG_NONE; | 
|  |  | 
|  | return x86_pmu.hw_config(event); | 
|  | } | 
|  |  | 
|  | void x86_pmu_disable_all(void) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int idx; | 
|  |  | 
|  | for (idx = 0; idx < x86_pmu.num_counters; idx++) { | 
|  | u64 val; | 
|  |  | 
|  | if (!test_bit(idx, cpuc->active_mask)) | 
|  | continue; | 
|  | rdmsrl(x86_pmu_config_addr(idx), val); | 
|  | if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE)) | 
|  | continue; | 
|  | val &= ~ARCH_PERFMON_EVENTSEL_ENABLE; | 
|  | wrmsrl(x86_pmu_config_addr(idx), val); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void x86_pmu_disable(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | if (!x86_pmu_initialized()) | 
|  | return; | 
|  |  | 
|  | if (!cpuc->enabled) | 
|  | return; | 
|  |  | 
|  | cpuc->n_added = 0; | 
|  | cpuc->enabled = 0; | 
|  | barrier(); | 
|  |  | 
|  | x86_pmu.disable_all(); | 
|  | } | 
|  |  | 
|  | void x86_pmu_enable_all(int added) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int idx; | 
|  |  | 
|  | for (idx = 0; idx < x86_pmu.num_counters; idx++) { | 
|  | struct hw_perf_event *hwc = &cpuc->events[idx]->hw; | 
|  |  | 
|  | if (!test_bit(idx, cpuc->active_mask)) | 
|  | continue; | 
|  |  | 
|  | __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct pmu pmu; | 
|  |  | 
|  | static inline int is_x86_event(struct perf_event *event) | 
|  | { | 
|  | return event->pmu == &pmu; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Event scheduler state: | 
|  | * | 
|  | * Assign events iterating over all events and counters, beginning | 
|  | * with events with least weights first. Keep the current iterator | 
|  | * state in struct sched_state. | 
|  | */ | 
|  | struct sched_state { | 
|  | int	weight; | 
|  | int	event;		/* event index */ | 
|  | int	counter;	/* counter index */ | 
|  | int	unassigned;	/* number of events to be assigned left */ | 
|  | unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; | 
|  | }; | 
|  |  | 
|  | /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */ | 
|  | #define	SCHED_STATES_MAX	2 | 
|  |  | 
|  | struct perf_sched { | 
|  | int			max_weight; | 
|  | int			max_events; | 
|  | struct event_constraint	**constraints; | 
|  | struct sched_state	state; | 
|  | int			saved_states; | 
|  | struct sched_state	saved[SCHED_STATES_MAX]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Initialize interator that runs through all events and counters. | 
|  | */ | 
|  | static void perf_sched_init(struct perf_sched *sched, struct event_constraint **c, | 
|  | int num, int wmin, int wmax) | 
|  | { | 
|  | int idx; | 
|  |  | 
|  | memset(sched, 0, sizeof(*sched)); | 
|  | sched->max_events	= num; | 
|  | sched->max_weight	= wmax; | 
|  | sched->constraints	= c; | 
|  |  | 
|  | for (idx = 0; idx < num; idx++) { | 
|  | if (c[idx]->weight == wmin) | 
|  | break; | 
|  | } | 
|  |  | 
|  | sched->state.event	= idx;		/* start with min weight */ | 
|  | sched->state.weight	= wmin; | 
|  | sched->state.unassigned	= num; | 
|  | } | 
|  |  | 
|  | static void perf_sched_save_state(struct perf_sched *sched) | 
|  | { | 
|  | if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX)) | 
|  | return; | 
|  |  | 
|  | sched->saved[sched->saved_states] = sched->state; | 
|  | sched->saved_states++; | 
|  | } | 
|  |  | 
|  | static bool perf_sched_restore_state(struct perf_sched *sched) | 
|  | { | 
|  | if (!sched->saved_states) | 
|  | return false; | 
|  |  | 
|  | sched->saved_states--; | 
|  | sched->state = sched->saved[sched->saved_states]; | 
|  |  | 
|  | /* continue with next counter: */ | 
|  | clear_bit(sched->state.counter++, sched->state.used); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Select a counter for the current event to schedule. Return true on | 
|  | * success. | 
|  | */ | 
|  | static bool __perf_sched_find_counter(struct perf_sched *sched) | 
|  | { | 
|  | struct event_constraint *c; | 
|  | int idx; | 
|  |  | 
|  | if (!sched->state.unassigned) | 
|  | return false; | 
|  |  | 
|  | if (sched->state.event >= sched->max_events) | 
|  | return false; | 
|  |  | 
|  | c = sched->constraints[sched->state.event]; | 
|  |  | 
|  | /* Prefer fixed purpose counters */ | 
|  | if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) { | 
|  | idx = INTEL_PMC_IDX_FIXED; | 
|  | for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) { | 
|  | if (!__test_and_set_bit(idx, sched->state.used)) | 
|  | goto done; | 
|  | } | 
|  | } | 
|  | /* Grab the first unused counter starting with idx */ | 
|  | idx = sched->state.counter; | 
|  | for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) { | 
|  | if (!__test_and_set_bit(idx, sched->state.used)) | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | return false; | 
|  |  | 
|  | done: | 
|  | sched->state.counter = idx; | 
|  |  | 
|  | if (c->overlap) | 
|  | perf_sched_save_state(sched); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool perf_sched_find_counter(struct perf_sched *sched) | 
|  | { | 
|  | while (!__perf_sched_find_counter(sched)) { | 
|  | if (!perf_sched_restore_state(sched)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Go through all unassigned events and find the next one to schedule. | 
|  | * Take events with the least weight first. Return true on success. | 
|  | */ | 
|  | static bool perf_sched_next_event(struct perf_sched *sched) | 
|  | { | 
|  | struct event_constraint *c; | 
|  |  | 
|  | if (!sched->state.unassigned || !--sched->state.unassigned) | 
|  | return false; | 
|  |  | 
|  | do { | 
|  | /* next event */ | 
|  | sched->state.event++; | 
|  | if (sched->state.event >= sched->max_events) { | 
|  | /* next weight */ | 
|  | sched->state.event = 0; | 
|  | sched->state.weight++; | 
|  | if (sched->state.weight > sched->max_weight) | 
|  | return false; | 
|  | } | 
