|  | /* | 
|  | * arch/arm/common/bL_switcher.c -- big.LITTLE cluster switcher core driver | 
|  | * | 
|  | * Created by:	Nicolas Pitre, March 2012 | 
|  | * Copyright:	(C) 2012-2013  Linaro Limited | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/cpu_pm.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/clockchips.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/irqchip/arm-gic.h> | 
|  | #include <linux/moduleparam.h> | 
|  |  | 
|  | #include <asm/smp_plat.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/suspend.h> | 
|  | #include <asm/mcpm.h> | 
|  | #include <asm/bL_switcher.h> | 
|  |  | 
|  | #define CREATE_TRACE_POINTS | 
|  | #include <trace/events/power_cpu_migrate.h> | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Use our own MPIDR accessors as the generic ones in asm/cputype.h have | 
|  | * __attribute_const__ and we don't want the compiler to assume any | 
|  | * constness here as the value _does_ change along some code paths. | 
|  | */ | 
|  |  | 
|  | static int read_mpidr(void) | 
|  | { | 
|  | unsigned int id; | 
|  | asm volatile ("mrc p15, 0, %0, c0, c0, 5" : "=r" (id)); | 
|  | return id & MPIDR_HWID_BITMASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get a global nanosecond time stamp for tracing. | 
|  | */ | 
|  | static s64 get_ns(void) | 
|  | { | 
|  | struct timespec ts; | 
|  | getnstimeofday(&ts); | 
|  | return timespec_to_ns(&ts); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bL switcher core code. | 
|  | */ | 
|  |  | 
|  | static void bL_do_switch(void *_arg) | 
|  | { | 
|  | unsigned ib_mpidr, ib_cpu, ib_cluster; | 
|  | long volatile handshake, **handshake_ptr = _arg; | 
|  |  | 
|  | pr_debug("%s\n", __func__); | 
|  |  | 
|  | ib_mpidr = cpu_logical_map(smp_processor_id()); | 
|  | ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); | 
|  | ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); | 
|  |  | 
|  | /* Advertise our handshake location */ | 
|  | if (handshake_ptr) { | 
|  | handshake = 0; | 
|  | *handshake_ptr = &handshake; | 
|  | } else | 
|  | handshake = -1; | 
|  |  | 
|  | /* | 
|  | * Our state has been saved at this point.  Let's release our | 
|  | * inbound CPU. | 
|  | */ | 
|  | mcpm_set_entry_vector(ib_cpu, ib_cluster, cpu_resume); | 
|  | sev(); | 
|  |  | 
|  | /* | 
|  | * From this point, we must assume that our counterpart CPU might | 
|  | * have taken over in its parallel world already, as if execution | 
|  | * just returned from cpu_suspend().  It is therefore important to | 
|  | * be very careful not to make any change the other guy is not | 
|  | * expecting.  This is why we need stack isolation. | 
|  | * | 
|  | * Fancy under cover tasks could be performed here.  For now | 
|  | * we have none. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Let's wait until our inbound is alive. | 
|  | */ | 
|  | while (!handshake) { | 
|  | wfe(); | 
|  | smp_mb(); | 
|  | } | 
|  |  | 
|  | /* Let's put ourself down. */ | 
|  | mcpm_cpu_power_down(); | 
|  |  | 
|  | /* should never get here */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stack isolation.  To ensure 'current' remains valid, we just use another | 
|  | * piece of our thread's stack space which should be fairly lightly used. | 
|  | * The selected area starts just above the thread_info structure located | 
|  | * at the very bottom of the stack, aligned to a cache line, and indexed | 
|  | * with the cluster number. | 
|  | */ | 
|  | #define STACK_SIZE 512 | 
|  | extern void call_with_stack(void (*fn)(void *), void *arg, void *sp); | 
|  | static int bL_switchpoint(unsigned long _arg) | 
|  | { | 
|  | unsigned int mpidr = read_mpidr(); | 
