|  | /**************************************************************************** | 
|  | * Driver for Solarflare network controllers and boards | 
|  | * Copyright 2008-2013 Solarflare Communications Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License version 2 as published | 
|  | * by the Free Software Foundation, incorporated herein by reference. | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <asm/cmpxchg.h> | 
|  | #include "net_driver.h" | 
|  | #include "nic.h" | 
|  | #include "io.h" | 
|  | #include "farch_regs.h" | 
|  | #include "mcdi_pcol.h" | 
|  | #include "phy.h" | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Management-Controller-to-Driver Interface | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | #define MCDI_RPC_TIMEOUT       (10 * HZ) | 
|  |  | 
|  | /* A reboot/assertion causes the MCDI status word to be set after the | 
|  | * command word is set or a REBOOT event is sent. If we notice a reboot | 
|  | * via these mechanisms then wait 250ms for the status word to be set. | 
|  | */ | 
|  | #define MCDI_STATUS_DELAY_US		100 | 
|  | #define MCDI_STATUS_DELAY_COUNT		2500 | 
|  | #define MCDI_STATUS_SLEEP_MS						\ | 
|  | (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000) | 
|  |  | 
|  | #define SEQ_MASK							\ | 
|  | EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ)) | 
|  |  | 
|  | struct efx_mcdi_async_param { | 
|  | struct list_head list; | 
|  | unsigned int cmd; | 
|  | size_t inlen; | 
|  | size_t outlen; | 
|  | bool quiet; | 
|  | efx_mcdi_async_completer *complete; | 
|  | unsigned long cookie; | 
|  | /* followed by request/response buffer */ | 
|  | }; | 
|  |  | 
|  | static void efx_mcdi_timeout_async(unsigned long context); | 
|  | static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, | 
|  | bool *was_attached_out); | 
|  | static bool efx_mcdi_poll_once(struct efx_nic *efx); | 
|  | static void efx_mcdi_abandon(struct efx_nic *efx); | 
|  |  | 
|  | int efx_mcdi_init(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi; | 
|  | bool already_attached; | 
|  | int rc; | 
|  |  | 
|  | efx->mcdi = kzalloc(sizeof(*efx->mcdi), GFP_KERNEL); | 
|  | if (!efx->mcdi) | 
|  | return -ENOMEM; | 
|  |  | 
|  | mcdi = efx_mcdi(efx); | 
|  | mcdi->efx = efx; | 
|  | init_waitqueue_head(&mcdi->wq); | 
|  | spin_lock_init(&mcdi->iface_lock); | 
|  | mcdi->state = MCDI_STATE_QUIESCENT; | 
|  | mcdi->mode = MCDI_MODE_POLL; | 
|  | spin_lock_init(&mcdi->async_lock); | 
|  | INIT_LIST_HEAD(&mcdi->async_list); | 
|  | setup_timer(&mcdi->async_timer, efx_mcdi_timeout_async, | 
|  | (unsigned long)mcdi); | 
|  |  | 
|  | (void) efx_mcdi_poll_reboot(efx); | 
|  | mcdi->new_epoch = true; | 
|  |  | 
|  | /* Recover from a failed assertion before probing */ | 
|  | rc = efx_mcdi_handle_assertion(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Let the MC (and BMC, if this is a LOM) know that the driver | 
|  | * is loaded. We should do this before we reset the NIC. | 
|  | */ | 
|  | rc = efx_mcdi_drv_attach(efx, true, &already_attached); | 
|  | if (rc) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "Unable to register driver with MCPU\n"); | 
|  | return rc; | 
|  | } | 
|  | if (already_attached) | 
|  | /* Not a fatal error */ | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "Host already registered with MCPU\n"); | 
|  |  | 
|  | if (efx->mcdi->fn_flags & | 
|  | (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) | 
|  | efx->primary = efx; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_mcdi_fini(struct efx_nic *efx) | 
|  | { | 
|  | if (!efx->mcdi) | 
|  | return; | 
|  |  | 
|  | BUG_ON(efx->mcdi->iface.state != MCDI_STATE_QUIESCENT); | 
|  |  | 
|  | /* Relinquish the device (back to the BMC, if this is a LOM) */ | 
|  | efx_mcdi_drv_attach(efx, false, NULL); | 
|  |  | 
|  | kfree(efx->mcdi); | 
|  | } | 
|  |  | 
|  | static void efx_mcdi_send_request(struct efx_nic *efx, unsigned cmd, | 
|  | const efx_dword_t *inbuf, size_t inlen) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  | efx_dword_t hdr[2]; | 
|  | size_t hdr_len; | 
|  | u32 xflags, seqno; | 
|  |  | 
|  | BUG_ON(mcdi->state == MCDI_STATE_QUIESCENT); | 
|  |  | 
|  | /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */ | 
|  | spin_lock_bh(&mcdi->iface_lock); | 
|  | ++mcdi->seqno; | 
|  | spin_unlock_bh(&mcdi->iface_lock); | 
|  |  | 
|  | seqno = mcdi->seqno & SEQ_MASK; | 
|  | xflags = 0; | 
|  | if (mcdi->mode == MCDI_MODE_EVENTS) | 
|  | xflags |= MCDI_HEADER_XFLAGS_EVREQ; | 
|  |  | 
|  | if (efx->type->mcdi_max_ver == 1) { | 
|  | /* MCDI v1 */ | 
|  | EFX_POPULATE_DWORD_7(hdr[0], | 
|  | MCDI_HEADER_RESPONSE, 0, | 
|  | MCDI_HEADER_RESYNC, 1, | 
|  | MCDI_HEADER_CODE, cmd, | 
|  | MCDI_HEADER_DATALEN, inlen, | 
|  | MCDI_HEADER_SEQ, seqno, | 
|  | MCDI_HEADER_XFLAGS, xflags, | 
|  | MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); | 
|  | hdr_len = 4; | 
|  | } else { | 
|  | /* MCDI v2 */ | 
|  | BUG_ON(inlen > MCDI_CTL_SDU_LEN_MAX_V2); | 
|  | EFX_POPULATE_DWORD_7(hdr[0], | 
|  | MCDI_HEADER_RESPONSE, 0, | 
|  | MCDI_HEADER_RESYNC, 1, | 
|  | MCDI_HEADER_CODE, MC_CMD_V2_EXTN, | 
|  | MCDI_HEADER_DATALEN, 0, | 
|  | MCDI_HEADER_SEQ, seqno, | 
|  | MCDI_HEADER_XFLAGS, xflags, | 
|  | MCDI_HEADER_NOT_EPOCH, !mcdi->new_epoch); | 
|  | EFX_POPULATE_DWORD_2(hdr[1], | 
|  | MC_CMD_V2_EXTN_IN_EXTENDED_CMD, cmd, | 
|  | MC_CMD_V2_EXTN_IN_ACTUAL_LEN, inlen); | 
|  | hdr_len = 8; | 
|  | } | 
|  |  | 
|  | efx->type->mcdi_request(efx, hdr, hdr_len, inbuf, inlen); | 
|  |  | 
|  | mcdi->new_epoch = false; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_errno(unsigned int mcdi_err) | 
|  | { | 
|  | switch (mcdi_err) { | 
|  | case 0: | 
|  | return 0; | 
|  | #define TRANSLATE_ERROR(name)					\ | 
|  | case MC_CMD_ERR_ ## name:				\ | 
|  | return -name; | 
|  | TRANSLATE_ERROR(EPERM); | 
|  | TRANSLATE_ERROR(ENOENT); | 
|  | TRANSLATE_ERROR(EINTR); | 
|  | TRANSLATE_ERROR(EAGAIN); | 
|  | TRANSLATE_ERROR(EACCES); | 
|  | TRANSLATE_ERROR(EBUSY); | 
|  | TRANSLATE_ERROR(EINVAL); | 
|  | TRANSLATE_ERROR(EDEADLK); | 
|  | TRANSLATE_ERROR(ENOSYS); | 
|  | TRANSLATE_ERROR(ETIME); | 
|  | TRANSLATE_ERROR(EALREADY); | 
|  | TRANSLATE_ERROR(ENOSPC); | 
|  | #undef TRANSLATE_ERROR | 
|  | case MC_CMD_ERR_ENOTSUP: | 
|  | return -EOPNOTSUPP; | 
|  | case MC_CMD_ERR_ALLOC_FAIL: | 
|  | return -ENOBUFS; | 
|  | case MC_CMD_ERR_MAC_EXIST: | 
|  | return -EADDRINUSE; | 
|  | default: | 
|  | return -EPROTO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_mcdi_read_response_header(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  | unsigned int respseq, respcmd, error; | 
|  | efx_dword_t hdr; | 
|  |  | 
|  | efx->type->mcdi_read_response(efx, &hdr, 0, 4); | 
|  | respseq = EFX_DWORD_FIELD(hdr, MCDI_HEADER_SEQ); | 
|  | respcmd = EFX_DWORD_FIELD(hdr, MCDI_HEADER_CODE); | 
|  | error = EFX_DWORD_FIELD(hdr, MCDI_HEADER_ERROR); | 
|  |  | 
|  | if (respcmd != MC_CMD_V2_EXTN) { | 
|  | mcdi->resp_hdr_len = 4; | 
|  | mcdi->resp_data_len = EFX_DWORD_FIELD(hdr, MCDI_HEADER_DATALEN); | 
|  | } else { | 
|  | efx->type->mcdi_read_response(efx, &hdr, 4, 4); | 
|  | mcdi->resp_hdr_len = 8; | 
|  | mcdi->resp_data_len = | 
|  | EFX_DWORD_FIELD(hdr, MC_CMD_V2_EXTN_IN_ACTUAL_LEN); | 
|  | } | 
|  |  | 
|  | if (error && mcdi->resp_data_len == 0) { | 
|  | netif_err(efx, hw, efx->net_dev, "MC rebooted\n"); | 
|  | mcdi->resprc = -EIO; | 