|  | c = sched->constraints[sched->state.event]; | 
|  | } while (c->weight != sched->state.weight); | 
|  |  | 
|  | sched->state.counter = 0;	/* start with first counter */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Assign a counter for each event. | 
|  | */ | 
|  | int perf_assign_events(struct event_constraint **constraints, int n, | 
|  | int wmin, int wmax, int *assign) | 
|  | { | 
|  | struct perf_sched sched; | 
|  |  | 
|  | perf_sched_init(&sched, constraints, n, wmin, wmax); | 
|  |  | 
|  | do { | 
|  | if (!perf_sched_find_counter(&sched)) | 
|  | break;	/* failed */ | 
|  | if (assign) | 
|  | assign[sched.state.event] = sched.state.counter; | 
|  | } while (perf_sched_next_event(&sched)); | 
|  |  | 
|  | return sched.state.unassigned; | 
|  | } | 
|  |  | 
|  | int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign) | 
|  | { | 
|  | struct event_constraint *c, *constraints[X86_PMC_IDX_MAX]; | 
|  | unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)]; | 
|  | int i, wmin, wmax, num = 0; | 
|  | struct hw_perf_event *hwc; | 
|  |  | 
|  | bitmap_zero(used_mask, X86_PMC_IDX_MAX); | 
|  |  | 
|  | for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) { | 
|  | c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]); | 
|  | constraints[i] = c; | 
|  | wmin = min(wmin, c->weight); | 
|  | wmax = max(wmax, c->weight); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fastpath, try to reuse previous register | 
|  | */ | 
|  | for (i = 0; i < n; i++) { | 
|  | hwc = &cpuc->event_list[i]->hw; | 
|  | c = constraints[i]; | 
|  |  | 
|  | /* never assigned */ | 
|  | if (hwc->idx == -1) | 
|  | break; | 
|  |  | 
|  | /* constraint still honored */ | 
|  | if (!test_bit(hwc->idx, c->idxmsk)) | 
|  | break; | 
|  |  | 
|  | /* not already used */ | 
|  | if (test_bit(hwc->idx, used_mask)) | 
|  | break; | 
|  |  | 
|  | __set_bit(hwc->idx, used_mask); | 
|  | if (assign) | 
|  | assign[i] = hwc->idx; | 
|  | } | 
|  |  | 
|  | /* slow path */ | 
|  | if (i != n) | 
|  | num = perf_assign_events(constraints, n, wmin, wmax, assign); | 
|  |  | 
|  | /* | 
|  | * scheduling failed or is just a simulation, | 
|  | * free resources if necessary | 
|  | */ | 
|  | if (!assign || num) { | 
|  | for (i = 0; i < n; i++) { | 
|  | if (x86_pmu.put_event_constraints) | 
|  | x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]); | 
|  | } | 
|  | } | 
|  | return num ? -EINVAL : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dogrp: true if must collect siblings events (group) | 
|  | * returns total number of events and error code | 
|  | */ | 
|  | static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp) | 
|  | { | 
|  | struct perf_event *event; | 
|  | int n, max_count; | 
|  |  | 
|  | max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed; | 
|  |  | 
|  | /* current number of events already accepted */ | 
|  | n = cpuc->n_events; | 
|  |  | 
|  | if (is_x86_event(leader)) { | 
|  | if (n >= max_count) | 
|  | return -EINVAL; | 
|  | cpuc->event_list[n] = leader; | 
|  | n++; | 
|  | } | 
|  | if (!dogrp) | 
|  | return n; | 
|  |  | 
|  | list_for_each_entry(event, &leader->sibling_list, group_entry) { | 
|  | if (!is_x86_event(event) || | 
|  | event->state <= PERF_EVENT_STATE_OFF) | 
|  | continue; | 
|  |  | 
|  | if (n >= max_count) | 
|  | return -EINVAL; | 
|  |  | 
|  | cpuc->event_list[n] = event; | 
|  | n++; | 
|  | } | 
|  | return n; | 
|  | } | 
|  |  | 
|  | static inline void x86_assign_hw_event(struct perf_event *event, | 
|  | struct cpu_hw_events *cpuc, int i) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | hwc->idx = cpuc->assign[i]; | 
|  | hwc->last_cpu = smp_processor_id(); | 
|  | hwc->last_tag = ++cpuc->tags[i]; | 
|  |  | 
|  | if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) { | 
|  | hwc->config_base = 0; | 
|  | hwc->event_base	= 0; | 
|  | } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) { | 
|  | hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL; | 
|  | hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED); | 
|  | hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30; | 
|  | } else { | 
|  | hwc->config_base = x86_pmu_config_addr(hwc->idx); | 
|  | hwc->event_base  = x86_pmu_event_addr(hwc->idx); | 
|  | hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int match_prev_assignment(struct hw_perf_event *hwc, | 
|  | struct cpu_hw_events *cpuc, | 
|  | int i) | 
|  | { | 
|  | return hwc->idx == cpuc->assign[i] && | 
|  | hwc->last_cpu == smp_processor_id() && | 
|  | hwc->last_tag == cpuc->tags[i]; | 
|  | } | 
|  |  | 
|  | static void x86_pmu_start(struct perf_event *event, int flags); | 
|  |  | 
|  | static void x86_pmu_enable(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | struct perf_event *event; | 
|  | struct hw_perf_event *hwc; | 
|  | int i, added = cpuc->n_added; | 
|  |  | 
|  | if (!x86_pmu_initialized()) | 
|  | return; | 
|  |  | 
|  | if (cpuc->enabled) | 
|  | return; | 
|  |  | 
|  | if (cpuc->n_added) { | 
|  | int n_running = cpuc->n_events - cpuc->n_added; | 
|  | /* | 
|  | * apply assignment obtained either from | 
|  | * hw_perf_group_sched_in() or x86_pmu_enable() | 
|  | * | 
|  | * step1: save events moving to new counters | 
|  | * step2: reprogram moved events into new counters | 
|  | */ | 
|  | for (i = 0; i < n_running; i++) { | 
|  | event = cpuc->event_list[i]; | 
|  | hwc = &event->hw; | 
|  |  | 
|  | /* | 
|  | * we can avoid reprogramming counter if: | 
|  | * - assigned same counter as last time | 
|  | * - running on same CPU as last time | 
|  | * - no other event has used the counter since | 
|  | */ | 
|  | if (hwc->idx == -1 || | 
|  | match_prev_assignment(hwc, cpuc, i)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Ensure we don't accidentally enable a stopped | 
|  | * counter simply because we rescheduled. | 