|  | unsigned int clusterid = MPIDR_AFFINITY_LEVEL(mpidr, 1); | 
|  | void *stack = current_thread_info() + 1; | 
|  | stack = PTR_ALIGN(stack, L1_CACHE_BYTES); | 
|  | stack += clusterid * STACK_SIZE + STACK_SIZE; | 
|  | call_with_stack(bL_do_switch, (void *)_arg, stack); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic switcher interface | 
|  | */ | 
|  |  | 
|  | static unsigned int bL_gic_id[MAX_CPUS_PER_CLUSTER][MAX_NR_CLUSTERS]; | 
|  | static int bL_switcher_cpu_pairing[NR_CPUS]; | 
|  |  | 
|  | /* | 
|  | * bL_switch_to - Switch to a specific cluster for the current CPU | 
|  | * @new_cluster_id: the ID of the cluster to switch to. | 
|  | * | 
|  | * This function must be called on the CPU to be switched. | 
|  | * Returns 0 on success, else a negative status code. | 
|  | */ | 
|  | static int bL_switch_to(unsigned int new_cluster_id) | 
|  | { | 
|  | unsigned int mpidr, this_cpu, that_cpu; | 
|  | unsigned int ob_mpidr, ob_cpu, ob_cluster, ib_mpidr, ib_cpu, ib_cluster; | 
|  | struct completion inbound_alive; | 
|  | struct tick_device *tdev; | 
|  | enum clock_event_mode tdev_mode; | 
|  | long volatile *handshake_ptr; | 
|  | int ipi_nr, ret; | 
|  |  | 
|  | this_cpu = smp_processor_id(); | 
|  | ob_mpidr = read_mpidr(); | 
|  | ob_cpu = MPIDR_AFFINITY_LEVEL(ob_mpidr, 0); | 
|  | ob_cluster = MPIDR_AFFINITY_LEVEL(ob_mpidr, 1); | 
|  | BUG_ON(cpu_logical_map(this_cpu) != ob_mpidr); | 
|  |  | 
|  | if (new_cluster_id == ob_cluster) | 
|  | return 0; | 
|  |  | 
|  | that_cpu = bL_switcher_cpu_pairing[this_cpu]; | 
|  | ib_mpidr = cpu_logical_map(that_cpu); | 
|  | ib_cpu = MPIDR_AFFINITY_LEVEL(ib_mpidr, 0); | 
|  | ib_cluster = MPIDR_AFFINITY_LEVEL(ib_mpidr, 1); | 
|  |  | 
|  | pr_debug("before switch: CPU %d MPIDR %#x -> %#x\n", | 
|  | this_cpu, ob_mpidr, ib_mpidr); | 
|  |  | 
|  | this_cpu = smp_processor_id(); | 
|  |  | 
|  | /* Close the gate for our entry vectors */ | 
|  | mcpm_set_entry_vector(ob_cpu, ob_cluster, NULL); | 
|  | mcpm_set_entry_vector(ib_cpu, ib_cluster, NULL); | 
|  |  | 
|  | /* Install our "inbound alive" notifier. */ | 
|  | init_completion(&inbound_alive); | 
|  | ipi_nr = register_ipi_completion(&inbound_alive, this_cpu); | 
|  | ipi_nr |= ((1 << 16) << bL_gic_id[ob_cpu][ob_cluster]); | 
|  | mcpm_set_early_poke(ib_cpu, ib_cluster, gic_get_sgir_physaddr(), ipi_nr); | 
|  |  | 
|  | /* | 
|  | * Let's wake up the inbound CPU now in case it requires some delay | 
|  | * to come online, but leave it gated in our entry vector code. | 
|  | */ | 
|  | ret = mcpm_cpu_power_up(ib_cpu, ib_cluster); | 
|  | if (ret) { | 
|  | pr_err("%s: mcpm_cpu_power_up() returned %d\n", __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Raise a SGI on the inbound CPU to make sure it doesn't stall | 
|  | * in a possible WFI, such as in bL_power_down(). | 
|  | */ | 
|  | gic_send_sgi(bL_gic_id[ib_cpu][ib_cluster], 0); | 
|  |  | 
|  | /* | 
|  | * Wait for the inbound to come up.  This allows for other | 
|  | * tasks to be scheduled in the mean time. | 
|  | */ | 
|  | wait_for_completion(&inbound_alive); | 
|  | mcpm_set_early_poke(ib_cpu, ib_cluster, 0, 0); | 
|  |  | 
|  | /* | 
|  | * From this point we are entering the switch critical zone | 
|  | * and can't take any interrupts anymore. | 
|  | */ | 
|  | local_irq_disable(); | 
|  | local_fiq_disable(); | 
|  | trace_cpu_migrate_begin(get_ns(), ob_mpidr); | 
|  |  | 
|  | /* redirect GIC's SGIs to our counterpart */ | 
|  | gic_migrate_target(bL_gic_id[ib_cpu][ib_cluster]); | 
|  |  | 
|  | tdev = tick_get_device(this_cpu); | 
|  | if (tdev && !cpumask_equal(tdev->evtdev->cpumask, cpumask_of(this_cpu))) | 