|  | } else if ((respseq ^ mcdi->seqno) & SEQ_MASK) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "MC response mismatch tx seq 0x%x rx seq 0x%x\n", | 
|  | respseq, mcdi->seqno); | 
|  | mcdi->resprc = -EIO; | 
|  | } else if (error) { | 
|  | efx->type->mcdi_read_response(efx, &hdr, mcdi->resp_hdr_len, 4); | 
|  | mcdi->resprc = | 
|  | efx_mcdi_errno(EFX_DWORD_FIELD(hdr, EFX_DWORD_0)); | 
|  | } else { | 
|  | mcdi->resprc = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool efx_mcdi_poll_once(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  |  | 
|  | rmb(); | 
|  | if (!efx->type->mcdi_poll_response(efx)) | 
|  | return false; | 
|  |  | 
|  | spin_lock_bh(&mcdi->iface_lock); | 
|  | efx_mcdi_read_response_header(efx); | 
|  | spin_unlock_bh(&mcdi->iface_lock); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_poll(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  | unsigned long time, finish; | 
|  | unsigned int spins; | 
|  | int rc; | 
|  |  | 
|  | /* Check for a reboot atomically with respect to efx_mcdi_copyout() */ | 
|  | rc = efx_mcdi_poll_reboot(efx); | 
|  | if (rc) { | 
|  | spin_lock_bh(&mcdi->iface_lock); | 
|  | mcdi->resprc = rc; | 
|  | mcdi->resp_hdr_len = 0; | 
|  | mcdi->resp_data_len = 0; | 
|  | spin_unlock_bh(&mcdi->iface_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Poll for completion. Poll quickly (once a us) for the 1st jiffy, | 
|  | * because generally mcdi responses are fast. After that, back off | 
|  | * and poll once a jiffy (approximately) | 
|  | */ | 
|  | spins = TICK_USEC; | 
|  | finish = jiffies + MCDI_RPC_TIMEOUT; | 
|  |  | 
|  | while (1) { | 
|  | if (spins != 0) { | 
|  | --spins; | 
|  | udelay(1); | 
|  | } else { | 
|  | schedule_timeout_uninterruptible(1); | 
|  | } | 
|  |  | 
|  | time = jiffies; | 
|  |  | 
|  | if (efx_mcdi_poll_once(efx)) | 
|  | break; | 
|  |  | 
|  | if (time_after(time, finish)) | 
|  | return -ETIMEDOUT; | 
|  | } | 
|  |  | 
|  | /* Return rc=0 like wait_event_timeout() */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Test and clear MC-rebooted flag for this port/function; reset | 
|  | * software state as necessary. | 
|  | */ | 
|  | int efx_mcdi_poll_reboot(struct efx_nic *efx) | 
|  | { | 
|  | if (!efx->mcdi) | 
|  | return 0; | 
|  |  | 
|  | return efx->type->mcdi_poll_reboot(efx); | 
|  | } | 
|  |  | 
|  | static bool efx_mcdi_acquire_async(struct efx_mcdi_iface *mcdi) | 
|  | { | 
|  | return cmpxchg(&mcdi->state, | 
|  | MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_ASYNC) == | 
|  | MCDI_STATE_QUIESCENT; | 
|  | } | 
|  |  | 
|  | static void efx_mcdi_acquire_sync(struct efx_mcdi_iface *mcdi) | 
|  | { | 
|  | /* Wait until the interface becomes QUIESCENT and we win the race | 
|  | * to mark it RUNNING_SYNC. | 
|  | */ | 
|  | wait_event(mcdi->wq, | 
|  | cmpxchg(&mcdi->state, | 
|  | MCDI_STATE_QUIESCENT, MCDI_STATE_RUNNING_SYNC) == | 
|  | MCDI_STATE_QUIESCENT); | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_await_completion(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  |  | 
|  | if (wait_event_timeout(mcdi->wq, mcdi->state == MCDI_STATE_COMPLETED, | 
|  | MCDI_RPC_TIMEOUT) == 0) | 
|  | return -ETIMEDOUT; | 
|  |  | 
|  | /* Check if efx_mcdi_set_mode() switched us back to polled completions. | 
|  | * In which case, poll for completions directly. If efx_mcdi_ev_cpl() | 
|  | * completed the request first, then we'll just end up completing the | 
|  | * request again, which is safe. | 
|  | * | 
|  | * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which | 
|  | * wait_event_timeout() implicitly provides. | 
|  | */ | 
|  | if (mcdi->mode == MCDI_MODE_POLL) | 
|  | return efx_mcdi_poll(efx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the | 
|  | * requester.  Return whether this was done.  Does not take any locks. | 
|  | */ | 
|  | static bool efx_mcdi_complete_sync(struct efx_mcdi_iface *mcdi) | 
|  | { | 
|  | if (cmpxchg(&mcdi->state, | 
|  | MCDI_STATE_RUNNING_SYNC, MCDI_STATE_COMPLETED) == | 
|  | MCDI_STATE_RUNNING_SYNC) { | 
|  | wake_up(&mcdi->wq); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void efx_mcdi_release(struct efx_mcdi_iface *mcdi) | 
|  | { | 
|  | if (mcdi->mode == MCDI_MODE_EVENTS) { | 
|  | struct efx_mcdi_async_param *async; | 
|  | struct efx_nic *efx = mcdi->efx; | 
|  |  | 
|  | /* Process the asynchronous request queue */ | 
|  | spin_lock_bh(&mcdi->async_lock); | 
|  | async = list_first_entry_or_null( | 
|  | &mcdi->async_list, struct efx_mcdi_async_param, list); | 
|  | if (async) { | 
|  | mcdi->state = MCDI_STATE_RUNNING_ASYNC; | 
|  | efx_mcdi_send_request(efx, async->cmd, | 
|  | (const efx_dword_t *)(async + 1), | 
|  | async->inlen); | 
|  | mod_timer(&mcdi->async_timer, | 
|  | jiffies + MCDI_RPC_TIMEOUT); | 
|  | } | 
|  | spin_unlock_bh(&mcdi->async_lock); | 
|  |  | 
|  | if (async) | 
|  | return; | 
|  | } | 
|  |  | 
|  | mcdi->state = MCDI_STATE_QUIESCENT; | 
|  | wake_up(&mcdi->wq); | 
|  | } | 
|  |  | 
|  | /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the | 
|  | * asynchronous completion function, and release the interface. | 
|  | * Return whether this was done.  Must be called in bh-disabled | 
|  | * context.  Will take iface_lock and async_lock. | 
|  | */ | 
|  | static bool efx_mcdi_complete_async(struct efx_mcdi_iface *mcdi, bool timeout) | 
|  | { | 
|  | struct efx_nic *efx = mcdi->efx; | 
|  | struct efx_mcdi_async_param *async; | 
|  | size_t hdr_len, data_len, err_len; | 
|  | efx_dword_t *outbuf; | 
|  | MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0); | 
|  | int rc; | 
|  |  | 
|  | if (cmpxchg(&mcdi->state, | 
|  | MCDI_STATE_RUNNING_ASYNC, MCDI_STATE_COMPLETED) != | 
|  | MCDI_STATE_RUNNING_ASYNC) | 
|  | return false; | 
|  |  | 
|  | spin_lock(&mcdi->iface_lock); | 
|  | if (timeout) { | 
|  | /* Ensure that if the completion event arrives later, | 
|  | * the seqno check in efx_mcdi_ev_cpl() will fail | 
|  | */ | 
|  | ++mcdi->seqno; | 
|  | ++mcdi->credits; | 
|  | rc = -ETIMEDOUT; | 
|  | hdr_len = 0; | 
|  | data_len = 0; | 
|  | } else { | 
|  | rc = mcdi->resprc; | 
|  | hdr_len = mcdi->resp_hdr_len; | 
|  | data_len = mcdi->resp_data_len; | 
|  | } | 
|  | spin_unlock(&mcdi->iface_lock); | 
|  |  | 
|  | /* Stop the timer.  In case the timer function is running, we | 
|  | * must wait for it to return so that there is no possibility | 
|  | * of it aborting the next request. | 
|  | */ | 
|  | if (!timeout) | 
|  | del_timer_sync(&mcdi->async_timer); | 
|  |  | 
|  | spin_lock(&mcdi->async_lock); | 
|  | async = list_first_entry(&mcdi->async_list, | 
|  | struct efx_mcdi_async_param, list); | 
|  | list_del(&async->list); | 
|  | spin_unlock(&mcdi->async_lock); | 
|  |  | 
|  | outbuf = (efx_dword_t *)(async + 1); | 
|  | efx->type->mcdi_read_response(efx, outbuf, hdr_len, | 
|  | min(async->outlen, data_len)); | 
|  | if (!timeout && rc && !async->quiet) { | 
|  | err_len = min(sizeof(errbuf), data_len); | 
|  | efx->type->mcdi_read_response(efx, errbuf, hdr_len, | 
|  | sizeof(errbuf)); | 
|  | efx_mcdi_display_error(efx, async->cmd, async->inlen, errbuf, | 
|  | err_len, rc); | 
|  | } | 
|  | async->complete(efx, async->cookie, rc, outbuf, data_len); | 
|  | kfree(async); | 
|  |  | 
|  | efx_mcdi_release(mcdi); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno, | 
|  | unsigned int datalen, unsigned int mcdi_err) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  | bool wake = false; | 