|  | */ | 
|  | if (hwc->state & PERF_HES_STOPPED) | 
|  | hwc->state |= PERF_HES_ARCH; | 
|  |  | 
|  | x86_pmu_stop(event, PERF_EF_UPDATE); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < cpuc->n_events; i++) { | 
|  | event = cpuc->event_list[i]; | 
|  | hwc = &event->hw; | 
|  |  | 
|  | if (!match_prev_assignment(hwc, cpuc, i)) | 
|  | x86_assign_hw_event(event, cpuc, i); | 
|  | else if (i < n_running) | 
|  | continue; | 
|  |  | 
|  | if (hwc->state & PERF_HES_ARCH) | 
|  | continue; | 
|  |  | 
|  | x86_pmu_start(event, PERF_EF_RELOAD); | 
|  | } | 
|  | cpuc->n_added = 0; | 
|  | perf_events_lapic_init(); | 
|  | } | 
|  |  | 
|  | cpuc->enabled = 1; | 
|  | barrier(); | 
|  |  | 
|  | x86_pmu.enable_all(added); | 
|  | } | 
|  |  | 
|  | static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left); | 
|  |  | 
|  | /* | 
|  | * Set the next IRQ period, based on the hwc->period_left value. | 
|  | * To be called with the event disabled in hw: | 
|  | */ | 
|  | int x86_perf_event_set_period(struct perf_event *event) | 
|  | { | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  | s64 left = local64_read(&hwc->period_left); | 
|  | s64 period = hwc->sample_period; | 
|  | int ret = 0, idx = hwc->idx; | 
|  |  | 
|  | if (idx == INTEL_PMC_IDX_FIXED_BTS) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we are way outside a reasonable range then just skip forward: | 
|  | */ | 
|  | if (unlikely(left <= -period)) { | 
|  | left = period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(left <= 0)) { | 
|  | left += period; | 
|  | local64_set(&hwc->period_left, left); | 
|  | hwc->last_period = period; | 
|  | ret = 1; | 
|  | } | 
|  | /* | 
|  | * Quirk: certain CPUs dont like it if just 1 hw_event is left: | 
|  | */ | 
|  | if (unlikely(left < 2)) | 
|  | left = 2; | 
|  |  | 
|  | if (left > x86_pmu.max_period) | 
|  | left = x86_pmu.max_period; | 
|  |  | 
|  | per_cpu(pmc_prev_left[idx], smp_processor_id()) = left; | 
|  |  | 
|  | /* | 
|  | * The hw event starts counting from this event offset, | 
|  | * mark it to be able to extra future deltas: | 
|  | */ | 
|  | local64_set(&hwc->prev_count, (u64)-left); | 
|  |  | 
|  | wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask); | 
|  |  | 
|  | /* | 
|  | * Due to erratum on certan cpu we need | 
|  | * a second write to be sure the register | 
|  | * is updated properly | 
|  | */ | 
|  | if (x86_pmu.perfctr_second_write) { | 
|  | wrmsrl(hwc->event_base, | 
|  | (u64)(-left) & x86_pmu.cntval_mask); | 
|  | } | 
|  |  | 
|  | perf_event_update_userpage(event); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void x86_pmu_enable_event(struct perf_event *event) | 
|  | { | 
|  | if (__this_cpu_read(cpu_hw_events.enabled)) | 
|  | __x86_pmu_enable_event(&event->hw, | 
|  | ARCH_PERFMON_EVENTSEL_ENABLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a single event to the PMU. | 
|  | * | 
|  | * The event is added to the group of enabled events | 
|  | * but only if it can be scehduled with existing events. | 
|  | */ | 
|  | static int x86_pmu_add(struct perf_event *event, int flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | struct hw_perf_event *hwc; | 
|  | int assign[X86_PMC_IDX_MAX]; | 
|  | int n, n0, ret; | 
|  |  | 
|  | hwc = &event->hw; | 
|  |  | 
|  | perf_pmu_disable(event->pmu); | 
|  | n0 = cpuc->n_events; | 
|  | ret = n = collect_events(cpuc, event, false); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; | 
|  | if (!(flags & PERF_EF_START)) | 
|  | hwc->state |= PERF_HES_ARCH; | 
|  |  | 
|  | /* | 
|  | * If group events scheduling transaction was started, | 
|  | * skip the schedulability test here, it will be performed | 
|  | * at commit time (->commit_txn) as a whole | 
|  | */ | 
|  | if (cpuc->group_flag & PERF_EVENT_TXN) | 
|  | goto done_collect; | 
|  |  | 
|  | ret = x86_pmu.schedule_events(cpuc, n, assign); | 
|  | if (ret) | 
|  | goto out; | 
|  | /* | 
|  | * copy new assignment, now we know it is possible | 
|  | * will be used by hw_perf_enable() | 
|  | */ | 
|  | memcpy(cpuc->assign, assign, n*sizeof(int)); | 
|  |  | 
|  | done_collect: | 
|  | cpuc->n_events = n; | 
|  | cpuc->n_added += n - n0; | 
|  | cpuc->n_txn += n - n0; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | perf_pmu_enable(event->pmu); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void x86_pmu_start(struct perf_event *event, int flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int idx = event->hw.idx; | 
|  |  | 
|  | if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED))) | 
|  | return; | 
|  |  | 
|  | if (WARN_ON_ONCE(idx == -1)) | 
|  | return; | 
|  |  | 
|  | if (flags & PERF_EF_RELOAD) { | 
|  | WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); | 
|  | x86_perf_event_set_period(event); | 
|  | } | 
|  |  | 
|  | event->hw.state = 0; | 
|  |  | 
|  | cpuc->events[idx] = event; | 
|  | __set_bit(idx, cpuc->active_mask); | 
|  | __set_bit(idx, cpuc->running); | 
|  | x86_pmu.enable(event); | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  |  | 
|  | void perf_event_print_debug(void) | 
|  | { | 
|  | u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed; | 
|  | u64 pebs; | 
|  | struct cpu_hw_events *cpuc; | 
|  | unsigned long flags; | 
|  | int cpu, idx; | 
|  |  | 
|  | if (!x86_pmu.num_counters) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | cpuc = &per_cpu(cpu_hw_events, cpu); | 
|  |  | 
|  | if (x86_pmu.version >= 2) { | 
|  | rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl); | 
|  | rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status); | 
|  | rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow); | 
|  | rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed); | 
|  | rdmsrl(MSR_IA32_PEBS_ENABLE, pebs); | 
|  |  | 
|  | pr_info("\n"); | 