|  | tdev = NULL; | 
|  | if (tdev) { | 
|  | tdev_mode = tdev->evtdev->mode; | 
|  | clockevents_set_mode(tdev->evtdev, CLOCK_EVT_MODE_SHUTDOWN); | 
|  | } | 
|  |  | 
|  | ret = cpu_pm_enter(); | 
|  |  | 
|  | /* we can not tolerate errors at this point */ | 
|  | if (ret) | 
|  | panic("%s: cpu_pm_enter() returned %d\n", __func__, ret); | 
|  |  | 
|  | /* Swap the physical CPUs in the logical map for this logical CPU. */ | 
|  | cpu_logical_map(this_cpu) = ib_mpidr; | 
|  | cpu_logical_map(that_cpu) = ob_mpidr; | 
|  |  | 
|  | /* Let's do the actual CPU switch. */ | 
|  | ret = cpu_suspend((unsigned long)&handshake_ptr, bL_switchpoint); | 
|  | if (ret > 0) | 
|  | panic("%s: cpu_suspend() returned %d\n", __func__, ret); | 
|  |  | 
|  | /* We are executing on the inbound CPU at this point */ | 
|  | mpidr = read_mpidr(); | 
|  | pr_debug("after switch: CPU %d MPIDR %#x\n", this_cpu, mpidr); | 
|  | BUG_ON(mpidr != ib_mpidr); | 
|  |  | 
|  | mcpm_cpu_powered_up(); | 
|  |  | 
|  | ret = cpu_pm_exit(); | 
|  |  | 
|  | if (tdev) { | 
|  | clockevents_set_mode(tdev->evtdev, tdev_mode); | 
|  | clockevents_program_event(tdev->evtdev, | 
|  | tdev->evtdev->next_event, 1); | 
|  | } | 
|  |  | 
|  | trace_cpu_migrate_finish(get_ns(), ib_mpidr); | 
|  | local_fiq_enable(); | 
|  | local_irq_enable(); | 
|  |  | 
|  | *handshake_ptr = 1; | 
|  | dsb_sev(); | 
|  |  | 
|  | if (ret) | 
|  | pr_err("%s exiting with error %d\n", __func__, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct bL_thread { | 
|  | spinlock_t lock; | 
|  | struct task_struct *task; | 
|  | wait_queue_head_t wq; | 
|  | int wanted_cluster; | 
|  | struct completion started; | 
|  | bL_switch_completion_handler completer; | 
|  | void *completer_cookie; | 
|  | }; | 
|  |  | 
|  | static struct bL_thread bL_threads[NR_CPUS]; | 
|  |  | 
|  | static int bL_switcher_thread(void *arg) | 
|  | { | 
|  | struct bL_thread *t = arg; | 
|  | struct sched_param param = { .sched_priority = 1 }; | 
|  | int cluster; | 
|  | bL_switch_completion_handler completer; | 
|  | void *completer_cookie; | 
|  |  | 
|  | sched_setscheduler_nocheck(current, SCHED_FIFO, ¶m); | 
|  | complete(&t->started); | 
|  |  | 
|  | do { | 
|  | if (signal_pending(current)) | 
|  | flush_signals(current); | 
|  | wait_event_interruptible(t->wq, | 
|  | t->wanted_cluster != -1 || | 
|  | kthread_should_stop()); | 
|  |  | 
|  | spin_lock(&t->lock); | 
|  | cluster = t->wanted_cluster; | 
|  | completer = t->completer; | 
|  | completer_cookie = t->completer_cookie; | 
|  | t->wanted_cluster = -1; | 
|  | t->completer = NULL; | 
|  | spin_unlock(&t->lock); | 
|  |  | 
|  | if (cluster != -1) { | 
|  | bL_switch_to(cluster); | 
|  |  | 
|  | if (completer) | 
|  | completer(completer_cookie); | 
|  | } | 
|  | } while (!kthread_should_stop()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct task_struct *bL_switcher_thread_create(int cpu, void *arg) | 
|  | { | 
|  | struct task_struct *task; | 
|  |  | 
|  | task = kthread_create_on_node(bL_switcher_thread, arg, | 
|  | cpu_to_node(cpu), "kswitcher_%d", cpu); | 
|  | if (!IS_ERR(task)) { | 
|  | kthread_bind(task, cpu); | 
|  | wake_up_process(task); | 
|  | } else | 
|  | pr_err("%s failed for CPU %d\n", __func__, cpu); | 
|  | return task; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bL_switch_request_cb - Switch to a specific cluster for the given CPU, | 
|  | *      with completion notification via a callback | 
|  | * | 
|  | * @cpu: the CPU to switch | 
|  | * @new_cluster_id: the ID of the cluster to switch to. | 
|  | * @completer: switch completion callback.  if non-NULL, | 