|  |  | 
|  | spin_lock(&mcdi->iface_lock); | 
|  |  | 
|  | if ((seqno ^ mcdi->seqno) & SEQ_MASK) { | 
|  | if (mcdi->credits) | 
|  | /* The request has been cancelled */ | 
|  | --mcdi->credits; | 
|  | else | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "MC response mismatch tx seq 0x%x rx " | 
|  | "seq 0x%x\n", seqno, mcdi->seqno); | 
|  | } else { | 
|  | if (efx->type->mcdi_max_ver >= 2) { | 
|  | /* MCDI v2 responses don't fit in an event */ | 
|  | efx_mcdi_read_response_header(efx); | 
|  | } else { | 
|  | mcdi->resprc = efx_mcdi_errno(mcdi_err); | 
|  | mcdi->resp_hdr_len = 4; | 
|  | mcdi->resp_data_len = datalen; | 
|  | } | 
|  |  | 
|  | wake = true; | 
|  | } | 
|  |  | 
|  | spin_unlock(&mcdi->iface_lock); | 
|  |  | 
|  | if (wake) { | 
|  | if (!efx_mcdi_complete_async(mcdi, false)) | 
|  | (void) efx_mcdi_complete_sync(mcdi); | 
|  |  | 
|  | /* If the interface isn't RUNNING_ASYNC or | 
|  | * RUNNING_SYNC then we've received a duplicate | 
|  | * completion after we've already transitioned back to | 
|  | * QUIESCENT. [A subsequent invocation would increment | 
|  | * seqno, so would have failed the seqno check]. | 
|  | */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void efx_mcdi_timeout_async(unsigned long context) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = (struct efx_mcdi_iface *)context; | 
|  |  | 
|  | efx_mcdi_complete_async(mcdi, true); | 
|  | } | 
|  |  | 
|  | static int | 
|  | efx_mcdi_check_supported(struct efx_nic *efx, unsigned int cmd, size_t inlen) | 
|  | { | 
|  | if (efx->type->mcdi_max_ver < 0 || | 
|  | (efx->type->mcdi_max_ver < 2 && | 
|  | cmd > MC_CMD_CMD_SPACE_ESCAPE_7)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (inlen > MCDI_CTL_SDU_LEN_MAX_V2 || | 
|  | (efx->type->mcdi_max_ver < 2 && | 
|  | inlen > MCDI_CTL_SDU_LEN_MAX_V1)) | 
|  | return -EMSGSIZE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int _efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, | 
|  | efx_dword_t *outbuf, size_t outlen, | 
|  | size_t *outlen_actual, bool quiet) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  | MCDI_DECLARE_BUF_OUT_OR_ERR(errbuf, 0); | 
|  | int rc; | 
|  |  | 
|  | if (mcdi->mode == MCDI_MODE_POLL) | 
|  | rc = efx_mcdi_poll(efx); | 
|  | else | 
|  | rc = efx_mcdi_await_completion(efx); | 
|  |  | 
|  | if (rc != 0) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "MC command 0x%x inlen %d mode %d timed out\n", | 
|  | cmd, (int)inlen, mcdi->mode); | 
|  |  | 
|  | if (mcdi->mode == MCDI_MODE_EVENTS && efx_mcdi_poll_once(efx)) { | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "MCDI request was completed without an event\n"); | 
|  | rc = 0; | 
|  | } | 
|  |  | 
|  | efx_mcdi_abandon(efx); | 
|  |  | 
|  | /* Close the race with efx_mcdi_ev_cpl() executing just too late | 
|  | * and completing a request we've just cancelled, by ensuring | 
|  | * that the seqno check therein fails. | 
|  | */ | 
|  | spin_lock_bh(&mcdi->iface_lock); | 
|  | ++mcdi->seqno; | 
|  | ++mcdi->credits; | 
|  | spin_unlock_bh(&mcdi->iface_lock); | 
|  | } | 
|  |  | 
|  | if (rc != 0) { | 
|  | if (outlen_actual) | 
|  | *outlen_actual = 0; | 
|  | } else { | 
|  | size_t hdr_len, data_len, err_len; | 
|  |  | 
|  | /* At the very least we need a memory barrier here to ensure | 
|  | * we pick up changes from efx_mcdi_ev_cpl(). Protect against | 
|  | * a spurious efx_mcdi_ev_cpl() running concurrently by | 
|  | * acquiring the iface_lock. */ | 
|  | spin_lock_bh(&mcdi->iface_lock); | 
|  | rc = mcdi->resprc; | 
|  | hdr_len = mcdi->resp_hdr_len; | 
|  | data_len = mcdi->resp_data_len; | 
|  | err_len = min(sizeof(errbuf), data_len); | 
|  | spin_unlock_bh(&mcdi->iface_lock); | 
|  |  | 
|  | BUG_ON(rc > 0); | 
|  |  | 
|  | efx->type->mcdi_read_response(efx, outbuf, hdr_len, | 
|  | min(outlen, data_len)); | 
|  | if (outlen_actual) | 
|  | *outlen_actual = data_len; | 
|  |  | 
|  | efx->type->mcdi_read_response(efx, errbuf, hdr_len, err_len); | 
|  |  | 
|  | if (cmd == MC_CMD_REBOOT && rc == -EIO) { | 
|  | /* Don't reset if MC_CMD_REBOOT returns EIO */ | 
|  | } else if (rc == -EIO || rc == -EINTR) { | 
|  | netif_err(efx, hw, efx->net_dev, "MC fatal error %d\n", | 
|  | -rc); | 
|  | efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); | 
|  | } else if (rc && !quiet) { | 
|  | efx_mcdi_display_error(efx, cmd, inlen, errbuf, err_len, | 
|  | rc); | 
|  | } | 
|  |  | 
|  | if (rc == -EIO || rc == -EINTR) { | 
|  | msleep(MCDI_STATUS_SLEEP_MS); | 
|  | efx_mcdi_poll_reboot(efx); | 
|  | mcdi->new_epoch = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | efx_mcdi_release(mcdi); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int _efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, | 
|  | const efx_dword_t *inbuf, size_t inlen, | 
|  | efx_dword_t *outbuf, size_t outlen, | 
|  | size_t *outlen_actual, bool quiet) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = efx_mcdi_rpc_start(efx, cmd, inbuf, inlen); | 
|  | if (rc) { | 
|  | if (outlen_actual) | 
|  | *outlen_actual = 0; | 
|  | return rc; | 
|  | } | 
|  | return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, | 
|  | outlen_actual, quiet); | 
|  | } | 
|  |  | 
|  | int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, | 
|  | const efx_dword_t *inbuf, size_t inlen, | 
|  | efx_dword_t *outbuf, size_t outlen, | 
|  | size_t *outlen_actual) | 
|  | { | 
|  | return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, | 
|  | outlen_actual, false); | 
|  | } | 
|  |  | 
|  | /* Normally, on receiving an error code in the MCDI response, | 
|  | * efx_mcdi_rpc will log an error message containing (among other | 
|  | * things) the raw error code, by means of efx_mcdi_display_error. | 
|  | * This _quiet version suppresses that; if the caller wishes to log | 
|  | * the error conditionally on the return code, it should call this | 
|  | * function and is then responsible for calling efx_mcdi_display_error | 
|  | * as needed. | 
|  | */ | 
|  | int efx_mcdi_rpc_quiet(struct efx_nic *efx, unsigned cmd, | 
|  | const efx_dword_t *inbuf, size_t inlen, | 
|  | efx_dword_t *outbuf, size_t outlen, | 
|  | size_t *outlen_actual) | 
|  | { | 
|  | return _efx_mcdi_rpc(efx, cmd, inbuf, inlen, outbuf, outlen, | 
|  | outlen_actual, true); | 
|  | } | 
|  |  | 
|  | int efx_mcdi_rpc_start(struct efx_nic *efx, unsigned cmd, | 
|  | const efx_dword_t *inbuf, size_t inlen) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  | int rc; | 
|  |  | 
|  | rc = efx_mcdi_check_supported(efx, cmd, inlen); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (efx->mc_bist_for_other_fn) | 
|  | return -ENETDOWN; | 
|  |  | 
|  | if (mcdi->mode == MCDI_MODE_FAIL) | 
|  | return -ENETDOWN; | 
|  |  | 
|  | efx_mcdi_acquire_sync(mcdi); | 
|  | efx_mcdi_send_request(efx, cmd, inbuf, inlen); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int _efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, | 
|  | const efx_dword_t *inbuf, size_t inlen, | 
|  | size_t outlen, | 
|  | efx_mcdi_async_completer *complete, | 
|  | unsigned long cookie, bool quiet) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  | struct efx_mcdi_async_param *async; | 
|  | int rc; | 
|  |  | 
|  | rc = efx_mcdi_check_supported(efx, cmd, inlen); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (efx->mc_bist_for_other_fn) | 