|  | pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl); | 
|  | pr_info("CPU#%d: status:     %016llx\n", cpu, status); | 
|  | pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow); | 
|  | pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed); | 
|  | pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs); | 
|  | } | 
|  | pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask); | 
|  |  | 
|  | for (idx = 0; idx < x86_pmu.num_counters; idx++) { | 
|  | rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl); | 
|  | rdmsrl(x86_pmu_event_addr(idx), pmc_count); | 
|  |  | 
|  | prev_left = per_cpu(pmc_prev_left[idx], cpu); | 
|  |  | 
|  | pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n", | 
|  | cpu, idx, pmc_ctrl); | 
|  | pr_info("CPU#%d:   gen-PMC%d count: %016llx\n", | 
|  | cpu, idx, pmc_count); | 
|  | pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n", | 
|  | cpu, idx, prev_left); | 
|  | } | 
|  | for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) { | 
|  | rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count); | 
|  |  | 
|  | pr_info("CPU#%d: fixed-PMC%d count: %016llx\n", | 
|  | cpu, idx, pmc_count); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | void x86_pmu_stop(struct perf_event *event, int flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | struct hw_perf_event *hwc = &event->hw; | 
|  |  | 
|  | if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) { | 
|  | x86_pmu.disable(event); | 
|  | cpuc->events[hwc->idx] = NULL; | 
|  | WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED); | 
|  | hwc->state |= PERF_HES_STOPPED; | 
|  | } | 
|  |  | 
|  | if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) { | 
|  | /* | 
|  | * Drain the remaining delta count out of a event | 
|  | * that we are disabling: | 
|  | */ | 
|  | x86_perf_event_update(event); | 
|  | hwc->state |= PERF_HES_UPTODATE; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void x86_pmu_del(struct perf_event *event, int flags) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * If we're called during a txn, we don't need to do anything. | 
|  | * The events never got scheduled and ->cancel_txn will truncate | 
|  | * the event_list. | 
|  | */ | 
|  | if (cpuc->group_flag & PERF_EVENT_TXN) | 
|  | return; | 
|  |  | 
|  | x86_pmu_stop(event, PERF_EF_UPDATE); | 
|  |  | 
|  | for (i = 0; i < cpuc->n_events; i++) { | 
|  | if (event == cpuc->event_list[i]) { | 
|  |  | 
|  | if (x86_pmu.put_event_constraints) | 
|  | x86_pmu.put_event_constraints(cpuc, event); | 
|  |  | 
|  | while (++i < cpuc->n_events) | 
|  | cpuc->event_list[i-1] = cpuc->event_list[i]; | 
|  |  | 
|  | --cpuc->n_events; | 
|  | break; | 
|  | } | 
|  | } | 
|  | perf_event_update_userpage(event); | 
|  | } | 
|  |  | 
|  | int x86_pmu_handle_irq(struct pt_regs *regs) | 
|  | { | 
|  | struct perf_sample_data data; | 
|  | struct cpu_hw_events *cpuc; | 
|  | struct perf_event *event; | 
|  | int idx, handled = 0; | 
|  | u64 val; | 
|  |  | 
|  | cpuc = &__get_cpu_var(cpu_hw_events); | 
|  |  | 
|  | /* | 
|  | * Some chipsets need to unmask the LVTPC in a particular spot | 
|  | * inside the nmi handler.  As a result, the unmasking was pushed | 
|  | * into all the nmi handlers. | 
|  | * | 
|  | * This generic handler doesn't seem to have any issues where the | 
|  | * unmasking occurs so it was left at the top. | 
|  | */ | 
|  | apic_write(APIC_LVTPC, APIC_DM_NMI); | 
|  |  | 
|  | for (idx = 0; idx < x86_pmu.num_counters; idx++) { | 
|  | if (!test_bit(idx, cpuc->active_mask)) { | 
|  | /* | 
|  | * Though we deactivated the counter some cpus | 
|  | * might still deliver spurious interrupts still | 
|  | * in flight. Catch them: | 
|  | */ | 
|  | if (__test_and_clear_bit(idx, cpuc->running)) | 
|  | handled++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | event = cpuc->events[idx]; | 
|  |  | 
|  | val = x86_perf_event_update(event); | 
|  | if (val & (1ULL << (x86_pmu.cntval_bits - 1))) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * event overflow | 
|  | */ | 
|  | handled++; | 
|  | perf_sample_data_init(&data, 0, event->hw.last_period); | 
|  |  | 
|  | if (!x86_perf_event_set_period(event)) | 
|  | continue; | 
|  |  | 
|  | if (perf_event_overflow(event, &data, regs)) | 
|  | x86_pmu_stop(event, 0); | 
|  | } | 
|  |  | 
|  | if (handled) | 
|  | inc_irq_stat(apic_perf_irqs); | 
|  |  | 
|  | return handled; | 
|  | } | 
|  |  | 
|  | void perf_events_lapic_init(void) | 
|  | { | 
|  | if (!x86_pmu.apic || !x86_pmu_initialized()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Always use NMI for PMU | 
|  | */ | 
|  | apic_write(APIC_LVTPC, APIC_DM_NMI); | 
|  | } | 
|  |  | 
|  | static int __kprobes | 
|  | perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs) | 
|  | { | 
|  | if (!atomic_read(&active_events)) | 
|  | return NMI_DONE; | 
|  |  | 
|  | return x86_pmu.handle_irq(regs); | 
|  | } | 
|  |  | 
|  | struct event_constraint emptyconstraint; | 
|  | struct event_constraint unconstrained; | 
|  |  | 
|  | static int __cpuinit | 
|  | x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) | 
|  | { | 
|  | unsigned int cpu = (long)hcpu; | 
|  | struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu); | 
|  | int ret = NOTIFY_OK; | 
|  |  | 
|  | switch (action & ~CPU_TASKS_FROZEN) { | 
|  | case CPU_UP_PREPARE: | 
|  | cpuc->kfree_on_online = NULL; | 
|  | if (x86_pmu.cpu_prepare) | 
|  | ret = x86_pmu.cpu_prepare(cpu); | 
|  | break; | 
|  |  | 
|  | case CPU_STARTING: | 
|  | if (x86_pmu.attr_rdpmc) | 
|  | set_in_cr4(X86_CR4_PCE); | 
|  | if (x86_pmu.cpu_starting) | 
|  | x86_pmu.cpu_starting(cpu); | 
|  | break; | 
|  |  | 
|  | case CPU_ONLINE: | 
|  | kfree(cpuc->kfree_on_online); | 
|  | break; | 
|  |  | 
|  | case CPU_DYING: | 
|  | if (x86_pmu.cpu_dying) | 
|  | x86_pmu.cpu_dying(cpu); | 
|  | break; | 