|  | *	@completer(@completer_cookie) will be called on completion of | 
|  | *	the switch, in non-atomic context. | 
|  | * @completer_cookie: opaque context argument for @completer. | 
|  | * | 
|  | * This function causes a cluster switch on the given CPU by waking up | 
|  | * the appropriate switcher thread.  This function may or may not return | 
|  | * before the switch has occurred. | 
|  | * | 
|  | * If a @completer callback function is supplied, it will be called when | 
|  | * the switch is complete.  This can be used to determine asynchronously | 
|  | * when the switch is complete, regardless of when bL_switch_request() | 
|  | * returns.  When @completer is supplied, no new switch request is permitted | 
|  | * for the affected CPU until after the switch is complete, and @completer | 
|  | * has returned. | 
|  | */ | 
|  | int bL_switch_request_cb(unsigned int cpu, unsigned int new_cluster_id, | 
|  | bL_switch_completion_handler completer, | 
|  | void *completer_cookie) | 
|  | { | 
|  | struct bL_thread *t; | 
|  |  | 
|  | if (cpu >= ARRAY_SIZE(bL_threads)) { | 
|  | pr_err("%s: cpu %d out of bounds\n", __func__, cpu); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | t = &bL_threads[cpu]; | 
|  |  | 
|  | if (IS_ERR(t->task)) | 
|  | return PTR_ERR(t->task); | 
|  | if (!t->task) | 
|  | return -ESRCH; | 
|  |  | 
|  | spin_lock(&t->lock); | 
|  | if (t->completer) { | 
|  | spin_unlock(&t->lock); | 
|  | return -EBUSY; | 
|  | } | 
|  | t->completer = completer; | 
|  | t->completer_cookie = completer_cookie; | 
|  | t->wanted_cluster = new_cluster_id; | 
|  | spin_unlock(&t->lock); | 
|  | wake_up(&t->wq); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bL_switch_request_cb); | 
|  |  | 
|  | /* | 
|  | * Activation and configuration code. | 
|  | */ | 
|  |  | 
|  | static DEFINE_MUTEX(bL_switcher_activation_lock); | 
|  | static BLOCKING_NOTIFIER_HEAD(bL_activation_notifier); | 
|  | static unsigned int bL_switcher_active; | 
|  | static unsigned int bL_switcher_cpu_original_cluster[NR_CPUS]; | 
|  | static cpumask_t bL_switcher_removed_logical_cpus; | 
|  |  | 
|  | int bL_switcher_register_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(&bL_activation_notifier, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bL_switcher_register_notifier); | 
|  |  | 
|  | int bL_switcher_unregister_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(&bL_activation_notifier, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bL_switcher_unregister_notifier); | 
|  |  | 
|  | static int bL_activation_notify(unsigned long val) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = blocking_notifier_call_chain(&bL_activation_notifier, val, NULL); | 
|  | if (ret & NOTIFY_STOP_MASK) | 
|  | pr_err("%s: notifier chain failed with status 0x%x\n", | 
|  | __func__, ret); | 
|  | return notifier_to_errno(ret); | 
|  | } | 
|  |  | 
|  | static void bL_switcher_restore_cpus(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_cpu(i, &bL_switcher_removed_logical_cpus) | 
|  | cpu_up(i); | 
|  | } | 
|  |  | 
|  | static int bL_switcher_halve_cpus(void) | 
|  | { | 
|  | int i, j, cluster_0, gic_id, ret; | 
|  | unsigned int cpu, cluster, mask; | 
|  | cpumask_t available_cpus; | 
|  |  | 
|  | /* First pass to validate what we have */ | 
|  | mask = 0; | 
|  | for_each_online_cpu(i) { | 
|  | cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); | 
|  | cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); | 
|  | if (cluster >= 2) { | 
|  | pr_err("%s: only dual cluster systems are supported\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  | if (WARN_ON(cpu >= MAX_CPUS_PER_CLUSTER)) | 