|  | return -ENETDOWN; | 
|  |  | 
|  | async = kmalloc(sizeof(*async) + ALIGN(max(inlen, outlen), 4), | 
|  | GFP_ATOMIC); | 
|  | if (!async) | 
|  | return -ENOMEM; | 
|  |  | 
|  | async->cmd = cmd; | 
|  | async->inlen = inlen; | 
|  | async->outlen = outlen; | 
|  | async->quiet = quiet; | 
|  | async->complete = complete; | 
|  | async->cookie = cookie; | 
|  | memcpy(async + 1, inbuf, inlen); | 
|  |  | 
|  | spin_lock_bh(&mcdi->async_lock); | 
|  |  | 
|  | if (mcdi->mode == MCDI_MODE_EVENTS) { | 
|  | list_add_tail(&async->list, &mcdi->async_list); | 
|  |  | 
|  | /* If this is at the front of the queue, try to start it | 
|  | * immediately | 
|  | */ | 
|  | if (mcdi->async_list.next == &async->list && | 
|  | efx_mcdi_acquire_async(mcdi)) { | 
|  | efx_mcdi_send_request(efx, cmd, inbuf, inlen); | 
|  | mod_timer(&mcdi->async_timer, | 
|  | jiffies + MCDI_RPC_TIMEOUT); | 
|  | } | 
|  | } else { | 
|  | kfree(async); | 
|  | rc = -ENETDOWN; | 
|  | } | 
|  |  | 
|  | spin_unlock_bh(&mcdi->async_lock); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously | 
|  | * @efx: NIC through which to issue the command | 
|  | * @cmd: Command type number | 
|  | * @inbuf: Command parameters | 
|  | * @inlen: Length of command parameters, in bytes | 
|  | * @outlen: Length to allocate for response buffer, in bytes | 
|  | * @complete: Function to be called on completion or cancellation. | 
|  | * @cookie: Arbitrary value to be passed to @complete. | 
|  | * | 
|  | * This function does not sleep and therefore may be called in atomic | 
|  | * context.  It will fail if event queues are disabled or if MCDI | 
|  | * event completions have been disabled due to an error. | 
|  | * | 
|  | * If it succeeds, the @complete function will be called exactly once | 
|  | * in atomic context, when one of the following occurs: | 
|  | * (a) the completion event is received (in NAPI context) | 
|  | * (b) event queues are disabled (in the process that disables them) | 
|  | * (c) the request times-out (in timer context) | 
|  | */ | 
|  | int | 
|  | efx_mcdi_rpc_async(struct efx_nic *efx, unsigned int cmd, | 
|  | const efx_dword_t *inbuf, size_t inlen, size_t outlen, | 
|  | efx_mcdi_async_completer *complete, unsigned long cookie) | 
|  | { | 
|  | return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, | 
|  | cookie, false); | 
|  | } | 
|  |  | 
|  | int efx_mcdi_rpc_async_quiet(struct efx_nic *efx, unsigned int cmd, | 
|  | const efx_dword_t *inbuf, size_t inlen, | 
|  | size_t outlen, efx_mcdi_async_completer *complete, | 
|  | unsigned long cookie) | 
|  | { | 
|  | return _efx_mcdi_rpc_async(efx, cmd, inbuf, inlen, outlen, complete, | 
|  | cookie, true); | 
|  | } | 
|  |  | 
|  | int efx_mcdi_rpc_finish(struct efx_nic *efx, unsigned cmd, size_t inlen, | 
|  | efx_dword_t *outbuf, size_t outlen, | 
|  | size_t *outlen_actual) | 
|  | { | 
|  | return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, | 
|  | outlen_actual, false); | 
|  | } | 
|  |  | 
|  | int efx_mcdi_rpc_finish_quiet(struct efx_nic *efx, unsigned cmd, size_t inlen, | 
|  | efx_dword_t *outbuf, size_t outlen, | 
|  | size_t *outlen_actual) | 
|  | { | 
|  | return _efx_mcdi_rpc_finish(efx, cmd, inlen, outbuf, outlen, | 
|  | outlen_actual, true); | 
|  | } | 
|  |  | 
|  | void efx_mcdi_display_error(struct efx_nic *efx, unsigned cmd, | 
|  | size_t inlen, efx_dword_t *outbuf, | 
|  | size_t outlen, int rc) | 
|  | { | 
|  | int code = 0, err_arg = 0; | 
|  |  | 
|  | if (outlen >= MC_CMD_ERR_CODE_OFST + 4) | 
|  | code = MCDI_DWORD(outbuf, ERR_CODE); | 
|  | if (outlen >= MC_CMD_ERR_ARG_OFST + 4) | 
|  | err_arg = MCDI_DWORD(outbuf, ERR_ARG); | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "MC command 0x%x inlen %d failed rc=%d (raw=%d) arg=%d\n", | 
|  | cmd, (int)inlen, rc, code, err_arg); | 
|  | } | 
|  |  | 
|  | /* Switch to polled MCDI completions.  This can be called in various | 
|  | * error conditions with various locks held, so it must be lockless. | 
|  | * Caller is responsible for flushing asynchronous requests later. | 
|  | */ | 
|  | void efx_mcdi_mode_poll(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi; | 
|  |  | 
|  | if (!efx->mcdi) | 
|  | return; | 
|  |  | 
|  | mcdi = efx_mcdi(efx); | 
|  | /* If already in polling mode, nothing to do. | 
|  | * If in fail-fast state, don't switch to polled completion. | 
|  | * FLR recovery will do that later. | 
|  | */ | 
|  | if (mcdi->mode == MCDI_MODE_POLL || mcdi->mode == MCDI_MODE_FAIL) | 
|  | return; | 
|  |  | 
|  | /* We can switch from event completion to polled completion, because | 
|  | * mcdi requests are always completed in shared memory. We do this by | 
|  | * switching the mode to POLL'd then completing the request. | 
|  | * efx_mcdi_await_completion() will then call efx_mcdi_poll(). | 
|  | * | 
|  | * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(), | 
|  | * which efx_mcdi_complete_sync() provides for us. | 
|  | */ | 
|  | mcdi->mode = MCDI_MODE_POLL; | 
|  |  | 
|  | efx_mcdi_complete_sync(mcdi); | 
|  | } | 
|  |  | 
|  | /* Flush any running or queued asynchronous requests, after event processing | 
|  | * is stopped | 
|  | */ | 
|  | void efx_mcdi_flush_async(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_async_param *async, *next; | 
|  | struct efx_mcdi_iface *mcdi; | 
|  |  | 
|  | if (!efx->mcdi) | 
|  | return; | 
|  |  | 
|  | mcdi = efx_mcdi(efx); | 
|  |  | 
|  | /* We must be in poll or fail mode so no more requests can be queued */ | 
|  | BUG_ON(mcdi->mode == MCDI_MODE_EVENTS); | 
|  |  | 
|  | del_timer_sync(&mcdi->async_timer); | 
|  |  | 
|  | /* If a request is still running, make sure we give the MC | 
|  | * time to complete it so that the response won't overwrite our | 
|  | * next request. | 
|  | */ | 
|  | if (mcdi->state == MCDI_STATE_RUNNING_ASYNC) { | 
|  | efx_mcdi_poll(efx); | 
|  | mcdi->state = MCDI_STATE_QUIESCENT; | 
|  | } | 
|  |  | 
|  | /* Nothing else will access the async list now, so it is safe | 
|  | * to walk it without holding async_lock.  If we hold it while | 
|  | * calling a completer then lockdep may warn that we have | 
|  | * acquired locks in the wrong order. | 
|  | */ | 
|  | list_for_each_entry_safe(async, next, &mcdi->async_list, list) { | 
|  | async->complete(efx, async->cookie, -ENETDOWN, NULL, 0); | 
|  | list_del(&async->list); | 
|  | kfree(async); | 
|  | } | 
|  | } | 
|  |  | 
|  | void efx_mcdi_mode_event(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi; | 
|  |  | 
|  | if (!efx->mcdi) | 
|  | return; | 
|  |  | 
|  | mcdi = efx_mcdi(efx); | 
|  | /* If already in event completion mode, nothing to do. | 
|  | * If in fail-fast state, don't switch to event completion.  FLR | 
|  | * recovery will do that later. | 
|  | */ | 
|  | if (mcdi->mode == MCDI_MODE_EVENTS || mcdi->mode == MCDI_MODE_FAIL) | 
|  | return; | 
|  |  | 
|  | /* We can't switch from polled to event completion in the middle of a | 
|  | * request, because the completion method is specified in the request. | 
|  | * So acquire the interface to serialise the requestors. We don't need | 
|  | * to acquire the iface_lock to change the mode here, but we do need a | 
|  | * write memory barrier ensure that efx_mcdi_rpc() sees it, which | 
|  | * efx_mcdi_acquire() provides. | 
|  | */ | 
|  | efx_mcdi_acquire_sync(mcdi); | 
|  | mcdi->mode = MCDI_MODE_EVENTS; | 