|  |  | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_DEAD: | 
|  | if (x86_pmu.cpu_dead) | 
|  | x86_pmu.cpu_dead(cpu); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __init pmu_check_apic(void) | 
|  | { | 
|  | if (cpu_has_apic) | 
|  | return; | 
|  |  | 
|  | x86_pmu.apic = 0; | 
|  | pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n"); | 
|  | pr_info("no hardware sampling interrupt available.\n"); | 
|  | } | 
|  |  | 
|  | static struct attribute_group x86_pmu_format_group = { | 
|  | .name = "format", | 
|  | .attrs = NULL, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Remove all undefined events (x86_pmu.event_map(id) == 0) | 
|  | * out of events_attr attributes. | 
|  | */ | 
|  | static void __init filter_events(struct attribute **attrs) | 
|  | { | 
|  | struct device_attribute *d; | 
|  | struct perf_pmu_events_attr *pmu_attr; | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; attrs[i]; i++) { | 
|  | d = (struct device_attribute *)attrs[i]; | 
|  | pmu_attr = container_of(d, struct perf_pmu_events_attr, attr); | 
|  | /* str trumps id */ | 
|  | if (pmu_attr->event_str) | 
|  | continue; | 
|  | if (x86_pmu.event_map(i)) | 
|  | continue; | 
|  |  | 
|  | for (j = i; attrs[j]; j++) | 
|  | attrs[j] = attrs[j + 1]; | 
|  |  | 
|  | /* Check the shifted attr. */ | 
|  | i--; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Merge two pointer arrays */ | 
|  | static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b) | 
|  | { | 
|  | struct attribute **new; | 
|  | int j, i; | 
|  |  | 
|  | for (j = 0; a[j]; j++) | 
|  | ; | 
|  | for (i = 0; b[i]; i++) | 
|  | j++; | 
|  | j++; | 
|  |  | 
|  | new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL); | 
|  | if (!new) | 
|  | return NULL; | 
|  |  | 
|  | j = 0; | 
|  | for (i = 0; a[i]; i++) | 
|  | new[j++] = a[i]; | 
|  | for (i = 0; b[i]; i++) | 
|  | new[j++] = b[i]; | 
|  | new[j] = NULL; | 
|  |  | 
|  | return new; | 
|  | } | 
|  |  | 
|  | ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, | 
|  | char *page) | 
|  | { | 
|  | struct perf_pmu_events_attr *pmu_attr = \ | 
|  | container_of(attr, struct perf_pmu_events_attr, attr); | 
|  | u64 config = x86_pmu.event_map(pmu_attr->id); | 
|  |  | 
|  | /* string trumps id */ | 
|  | if (pmu_attr->event_str) | 
|  | return sprintf(page, "%s", pmu_attr->event_str); | 
|  |  | 
|  | return x86_pmu.events_sysfs_show(page, config); | 
|  | } | 
|  |  | 
|  | EVENT_ATTR(cpu-cycles,			CPU_CYCLES		); | 
|  | EVENT_ATTR(instructions,		INSTRUCTIONS		); | 
|  | EVENT_ATTR(cache-references,		CACHE_REFERENCES	); | 
|  | EVENT_ATTR(cache-misses, 		CACHE_MISSES		); | 
|  | EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	); | 
|  | EVENT_ATTR(branch-misses,		BRANCH_MISSES		); | 
|  | EVENT_ATTR(bus-cycles,			BUS_CYCLES		); | 
|  | EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	); | 
|  | EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	); | 
|  | EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		); | 
|  |  | 
|  | static struct attribute *empty_attrs; | 
|  |  | 
|  | static struct attribute *events_attr[] = { | 
|  | EVENT_PTR(CPU_CYCLES), | 
|  | EVENT_PTR(INSTRUCTIONS), | 
|  | EVENT_PTR(CACHE_REFERENCES), | 
|  | EVENT_PTR(CACHE_MISSES), | 
|  | EVENT_PTR(BRANCH_INSTRUCTIONS), | 
|  | EVENT_PTR(BRANCH_MISSES), | 
|  | EVENT_PTR(BUS_CYCLES), | 
|  | EVENT_PTR(STALLED_CYCLES_FRONTEND), | 
|  | EVENT_PTR(STALLED_CYCLES_BACKEND), | 
|  | EVENT_PTR(REF_CPU_CYCLES), | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group x86_pmu_events_group = { | 
|  | .name = "events", | 
|  | .attrs = events_attr, | 
|  | }; | 
|  |  | 
|  | ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event) | 
|  | { | 
|  | u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8; | 
|  | u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24; | 
|  | bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE); | 
|  | bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL); | 
|  | bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY); | 
|  | bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV); | 
|  | ssize_t ret; | 
|  |  | 
|  | /* | 
|  | * We have whole page size to spend and just little data | 
|  | * to write, so we can safely use sprintf. | 
|  | */ | 
|  | ret = sprintf(page, "event=0x%02llx", event); | 
|  |  | 
|  | if (umask) | 
|  | ret += sprintf(page + ret, ",umask=0x%02llx", umask); | 
|  |  | 
|  | if (edge) | 
|  | ret += sprintf(page + ret, ",edge"); | 
|  |  | 
|  | if (pc) | 
|  | ret += sprintf(page + ret, ",pc"); | 
|  |  | 
|  | if (any) | 
|  | ret += sprintf(page + ret, ",any"); | 
|  |  | 
|  | if (inv) | 
|  | ret += sprintf(page + ret, ",inv"); | 
|  |  | 
|  | if (cmask) | 
|  | ret += sprintf(page + ret, ",cmask=0x%02llx", cmask); | 
|  |  | 
|  | ret += sprintf(page + ret, "\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __init init_hw_perf_events(void) | 
|  | { | 
|  | struct x86_pmu_quirk *quirk; | 
|  | int err; | 
|  |  | 
|  | pr_info("Performance Events: "); | 
|  |  | 
|  | switch (boot_cpu_data.x86_vendor) { | 
|  | case X86_VENDOR_INTEL: | 
|  | err = intel_pmu_init(); | 
|  | break; | 
|  | case X86_VENDOR_AMD: | 
|  | err = amd_pmu_init(); | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | if (err != 0) { | 
|  | pr_cont("no PMU driver, software events only.\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pmu_check_apic(); | 
|  |  | 
|  | /* sanity check that the hardware exists or is emulated */ | 
|  | if (!check_hw_exists()) | 
|  | return 0; | 
|  |  | 
|  | pr_cont("%s PMU driver.\n", x86_pmu.name); | 
|  |  | 
|  | for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next) | 
|  | quirk->func(); | 
|  |  | 
|  | if (!x86_pmu.intel_ctrl) | 
|  | x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1; | 
|  |  | 