|  | return -EINVAL; | 
|  | mask |= (1 << cluster); | 
|  | } | 
|  | if (mask != 3) { | 
|  | pr_err("%s: no CPU pairing possible\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now let's do the pairing.  We match each CPU with another CPU | 
|  | * from a different cluster.  To get a uniform scheduling behavior | 
|  | * without fiddling with CPU topology and compute capacity data, | 
|  | * we'll use logical CPUs initially belonging to the same cluster. | 
|  | */ | 
|  | memset(bL_switcher_cpu_pairing, -1, sizeof(bL_switcher_cpu_pairing)); | 
|  | cpumask_copy(&available_cpus, cpu_online_mask); | 
|  | cluster_0 = -1; | 
|  | for_each_cpu(i, &available_cpus) { | 
|  | int match = -1; | 
|  | cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); | 
|  | if (cluster_0 == -1) | 
|  | cluster_0 = cluster; | 
|  | if (cluster != cluster_0) | 
|  | continue; | 
|  | cpumask_clear_cpu(i, &available_cpus); | 
|  | for_each_cpu(j, &available_cpus) { | 
|  | cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(j), 1); | 
|  | /* | 
|  | * Let's remember the last match to create "odd" | 
|  | * pairings on purpose in order for other code not | 
|  | * to assume any relation between physical and | 
|  | * logical CPU numbers. | 
|  | */ | 
|  | if (cluster != cluster_0) | 
|  | match = j; | 
|  | } | 
|  | if (match != -1) { | 
|  | bL_switcher_cpu_pairing[i] = match; | 
|  | cpumask_clear_cpu(match, &available_cpus); | 
|  | pr_info("CPU%d paired with CPU%d\n", i, match); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we disable the unwanted CPUs i.e. everything that has no | 
|  | * pairing information (that includes the pairing counterparts). | 
|  | */ | 
|  | cpumask_clear(&bL_switcher_removed_logical_cpus); | 
|  | for_each_online_cpu(i) { | 
|  | cpu = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 0); | 
|  | cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(i), 1); | 
|  |  | 
|  | /* Let's take note of the GIC ID for this CPU */ | 
|  | gic_id = gic_get_cpu_id(i); | 
|  | if (gic_id < 0) { | 
|  | pr_err("%s: bad GIC ID for CPU %d\n", __func__, i); | 
|  | bL_switcher_restore_cpus(); | 
|  | return -EINVAL; | 
|  | } | 
|  | bL_gic_id[cpu][cluster] = gic_id; | 
|  | pr_info("GIC ID for CPU %u cluster %u is %u\n", | 
|  | cpu, cluster, gic_id); | 
|  |  | 
|  | if (bL_switcher_cpu_pairing[i] != -1) { | 
|  | bL_switcher_cpu_original_cluster[i] = cluster; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ret = cpu_down(i); | 
|  | if (ret) { | 
|  | bL_switcher_restore_cpus(); | 
|  | return ret; | 
|  | } | 
|  | cpumask_set_cpu(i, &bL_switcher_removed_logical_cpus); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Determine the logical CPU a given physical CPU is grouped on. */ | 
|  | int bL_switcher_get_logical_index(u32 mpidr) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (!bL_switcher_active) | 
|  | return -EUNATCH; | 
|  |  | 
|  | mpidr &= MPIDR_HWID_BITMASK; | 
|  | for_each_online_cpu(cpu) { | 
|  | int pairing = bL_switcher_cpu_pairing[cpu]; | 
|  | if (pairing == -1) | 
|  | continue; | 
|  | if ((mpidr == cpu_logical_map(cpu)) || | 
|  | (mpidr == cpu_logical_map(pairing))) | 
|  | return cpu; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void bL_switcher_trace_trigger_cpu(void *__always_unused info) | 
|  | { | 
|  | trace_cpu_migrate_current(get_ns(), read_mpidr()); | 
|  | } | 
|  |  | 
|  | int bL_switcher_trace_trigger(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | bL_switcher_trace_trigger_cpu(NULL); | 
|  | ret = smp_call_function(bL_switcher_trace_trigger_cpu, NULL, true); | 
|  |  | 
|  | preempt_enable(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bL_switcher_trace_trigger); | 