|  | efx_mcdi_release(mcdi); | 
|  | } | 
|  |  | 
|  | static void efx_mcdi_ev_death(struct efx_nic *efx, int rc) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  |  | 
|  | /* If there is an outstanding MCDI request, it has been terminated | 
|  | * either by a BADASSERT or REBOOT event. If the mcdi interface is | 
|  | * in polled mode, then do nothing because the MC reboot handler will | 
|  | * set the header correctly. However, if the mcdi interface is waiting | 
|  | * for a CMDDONE event it won't receive it [and since all MCDI events | 
|  | * are sent to the same queue, we can't be racing with | 
|  | * efx_mcdi_ev_cpl()] | 
|  | * | 
|  | * If there is an outstanding asynchronous request, we can't | 
|  | * complete it now (efx_mcdi_complete() would deadlock).  The | 
|  | * reset process will take care of this. | 
|  | * | 
|  | * There's a race here with efx_mcdi_send_request(), because | 
|  | * we might receive a REBOOT event *before* the request has | 
|  | * been copied out. In polled mode (during startup) this is | 
|  | * irrelevant, because efx_mcdi_complete_sync() is ignored. In | 
|  | * event mode, this condition is just an edge-case of | 
|  | * receiving a REBOOT event after posting the MCDI | 
|  | * request. Did the mc reboot before or after the copyout? The | 
|  | * best we can do always is just return failure. | 
|  | */ | 
|  | spin_lock(&mcdi->iface_lock); | 
|  | if (efx_mcdi_complete_sync(mcdi)) { | 
|  | if (mcdi->mode == MCDI_MODE_EVENTS) { | 
|  | mcdi->resprc = rc; | 
|  | mcdi->resp_hdr_len = 0; | 
|  | mcdi->resp_data_len = 0; | 
|  | ++mcdi->credits; | 
|  | } | 
|  | } else { | 
|  | int count; | 
|  |  | 
|  | /* Consume the status word since efx_mcdi_rpc_finish() won't */ | 
|  | for (count = 0; count < MCDI_STATUS_DELAY_COUNT; ++count) { | 
|  | if (efx_mcdi_poll_reboot(efx)) | 
|  | break; | 
|  | udelay(MCDI_STATUS_DELAY_US); | 
|  | } | 
|  | mcdi->new_epoch = true; | 
|  |  | 
|  | /* Nobody was waiting for an MCDI request, so trigger a reset */ | 
|  | efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE); | 
|  | } | 
|  |  | 
|  | spin_unlock(&mcdi->iface_lock); | 
|  | } | 
|  |  | 
|  | /* The MC is going down in to BIST mode. set the BIST flag to block | 
|  | * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset | 
|  | * (which doesn't actually execute a reset, it waits for the controlling | 
|  | * function to reset it). | 
|  | */ | 
|  | static void efx_mcdi_ev_bist(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  |  | 
|  | spin_lock(&mcdi->iface_lock); | 
|  | efx->mc_bist_for_other_fn = true; | 
|  | if (efx_mcdi_complete_sync(mcdi)) { | 
|  | if (mcdi->mode == MCDI_MODE_EVENTS) { | 
|  | mcdi->resprc = -EIO; | 
|  | mcdi->resp_hdr_len = 0; | 
|  | mcdi->resp_data_len = 0; | 
|  | ++mcdi->credits; | 
|  | } | 
|  | } | 
|  | mcdi->new_epoch = true; | 
|  | efx_schedule_reset(efx, RESET_TYPE_MC_BIST); | 
|  | spin_unlock(&mcdi->iface_lock); | 
|  | } | 
|  |  | 
|  | /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try | 
|  | * to recover. | 
|  | */ | 
|  | static void efx_mcdi_abandon(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  |  | 
|  | if (xchg(&mcdi->mode, MCDI_MODE_FAIL) == MCDI_MODE_FAIL) | 
|  | return; /* it had already been done */ | 
|  | netif_dbg(efx, hw, efx->net_dev, "MCDI is timing out; trying to recover\n"); | 
|  | efx_schedule_reset(efx, RESET_TYPE_MCDI_TIMEOUT); | 
|  | } | 
|  |  | 
|  | /* Called from  falcon_process_eventq for MCDI events */ | 
|  | void efx_mcdi_process_event(struct efx_channel *channel, | 
|  | efx_qword_t *event) | 
|  | { | 
|  | struct efx_nic *efx = channel->efx; | 
|  | int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE); | 
|  | u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA); | 
|  |  | 
|  | switch (code) { | 
|  | case MCDI_EVENT_CODE_BADSSERT: | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "MC watchdog or assertion failure at 0x%x\n", data); | 
|  | efx_mcdi_ev_death(efx, -EINTR); | 
|  | break; | 
|  |  | 
|  | case MCDI_EVENT_CODE_PMNOTICE: | 
|  | netif_info(efx, wol, efx->net_dev, "MCDI PM event.\n"); | 
|  | break; | 
|  |  | 
|  | case MCDI_EVENT_CODE_CMDDONE: | 
|  | efx_mcdi_ev_cpl(efx, | 
|  | MCDI_EVENT_FIELD(*event, CMDDONE_SEQ), | 
|  | MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN), | 
|  | MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO)); | 
|  | break; | 
|  |  | 
|  | case MCDI_EVENT_CODE_LINKCHANGE: | 
|  | efx_mcdi_process_link_change(efx, event); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_SENSOREVT: | 
|  | efx_mcdi_sensor_event(efx, event); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_SCHEDERR: | 
|  | netif_dbg(efx, hw, efx->net_dev, | 
|  | "MC Scheduler alert (0x%x)\n", data); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_REBOOT: | 
|  | case MCDI_EVENT_CODE_MC_REBOOT: | 
|  | netif_info(efx, hw, efx->net_dev, "MC Reboot\n"); | 
|  | efx_mcdi_ev_death(efx, -EIO); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_MC_BIST: | 
|  | netif_info(efx, hw, efx->net_dev, "MC entered BIST mode\n"); | 
|  | efx_mcdi_ev_bist(efx); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_MAC_STATS_DMA: | 
|  | /* MAC stats are gather lazily.  We can ignore this. */ | 
|  | break; | 
|  | case MCDI_EVENT_CODE_FLR: | 
|  | efx_sriov_flr(efx, MCDI_EVENT_FIELD(*event, FLR_VF)); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_PTP_RX: | 
|  | case MCDI_EVENT_CODE_PTP_FAULT: | 
|  | case MCDI_EVENT_CODE_PTP_PPS: | 
|  | efx_ptp_event(efx, event); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_PTP_TIME: | 
|  | efx_time_sync_event(channel, event); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_TX_FLUSH: | 
|  | case MCDI_EVENT_CODE_RX_FLUSH: | 
|  | /* Two flush events will be sent: one to the same event | 
|  | * queue as completions, and one to event queue 0. | 
|  | * In the latter case the {RX,TX}_FLUSH_TO_DRIVER | 
|  | * flag will be set, and we should ignore the event | 
|  | * because we want to wait for all completions. | 
|  | */ | 
|  | BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN != | 
|  | MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN); | 
|  | if (!MCDI_EVENT_FIELD(*event, TX_FLUSH_TO_DRIVER)) | 
|  | efx_ef10_handle_drain_event(efx); | 
|  | break; | 
|  | case MCDI_EVENT_CODE_TX_ERR: | 
|  | case MCDI_EVENT_CODE_RX_ERR: | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "%s DMA error (event: "EFX_QWORD_FMT")\n", | 
|  | code == MCDI_EVENT_CODE_TX_ERR ? "TX" : "RX", | 
|  | EFX_QWORD_VAL(*event)); | 
|  | efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR); | 
|  | break; | 
|  | default: | 
|  | netif_err(efx, hw, efx->net_dev, "Unknown MCDI event 0x%x\n", | 
|  | code); | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * | 
|  | * Specific request functions | 
|  | * | 
|  | ************************************************************************** | 
|  | */ | 
|  |  | 
|  | void efx_mcdi_print_fwver(struct efx_nic *efx, char *buf, size_t len) | 
|  | { | 
|  | MCDI_DECLARE_BUF(outbuf, | 
|  | max(MC_CMD_GET_VERSION_OUT_LEN, | 
|  | MC_CMD_GET_CAPABILITIES_OUT_LEN)); | 
|  | size_t outlength; | 
|  | const __le16 *ver_words; | 
|  | size_t offset; | 
|  | int rc; | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0, | 
|  | outbuf, sizeof(outbuf), &outlength); | 
|  | if (rc) | 
|  | goto fail; | 
|  | if (outlength < MC_CMD_GET_VERSION_OUT_LEN) { | 