|  | perf_events_lapic_init(); | 
|  | register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI"); | 
|  |  | 
|  | unconstrained = (struct event_constraint) | 
|  | __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1, | 
|  | 0, x86_pmu.num_counters, 0, 0); | 
|  |  | 
|  | x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */ | 
|  | x86_pmu_format_group.attrs = x86_pmu.format_attrs; | 
|  |  | 
|  | if (x86_pmu.event_attrs) | 
|  | x86_pmu_events_group.attrs = x86_pmu.event_attrs; | 
|  |  | 
|  | if (!x86_pmu.events_sysfs_show) | 
|  | x86_pmu_events_group.attrs = &empty_attrs; | 
|  | else | 
|  | filter_events(x86_pmu_events_group.attrs); | 
|  |  | 
|  | if (x86_pmu.cpu_events) { | 
|  | struct attribute **tmp; | 
|  |  | 
|  | tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events); | 
|  | if (!WARN_ON(!tmp)) | 
|  | x86_pmu_events_group.attrs = tmp; | 
|  | } | 
|  |  | 
|  | pr_info("... version:                %d\n",     x86_pmu.version); | 
|  | pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits); | 
|  | pr_info("... generic registers:      %d\n",     x86_pmu.num_counters); | 
|  | pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask); | 
|  | pr_info("... max period:             %016Lx\n", x86_pmu.max_period); | 
|  | pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed); | 
|  | pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl); | 
|  |  | 
|  | perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); | 
|  | perf_cpu_notifier(x86_pmu_notifier); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_initcall(init_hw_perf_events); | 
|  |  | 
|  | static inline void x86_pmu_read(struct perf_event *event) | 
|  | { | 
|  | x86_perf_event_update(event); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start group events scheduling transaction | 
|  | * Set the flag to make pmu::enable() not perform the | 
|  | * schedulability test, it will be performed at commit time | 
|  | */ | 
|  | static void x86_pmu_start_txn(struct pmu *pmu) | 
|  | { | 
|  | perf_pmu_disable(pmu); | 
|  | __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN); | 
|  | __this_cpu_write(cpu_hw_events.n_txn, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop group events scheduling transaction | 
|  | * Clear the flag and pmu::enable() will perform the | 
|  | * schedulability test. | 
|  | */ | 
|  | static void x86_pmu_cancel_txn(struct pmu *pmu) | 
|  | { | 
|  | __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN); | 
|  | /* | 
|  | * Truncate the collected events. | 
|  | */ | 
|  | __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn)); | 
|  | __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn)); | 
|  | perf_pmu_enable(pmu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Commit group events scheduling transaction | 
|  | * Perform the group schedulability test as a whole | 
|  | * Return 0 if success | 
|  | */ | 
|  | static int x86_pmu_commit_txn(struct pmu *pmu) | 
|  | { | 
|  | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); | 
|  | int assign[X86_PMC_IDX_MAX]; | 
|  | int n, ret; | 
|  |  | 
|  | n = cpuc->n_events; | 
|  |  | 
|  | if (!x86_pmu_initialized()) | 
|  | return -EAGAIN; | 
|  |  | 
|  | ret = x86_pmu.schedule_events(cpuc, n, assign); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * copy new assignment, now we know it is possible | 
|  | * will be used by hw_perf_enable() | 
|  | */ | 
|  | memcpy(cpuc->assign, assign, n*sizeof(int)); | 
|  |  | 
|  | cpuc->group_flag &= ~PERF_EVENT_TXN; | 
|  | perf_pmu_enable(pmu); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * a fake_cpuc is used to validate event groups. Due to | 
|  | * the extra reg logic, we need to also allocate a fake | 
|  | * per_core and per_cpu structure. Otherwise, group events | 
|  | * using extra reg may conflict without the kernel being | 
|  | * able to catch this when the last event gets added to | 
|  | * the group. | 
|  | */ | 
|  | static void free_fake_cpuc(struct cpu_hw_events *cpuc) | 
|  | { | 
|  | kfree(cpuc->shared_regs); | 
|  | kfree(cpuc); | 
|  | } | 
|  |  | 
|  | static struct cpu_hw_events *allocate_fake_cpuc(void) | 
|  | { | 
|  | struct cpu_hw_events *cpuc; | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL); | 
|  | if (!cpuc) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | /* only needed, if we have extra_regs */ | 
|  | if (x86_pmu.extra_regs) { | 
|  | cpuc->shared_regs = allocate_shared_regs(cpu); | 
|  | if (!cpuc->shared_regs) | 
|  | goto error; | 
|  | } | 
|  | cpuc->is_fake = 1; | 
|  | return cpuc; | 
|  | error: | 
|  | free_fake_cpuc(cpuc); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate that we can schedule this event | 
|  | */ | 
|  | static int validate_event(struct perf_event *event) | 
|  | { | 
|  | struct cpu_hw_events *fake_cpuc; | 
|  | struct event_constraint *c; | 
|  | int ret = 0; | 
|  |  | 
|  | fake_cpuc = allocate_fake_cpuc(); | 
|  | if (IS_ERR(fake_cpuc)) | 
|  | return PTR_ERR(fake_cpuc); | 
|  |  | 
|  | c = x86_pmu.get_event_constraints(fake_cpuc, event); | 
|  |  | 
|  | if (!c || !c->weight) | 
|  | ret = -EINVAL; | 
|  |  | 
|  | if (x86_pmu.put_event_constraints) | 
|  | x86_pmu.put_event_constraints(fake_cpuc, event); | 
|  |  | 
|  | free_fake_cpuc(fake_cpuc); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * validate a single event group | 
|  | * | 
|  | * validation include: | 
|  | *	- check events are compatible which each other | 
|  | *	- events do not compete for the same counter | 
|  | *	- number of events <= number of counters | 
|  | * | 
|  | * validation ensures the group can be loaded onto the | 
|  | * PMU if it was the only group available. | 
|  | */ | 
|  | static int validate_group(struct perf_event *event) | 
|  | { | 
|  | struct perf_event *leader = event->group_leader; | 
|  | struct cpu_hw_events *fake_cpuc; | 
|  | int ret = -EINVAL, n; | 
|  |  | 
|  | fake_cpuc = allocate_fake_cpuc(); | 
|  | if (IS_ERR(fake_cpuc)) | 
|  | return PTR_ERR(fake_cpuc); | 
|  | /* | 
|  | * the event is not yet connected with its | 
|  | * siblings therefore we must first collect | 
|  | * existing siblings, then add the new event | 
|  | * before we can simulate the scheduling | 
|  | */ | 
|  | n = collect_events(fake_cpuc, leader, true); | 
|  | if (n < 0) | 
|  | goto out; | 
|  |  | 
|  | fake_cpuc->n_events = n; | 
|  | n = collect_events(fake_cpuc, event, false); | 
|  | if (n < 0) | 
|  | goto out; | 
|  |  | 
|  | fake_cpuc->n_events = n; | 
|  |  | 
|  | ret = x86_pmu.schedule_events(fake_cpuc, n, NULL); | 
|  |  | 
|  | out: | 
|  | free_fake_cpuc(fake_cpuc); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int x86_pmu_event_init(struct perf_event *event) | 
|  | { | 
|  | struct pmu *tmp; | 
|  | int err; | 
|  |  | 
|  | switch (event->attr.type) { | 
|  | case PERF_TYPE_RAW: | 
|  | case PERF_TYPE_HARDWARE: | 
|  | case PERF_TYPE_HW_CACHE: | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | err = __x86_pmu_event_init(event); | 
|  | if (!err) { | 
|  | /* | 
|  | * we temporarily connect event to its pmu | 
|  | * such that validate_group() can classify | 
|  | * it as an x86 event using is_x86_event() | 
|  | */ | 
|  | tmp = event->pmu; | 
|  | event->pmu = &pmu; | 
|  |  | 
|  | if (event->group_leader != event) | 
|  | err = validate_group(event); | 
|  | else | 
|  | err = validate_event(event); | 
|  |  | 
|  | event->pmu = tmp; | 
|  | } | 
|  | if (err) { | 
|  | if (event->destroy) | 
|  | event->destroy(event); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int x86_pmu_event_idx(struct perf_event *event) | 
|  | { | 
|  | int idx = event->hw.idx; | 
|  |  | 
|  | if (!x86_pmu.attr_rdpmc) | 
|  | return 0; | 
|  |  | 
|  | if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) { | 
|  | idx -= INTEL_PMC_IDX_FIXED; | 
|  | idx |= 1 << 30; | 
|  | } | 
|  |  | 
|  | return idx + 1; | 
|  | } | 
|  |  | 
|  | static ssize_t get_attr_rdpmc(struct device *cdev, | 
|  | struct device_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc); | 
|  | } | 
|  |  | 
|  | static void change_rdpmc(void *info) | 
|  | { | 
|  | bool enable = !!(unsigned long)info; | 
|  |  | 
|  | if (enable) | 
|  | set_in_cr4(X86_CR4_PCE); | 
|  | else | 
|  | clear_in_cr4(X86_CR4_PCE); | 
|  | } | 
|  |  | 
|  | static ssize_t set_attr_rdpmc(struct device *cdev, | 
|  | struct device_attribute *attr, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned long val; | 
|  | ssize_t ret; | 
|  |  | 
|  | ret = kstrtoul(buf, 0, &val); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!!val != !!x86_pmu.attr_rdpmc) { | 
|  | x86_pmu.attr_rdpmc = !!val; | 
|  | smp_call_function(change_rdpmc, (void *)val, 1); | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc); | 
|  |  | 
|  | static struct attribute *x86_pmu_attrs[] = { | 
|  | &dev_attr_rdpmc.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group x86_pmu_attr_group = { | 
|  | .attrs = x86_pmu_attrs, | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group *x86_pmu_attr_groups[] = { | 
|  | &x86_pmu_attr_group, | 
|  | &x86_pmu_format_group, | 
|  | &x86_pmu_events_group, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static void x86_pmu_flush_branch_stack(void) | 
|  | { | 
|  | if (x86_pmu.flush_branch_stack) | 
|  | x86_pmu.flush_branch_stack(); | 
|  | } | 
|  |  | 
|  | void perf_check_microcode(void) | 
|  | { | 
|  | if (x86_pmu.check_microcode) | 
|  | x86_pmu.check_microcode(); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_check_microcode); | 
|  |  | 
|  | static struct pmu pmu = { | 
|  | .pmu_enable		= x86_pmu_enable, | 
|  | .pmu_disable		= x86_pmu_disable, | 
|  |  | 
|  | .attr_groups		= x86_pmu_attr_groups, | 
|  |  | 
|  | .event_init		= x86_pmu_event_init, | 
|  |  | 
|  | .add			= x86_pmu_add, | 
|  | .del			= x86_pmu_del, | 
|  | .start			= x86_pmu_start, | 
|  | .stop			= x86_pmu_stop, | 
|  | .read			= x86_pmu_read, | 
|  |  | 
|  | .start_txn		= x86_pmu_start_txn, | 
|  | .cancel_txn		= x86_pmu_cancel_txn, | 
|  | .commit_txn		= x86_pmu_commit_txn, | 
|  |  | 
|  | .event_idx		= x86_pmu_event_idx, | 
|  | .flush_branch_stack	= x86_pmu_flush_branch_stack, | 
|  | }; | 
|  |  | 
|  | void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now) | 
|  | { | 
|  | userpg->cap_usr_time = 0; | 
|  | userpg->cap_usr_rdpmc = x86_pmu.attr_rdpmc; | 
|  | userpg->pmc_width = x86_pmu.cntval_bits; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
|  | return; | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC)) | 
|  | return; | 
|  |  | 
|  | userpg->cap_usr_time = 1; | 
|  | userpg->time_mult = this_cpu_read(cyc2ns); | 
|  | userpg->time_shift = CYC2NS_SCALE_FACTOR; | 
|  | userpg->time_offset = this_cpu_read(cyc2ns_offset) - now; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * callchain support | 
|  | */ | 
|  |  | 
|  | static int backtrace_stack(void *data, char *name) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void backtrace_address(void *data, unsigned long addr, int reliable) | 
|  | { | 
|  | struct perf_callchain_entry *entry = data; | 
|  |  | 
|  | perf_callchain_store(entry, addr); | 
|  | } | 
|  |  | 
|  | static const struct stacktrace_ops backtrace_ops = { | 
|  | .stack			= backtrace_stack, | 
|  | .address		= backtrace_address, | 
|  | .walk_stack		= print_context_stack_bp, | 
|  | }; | 
|  |  | 
|  | void | 
|  | perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs) | 
|  | { | 
|  | if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { | 
|  | /* TODO: We don't support guest os callchain now */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | perf_callchain_store(entry, regs->ip); | 
|  |  | 