|  | rc = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION); | 
|  | offset = snprintf(buf, len, "%u.%u.%u.%u", | 
|  | le16_to_cpu(ver_words[0]), le16_to_cpu(ver_words[1]), | 
|  | le16_to_cpu(ver_words[2]), le16_to_cpu(ver_words[3])); | 
|  |  | 
|  | /* EF10 may have multiple datapath firmware variants within a | 
|  | * single version.  Report which variants are running. | 
|  | */ | 
|  | if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) { | 
|  | BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0, | 
|  | outbuf, sizeof(outbuf), &outlength); | 
|  | if (rc || outlength < MC_CMD_GET_CAPABILITIES_OUT_LEN) | 
|  | offset += snprintf( | 
|  | buf + offset, len - offset, " rx? tx?"); | 
|  | else | 
|  | offset += snprintf( | 
|  | buf + offset, len - offset, " rx%x tx%x", | 
|  | MCDI_WORD(outbuf, | 
|  | GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID), | 
|  | MCDI_WORD(outbuf, | 
|  | GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID)); | 
|  |  | 
|  | /* It's theoretically possible for the string to exceed 31 | 
|  | * characters, though in practice the first three version | 
|  | * components are short enough that this doesn't happen. | 
|  | */ | 
|  | if (WARN_ON(offset >= len)) | 
|  | buf[0] = 0; | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | fail: | 
|  | netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); | 
|  | buf[0] = 0; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating, | 
|  | bool *was_attached) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_DRV_ATTACH_IN_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_DRV_ATTACH_EXT_OUT_LEN); | 
|  | size_t outlen; | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE, | 
|  | driver_operating ? 1 : 0); | 
|  | MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1); | 
|  | MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_FIRMWARE_ID, MC_CMD_FW_LOW_LATENCY); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | goto fail; | 
|  | if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN) { | 
|  | rc = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (driver_operating) { | 
|  | if (outlen >= MC_CMD_DRV_ATTACH_EXT_OUT_LEN) { | 
|  | efx->mcdi->fn_flags = | 
|  | MCDI_DWORD(outbuf, | 
|  | DRV_ATTACH_EXT_OUT_FUNC_FLAGS); | 
|  | } else { | 
|  | /* Synthesise flags for Siena */ | 
|  | efx->mcdi->fn_flags = | 
|  | 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | | 
|  | 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED | | 
|  | (efx_port_num(efx) == 0) << | 
|  | MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We currently assume we have control of the external link | 
|  | * and are completely trusted by firmware.  Abort probing | 
|  | * if that's not true for this function. | 
|  | */ | 
|  | if (driver_operating && | 
|  | (efx->mcdi->fn_flags & | 
|  | (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | | 
|  | 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) != | 
|  | (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL | | 
|  | 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED)) { | 
|  | netif_err(efx, probe, efx->net_dev, | 
|  | "This driver version only supports one function per port\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (was_attached != NULL) | 
|  | *was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE); | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | netif_err(efx, probe, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address, | 
|  | u16 *fw_subtype_list, u32 *capabilities) | 
|  | { | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_BOARD_CFG_OUT_LENMAX); | 
|  | size_t outlen, i; | 
|  | int port_num = efx_port_num(efx); | 
|  | int rc; | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0); | 
|  | /* we need __aligned(2) for ether_addr_copy */ | 
|  | BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST & 1); | 
|  | BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST & 1); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0, | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LENMIN) { | 
|  | rc = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (mac_address) | 
|  | ether_addr_copy(mac_address, | 
|  | port_num ? | 
|  | MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1) : | 
|  | MCDI_PTR(outbuf, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0)); | 
|  | if (fw_subtype_list) { | 
|  | for (i = 0; | 
|  | i < MCDI_VAR_ARRAY_LEN(outlen, | 
|  | GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST); | 
|  | i++) | 
|  | fw_subtype_list[i] = MCDI_ARRAY_WORD( | 
|  | outbuf, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST, i); | 
|  | for (; i < MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM; i++) | 
|  | fw_subtype_list[i] = 0; | 
|  | } | 
|  | if (capabilities) { | 
|  | if (port_num) | 
|  | *capabilities = MCDI_DWORD(outbuf, | 
|  | GET_BOARD_CFG_OUT_CAPABILITIES_PORT1); | 
|  | else | 
|  | *capabilities = MCDI_DWORD(outbuf, | 
|  | GET_BOARD_CFG_OUT_CAPABILITIES_PORT0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d len=%d\n", | 
|  | __func__, rc, (int)outlen); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_LOG_CTRL_IN_LEN); | 
|  | u32 dest = 0; | 
|  | int rc; | 
|  |  | 
|  | if (uart) | 
|  | dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART; | 
|  | if (evq) | 
|  | dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest); | 
|  | MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq); | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out) | 
|  | { | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TYPES_OUT_LEN); | 
|  | size_t outlen; | 
|  | int rc; | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0, | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | goto fail; | 
|  | if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN) { | 
|  | rc = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | *nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES); | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", | 
|  | __func__, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type, | 
|  | size_t *size_out, size_t *erase_size_out, | 
|  | bool *protected_out) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_INFO_IN_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_INFO_OUT_LEN); | 
|  | size_t outlen; | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | goto fail; | 
|  | if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN) { | 
|  | rc = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | *size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE); | 
|  | *erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE); | 
|  | *protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) & | 
|  | (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN)); | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_nvram_test(struct efx_nic *efx, unsigned int type) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_TEST_IN_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_TEST_OUT_LEN); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_TEST_IN_TYPE, type); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TEST, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), NULL); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | switch (MCDI_DWORD(outbuf, NVRAM_TEST_OUT_RESULT)) { | 
|  | case MC_CMD_NVRAM_TEST_PASS: | 