|  | dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | valid_user_frame(const void __user *fp, unsigned long size) | 
|  | { | 
|  | return (__range_not_ok(fp, size, TASK_SIZE) == 0); | 
|  | } | 
|  |  | 
|  | static unsigned long get_segment_base(unsigned int segment) | 
|  | { | 
|  | struct desc_struct *desc; | 
|  | int idx = segment >> 3; | 
|  |  | 
|  | if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) { | 
|  | if (idx > LDT_ENTRIES) | 
|  | return 0; | 
|  |  | 
|  | if (idx > current->active_mm->context.size) | 
|  | return 0; | 
|  |  | 
|  | desc = current->active_mm->context.ldt; | 
|  | } else { | 
|  | if (idx > GDT_ENTRIES) | 
|  | return 0; | 
|  |  | 
|  | desc = __this_cpu_ptr(&gdt_page.gdt[0]); | 
|  | } | 
|  |  | 
|  | return get_desc_base(desc + idx); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  |  | 
|  | #include <asm/compat.h> | 
|  |  | 
|  | static inline int | 
|  | perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry) | 
|  | { | 
|  | /* 32-bit process in 64-bit kernel. */ | 
|  | unsigned long ss_base, cs_base; | 
|  | struct stack_frame_ia32 frame; | 
|  | const void __user *fp; | 
|  |  | 
|  | if (!test_thread_flag(TIF_IA32)) | 
|  | return 0; | 
|  |  | 
|  | cs_base = get_segment_base(regs->cs); | 
|  | ss_base = get_segment_base(regs->ss); | 
|  |  | 
|  | fp = compat_ptr(ss_base + regs->bp); | 
|  | while (entry->nr < PERF_MAX_STACK_DEPTH) { | 
|  | unsigned long bytes; | 
|  | frame.next_frame     = 0; | 
|  | frame.return_address = 0; | 
|  |  | 
|  | bytes = copy_from_user_nmi(&frame, fp, sizeof(frame)); | 
|  | if (bytes != sizeof(frame)) | 
|  | break; | 
|  |  | 
|  | if (!valid_user_frame(fp, sizeof(frame))) | 
|  | break; | 
|  |  | 
|  | perf_callchain_store(entry, cs_base + frame.return_address); | 
|  | fp = compat_ptr(ss_base + frame.next_frame); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | #else | 
|  | static inline int | 
|  | perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void | 
|  | perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs) | 
|  | { | 
|  | struct stack_frame frame; | 
|  | const void __user *fp; | 
|  |  | 
|  | if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { | 
|  | /* TODO: We don't support guest os callchain now */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't know what to do with VM86 stacks.. ignore them for now. | 
|  | */ | 
|  | if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM)) | 
|  | return; | 
|  |  | 
|  | fp = (void __user *)regs->bp; | 
|  |  | 
|  | perf_callchain_store(entry, regs->ip); | 
|  |  | 
|  | if (!current->mm) | 
|  | return; | 
|  |  | 
|  | if (perf_callchain_user32(regs, entry)) | 
|  | return; | 
|  |  | 
|  | while (entry->nr < PERF_MAX_STACK_DEPTH) { | 
|  | unsigned long bytes; | 
|  | frame.next_frame	     = NULL; | 
|  | frame.return_address = 0; | 
|  |  | 
|  | bytes = copy_from_user_nmi(&frame, fp, sizeof(frame)); | 
|  | if (bytes != sizeof(frame)) | 
|  | break; | 
|  |  | 
|  | if (!valid_user_frame(fp, sizeof(frame))) | 
|  | break; | 
|  |  | 
|  | perf_callchain_store(entry, frame.return_address); | 
|  | fp = frame.next_frame; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Deal with code segment offsets for the various execution modes: | 
|  | * | 
|  | *   VM86 - the good olde 16 bit days, where the linear address is | 
|  | *          20 bits and we use regs->ip + 0x10 * regs->cs. | 
|  | * | 
|  | *   IA32 - Where we need to look at GDT/LDT segment descriptor tables | 
|  | *          to figure out what the 32bit base address is. | 
|  | * | 
|  | *    X32 - has TIF_X32 set, but is running in x86_64 | 
|  | * | 
|  | * X86_64 - CS,DS,SS,ES are all zero based. | 
|  | */ | 
|  | static unsigned long code_segment_base(struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * If we are in VM86 mode, add the segment offset to convert to a | 
|  | * linear address. | 
|  | */ | 
|  | if (regs->flags & X86_VM_MASK) | 
|  | return 0x10 * regs->cs; | 
|  |  | 
|  | /* | 
|  | * For IA32 we look at the GDT/LDT segment base to convert the | 
|  | * effective IP to a linear address. | 
|  | */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | if (user_mode(regs) && regs->cs != __USER_CS) | 
|  | return get_segment_base(regs->cs); | 
|  | #else | 
|  | if (test_thread_flag(TIF_IA32)) { | 
|  | if (user_mode(regs) && regs->cs != __USER32_CS) | 
|  | return get_segment_base(regs->cs); | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long perf_instruction_pointer(struct pt_regs *regs) | 
|  | { | 
|  | if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) | 
|  | return perf_guest_cbs->get_guest_ip(); | 
|  |  | 
|  | return regs->ip + code_segment_base(regs); | 
|  | } | 
|  |  | 
|  | unsigned long perf_misc_flags(struct pt_regs *regs) | 
|  | { | 
|  | int misc = 0; | 
|  |  | 
|  | if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) { | 
|  | if (perf_guest_cbs->is_user_mode()) | 
|  | misc |= PERF_RECORD_MISC_GUEST_USER; | 
|  | else | 
|  | misc |= PERF_RECORD_MISC_GUEST_KERNEL; | 
|  | } else { | 
|  | if (user_mode(regs)) | 
|  | misc |= PERF_RECORD_MISC_USER; | 
|  | else | 
|  | misc |= PERF_RECORD_MISC_KERNEL; | 
|  | } | 
|  |  | 
|  | if (regs->flags & PERF_EFLAGS_EXACT) | 
|  | misc |= PERF_RECORD_MISC_EXACT_IP; | 
|  |  | 
|  | return misc; | 
|  | } | 
|  |  | 
|  | void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap) | 
|  | { | 
|  | cap->version		= x86_pmu.version; | 
|  | cap->num_counters_gp	= x86_pmu.num_counters; | 
|  | cap->num_counters_fixed	= x86_pmu.num_counters_fixed; | 
|  | cap->bit_width_gp	= x86_pmu.cntval_bits; | 
|  | cap->bit_width_fixed	= x86_pmu.cntval_bits; | 
|  | cap->events_mask	= (unsigned int)x86_pmu.events_maskl; | 
|  | cap->events_mask_len	= x86_pmu.events_mask_len; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability); |