|  | case MC_CMD_NVRAM_TEST_NOTSUPP: | 
|  | return 0; | 
|  | default: | 
|  | return -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | int efx_mcdi_nvram_test_all(struct efx_nic *efx) | 
|  | { | 
|  | u32 nvram_types; | 
|  | unsigned int type; | 
|  | int rc; | 
|  |  | 
|  | rc = efx_mcdi_nvram_types(efx, &nvram_types); | 
|  | if (rc) | 
|  | goto fail1; | 
|  |  | 
|  | type = 0; | 
|  | while (nvram_types != 0) { | 
|  | if (nvram_types & 1) { | 
|  | rc = efx_mcdi_nvram_test(efx, type); | 
|  | if (rc) | 
|  | goto fail2; | 
|  | } | 
|  | type++; | 
|  | nvram_types >>= 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail2: | 
|  | netif_err(efx, hw, efx->net_dev, "%s: failed type=%u\n", | 
|  | __func__, type); | 
|  | fail1: | 
|  | netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_read_assertion(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_ASSERTS_IN_LEN); | 
|  | MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, MC_CMD_GET_ASSERTS_OUT_LEN); | 
|  | unsigned int flags, index; | 
|  | const char *reason; | 
|  | size_t outlen; | 
|  | int retry; | 
|  | int rc; | 
|  |  | 
|  | /* Attempt to read any stored assertion state before we reboot | 
|  | * the mcfw out of the assertion handler. Retry twice, once | 
|  | * because a boot-time assertion might cause this command to fail | 
|  | * with EINTR. And once again because GET_ASSERTS can race with | 
|  | * MC_CMD_REBOOT running on the other port. */ | 
|  | retry = 2; | 
|  | do { | 
|  | MCDI_SET_DWORD(inbuf, GET_ASSERTS_IN_CLEAR, 1); | 
|  | rc = efx_mcdi_rpc_quiet(efx, MC_CMD_GET_ASSERTS, | 
|  | inbuf, MC_CMD_GET_ASSERTS_IN_LEN, | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | } while ((rc == -EINTR || rc == -EIO) && retry-- > 0); | 
|  |  | 
|  | if (rc) { | 
|  | efx_mcdi_display_error(efx, MC_CMD_GET_ASSERTS, | 
|  | MC_CMD_GET_ASSERTS_IN_LEN, outbuf, | 
|  | outlen, rc); | 
|  | return rc; | 
|  | } | 
|  | if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN) | 
|  | return -EIO; | 
|  |  | 
|  | /* Print out any recorded assertion state */ | 
|  | flags = MCDI_DWORD(outbuf, GET_ASSERTS_OUT_GLOBAL_FLAGS); | 
|  | if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS) | 
|  | return 0; | 
|  |  | 
|  | reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL) | 
|  | ? "system-level assertion" | 
|  | : (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL) | 
|  | ? "thread-level assertion" | 
|  | : (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED) | 
|  | ? "watchdog reset" | 
|  | : "unknown assertion"; | 
|  | netif_err(efx, hw, efx->net_dev, | 
|  | "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason, | 
|  | MCDI_DWORD(outbuf, GET_ASSERTS_OUT_SAVED_PC_OFFS), | 
|  | MCDI_DWORD(outbuf, GET_ASSERTS_OUT_THREAD_OFFS)); | 
|  |  | 
|  | /* Print out the registers */ | 
|  | for (index = 0; | 
|  | index < MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM; | 
|  | index++) | 
|  | netif_err(efx, hw, efx->net_dev, "R%.2d (?): 0x%.8x\n", | 
|  | 1 + index, | 
|  | MCDI_ARRAY_DWORD(outbuf, GET_ASSERTS_OUT_GP_REGS_OFFS, | 
|  | index)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void efx_mcdi_exit_assertion(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); | 
|  |  | 
|  | /* If the MC is running debug firmware, it might now be | 
|  | * waiting for a debugger to attach, but we just want it to | 
|  | * reboot.  We set a flag that makes the command a no-op if it | 
|  | * has already done so.  We don't know what return code to | 
|  | * expect (0 or -EIO), so ignore it. | 
|  | */ | 
|  | BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); | 
|  | MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, | 
|  | MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION); | 
|  | (void) efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, MC_CMD_REBOOT_IN_LEN, | 
|  | NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | int efx_mcdi_handle_assertion(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = efx_mcdi_read_assertion(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | efx_mcdi_exit_assertion(efx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_ID_LED_IN_LEN); | 
|  | int rc; | 
|  |  | 
|  | BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF); | 
|  | BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON); | 
|  | BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT); | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0); | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_reset_func(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_ENTITY_RESET_IN_LEN); | 
|  | int rc; | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN != 0); | 
|  | MCDI_POPULATE_DWORD_1(inbuf, ENTITY_RESET_IN_FLAG, | 
|  | ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_ENTITY_RESET, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_reset_mc(struct efx_nic *efx) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_REBOOT_IN_LEN); | 
|  | int rc; | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0); | 
|  | MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0); | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | /* White is black, and up is down */ | 
|  | if (rc == -EIO) | 
|  | return 0; | 
|  | if (rc == 0) | 
|  | rc = -EIO; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | enum reset_type efx_mcdi_map_reset_reason(enum reset_type reason) | 
|  | { | 
|  | return RESET_TYPE_RECOVER_OR_ALL; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_reset(struct efx_nic *efx, enum reset_type method) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | /* If MCDI is down, we can't handle_assertion */ | 
|  | if (method == RESET_TYPE_MCDI_TIMEOUT) { | 
|  | rc = pci_reset_function(efx->pci_dev); | 
|  | if (rc) | 
|  | return rc; | 
|  | /* Re-enable polled MCDI completion */ | 
|  | if (efx->mcdi) { | 
|  | struct efx_mcdi_iface *mcdi = efx_mcdi(efx); | 
|  | mcdi->mode = MCDI_MODE_POLL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Recover from a failed assertion pre-reset */ | 
|  | rc = efx_mcdi_handle_assertion(efx); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (method == RESET_TYPE_WORLD) | 
|  | return efx_mcdi_reset_mc(efx); | 
|  | else | 
|  | return efx_mcdi_reset_func(efx); | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type, | 
|  | const u8 *mac, int *id_out) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_SET_IN_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_SET_OUT_LEN); | 
|  | size_t outlen; | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type); | 
|  | MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE, | 
|  | MC_CMD_FILTER_MODE_SIMPLE); | 
|  | ether_addr_copy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) { | 
|  | rc = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | *id_out = -1; | 
|  | netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); | 
|  | return rc; | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,  const u8 *mac, int *id_out) | 
|  | { | 
|  | return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out); | 
|  | } | 
|  |  | 
|  |  | 
|  | int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out) | 
|  | { | 
|  | MCDI_DECLARE_BUF(outbuf, MC_CMD_WOL_FILTER_GET_OUT_LEN); | 
|  | size_t outlen; | 
|  | int rc; | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0, | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | goto fail; | 
|  |  | 
|  | if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) { | 
|  | rc = -EIO; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | *id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | *id_out = -1; | 
|  | netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_WOL_FILTER_REMOVE_IN_LEN); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_flush_rxqs(struct efx_nic *efx) | 
|  | { | 
|  | struct efx_channel *channel; | 
|  | struct efx_rx_queue *rx_queue; | 
|  | MCDI_DECLARE_BUF(inbuf, | 
|  | MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS)); | 
|  | int rc, count; | 
|  |  | 
|  | BUILD_BUG_ON(EFX_MAX_CHANNELS > | 
|  | MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM); | 
|  |  | 
|  | count = 0; | 
|  | efx_for_each_channel(channel, efx) { | 
|  | efx_for_each_channel_rx_queue(rx_queue, channel) { | 
|  | if (rx_queue->flush_pending) { | 
|  | rx_queue->flush_pending = false; | 
|  | atomic_dec(&efx->rxq_flush_pending); | 
|  | MCDI_SET_ARRAY_DWORD( | 
|  | inbuf, FLUSH_RX_QUEUES_IN_QID_OFST, | 
|  | count, efx_rx_queue_index(rx_queue)); | 
|  | count++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_FLUSH_RX_QUEUES, inbuf, | 
|  | MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count), NULL, 0, NULL); | 
|  | WARN_ON(rc < 0); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_wol_filter_reset(struct efx_nic *efx) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_set_workaround(struct efx_nic *efx, u32 type, bool enabled) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_WORKAROUND_IN_LEN); | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN != 0); | 
|  | MCDI_SET_DWORD(inbuf, WORKAROUND_IN_TYPE, type); | 
|  | MCDI_SET_DWORD(inbuf, WORKAROUND_IN_ENABLED, enabled); | 
|  | return efx_mcdi_rpc(efx, MC_CMD_WORKAROUND, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SFC_MTD | 
|  |  | 
|  | #define EFX_MCDI_NVRAM_LEN_MAX 128 | 
|  |  | 
|  | static int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_START_IN_LEN); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type); | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type, | 
|  | loff_t offset, u8 *buffer, size_t length) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_READ_IN_LEN); | 
|  | MCDI_DECLARE_BUF(outbuf, | 
|  | MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX)); | 
|  | size_t outlen; | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type); | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset); | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf), | 
|  | outbuf, sizeof(outbuf), &outlen); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type, | 
|  | loff_t offset, const u8 *buffer, size_t length) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, | 
|  | MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX)); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type); | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset); | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length); | 
|  | memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length); | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, | 
|  | ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length), 4), | 
|  | NULL, 0, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type, | 
|  | loff_t offset, size_t length) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_ERASE_IN_LEN); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type); | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset); | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length); | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type) | 
|  | { | 
|  | MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN); | 
|  | int rc; | 
|  |  | 
|  | MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type); | 
|  |  | 
|  | BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0); | 
|  |  | 
|  | rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf), | 
|  | NULL, 0, NULL); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_mtd_read(struct mtd_info *mtd, loff_t start, | 
|  | size_t len, size_t *retlen, u8 *buffer) | 
|  | { | 
|  | struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); | 
|  | struct efx_nic *efx = mtd->priv; | 
|  | loff_t offset = start; | 
|  | loff_t end = min_t(loff_t, start + len, mtd->size); | 
|  | size_t chunk; | 
|  | int rc = 0; | 
|  |  | 
|  | while (offset < end) { | 
|  | chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); | 
|  | rc = efx_mcdi_nvram_read(efx, part->nvram_type, offset, | 
|  | buffer, chunk); | 
|  | if (rc) | 
|  | goto out; | 
|  | offset += chunk; | 
|  | buffer += chunk; | 
|  | } | 
|  | out: | 
|  | *retlen = offset - start; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len) | 
|  | { | 
|  | struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); | 
|  | struct efx_nic *efx = mtd->priv; | 
|  | loff_t offset = start & ~((loff_t)(mtd->erasesize - 1)); | 
|  | loff_t end = min_t(loff_t, start + len, mtd->size); | 
|  | size_t chunk = part->common.mtd.erasesize; | 
|  | int rc = 0; | 
|  |  | 
|  | if (!part->updating) { | 
|  | rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); | 
|  | if (rc) | 
|  | goto out; | 
|  | part->updating = true; | 
|  | } | 
|  |  | 
|  | /* The MCDI interface can in fact do multiple erase blocks at once; | 
|  | * but erasing may be slow, so we make multiple calls here to avoid | 
|  | * tripping the MCDI RPC timeout. */ | 
|  | while (offset < end) { | 
|  | rc = efx_mcdi_nvram_erase(efx, part->nvram_type, offset, | 
|  | chunk); | 
|  | if (rc) | 
|  | goto out; | 
|  | offset += chunk; | 
|  | } | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_mtd_write(struct mtd_info *mtd, loff_t start, | 
|  | size_t len, size_t *retlen, const u8 *buffer) | 
|  | { | 
|  | struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); | 
|  | struct efx_nic *efx = mtd->priv; | 
|  | loff_t offset = start; | 
|  | loff_t end = min_t(loff_t, start + len, mtd->size); | 
|  | size_t chunk; | 
|  | int rc = 0; | 
|  |  | 
|  | if (!part->updating) { | 
|  | rc = efx_mcdi_nvram_update_start(efx, part->nvram_type); | 
|  | if (rc) | 
|  | goto out; | 
|  | part->updating = true; | 
|  | } | 
|  |  | 
|  | while (offset < end) { | 
|  | chunk = min_t(size_t, end - offset, EFX_MCDI_NVRAM_LEN_MAX); | 
|  | rc = efx_mcdi_nvram_write(efx, part->nvram_type, offset, | 
|  | buffer, chunk); | 
|  | if (rc) | 
|  | goto out; | 
|  | offset += chunk; | 
|  | buffer += chunk; | 
|  | } | 
|  | out: | 
|  | *retlen = offset - start; | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int efx_mcdi_mtd_sync(struct mtd_info *mtd) | 
|  | { | 
|  | struct efx_mcdi_mtd_partition *part = to_efx_mcdi_mtd_partition(mtd); | 
|  | struct efx_nic *efx = mtd->priv; | 
|  | int rc = 0; | 
|  |  | 
|  | if (part->updating) { | 
|  | part->updating = false; | 
|  | rc = efx_mcdi_nvram_update_finish(efx, part->nvram_type); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | void efx_mcdi_mtd_rename(struct efx_mtd_partition *part) | 
|  | { | 
|  | struct efx_mcdi_mtd_partition *mcdi_part = | 
|  | container_of(part, struct efx_mcdi_mtd_partition, common); | 
|  | struct efx_nic *efx = part->mtd.priv; | 
|  |  | 
|  | snprintf(part->name, sizeof(part->name), "%s %s:%02x", | 
|  | efx->name, part->type_name, mcdi_part->fw_subtype); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SFC_MTD */ |