|  |  | 
|  | static int bL_switcher_enable(void) | 
|  | { | 
|  | int cpu, ret; | 
|  |  | 
|  | mutex_lock(&bL_switcher_activation_lock); | 
|  | lock_device_hotplug(); | 
|  | if (bL_switcher_active) { | 
|  | unlock_device_hotplug(); | 
|  | mutex_unlock(&bL_switcher_activation_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | pr_info("big.LITTLE switcher initializing\n"); | 
|  |  | 
|  | ret = bL_activation_notify(BL_NOTIFY_PRE_ENABLE); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | ret = bL_switcher_halve_cpus(); | 
|  | if (ret) | 
|  | goto error; | 
|  |  | 
|  | bL_switcher_trace_trigger(); | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct bL_thread *t = &bL_threads[cpu]; | 
|  | spin_lock_init(&t->lock); | 
|  | init_waitqueue_head(&t->wq); | 
|  | init_completion(&t->started); | 
|  | t->wanted_cluster = -1; | 
|  | t->task = bL_switcher_thread_create(cpu, t); | 
|  | } | 
|  |  | 
|  | bL_switcher_active = 1; | 
|  | bL_activation_notify(BL_NOTIFY_POST_ENABLE); | 
|  | pr_info("big.LITTLE switcher initialized\n"); | 
|  | goto out; | 
|  |  | 
|  | error: | 
|  | pr_warn("big.LITTLE switcher initialization failed\n"); | 
|  | bL_activation_notify(BL_NOTIFY_POST_DISABLE); | 
|  |  | 
|  | out: | 
|  | unlock_device_hotplug(); | 
|  | mutex_unlock(&bL_switcher_activation_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  |  | 
|  | static void bL_switcher_disable(void) | 
|  | { | 
|  | unsigned int cpu, cluster; | 
|  | struct bL_thread *t; | 
|  | struct task_struct *task; | 
|  |  | 
|  | mutex_lock(&bL_switcher_activation_lock); | 
|  | lock_device_hotplug(); | 
|  |  | 
|  | if (!bL_switcher_active) | 
|  | goto out; | 
|  |  | 
|  | if (bL_activation_notify(BL_NOTIFY_PRE_DISABLE) != 0) { | 
|  | bL_activation_notify(BL_NOTIFY_POST_ENABLE); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | bL_switcher_active = 0; | 
|  |  | 
|  | /* | 
|  | * To deactivate the switcher, we must shut down the switcher | 
|  | * threads to prevent any other requests from being accepted. | 
|  | * Then, if the final cluster for given logical CPU is not the | 
|  | * same as the original one, we'll recreate a switcher thread | 
|  | * just for the purpose of switching the CPU back without any | 
|  | * possibility for interference from external requests. | 
|  | */ | 
|  | for_each_online_cpu(cpu) { | 
|  | t = &bL_threads[cpu]; | 
|  | task = t->task; | 
|  | t->task = NULL; | 
|  | if (!task || IS_ERR(task)) | 
|  | continue; | 
|  | kthread_stop(task); | 
|  | /* no more switch may happen on this CPU at this point */ | 
|  | cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); | 
|  | if (cluster == bL_switcher_cpu_original_cluster[cpu]) | 
|  | continue; | 
|  | init_completion(&t->started); | 
|  | t->wanted_cluster = bL_switcher_cpu_original_cluster[cpu]; | 
|  | task = bL_switcher_thread_create(cpu, t); | 
|  | if (!IS_ERR(task)) { | 
|  | wait_for_completion(&t->started); | 
|  | kthread_stop(task); | 
|  | cluster = MPIDR_AFFINITY_LEVEL(cpu_logical_map(cpu), 1); | 
|  | if (cluster == bL_switcher_cpu_original_cluster[cpu]) | 
|  | continue; | 
|  | } | 
|  | /* If execution gets here, we're in trouble. */ | 
|  | pr_crit("%s: unable to restore original cluster for CPU %d\n", | 
|  | __func__, cpu); | 
|  | pr_crit("%s: CPU %d can't be restored\n", | 
|  | __func__, bL_switcher_cpu_pairing[cpu]); | 
|  | cpumask_clear_cpu(bL_switcher_cpu_pairing[cpu], | 
|  | &bL_switcher_removed_logical_cpus); | 
|  | } | 
|  |  | 
|  | bL_switcher_restore_cpus(); | 
|  | bL_switcher_trace_trigger(); | 
|  |  | 
|  | bL_activation_notify(BL_NOTIFY_POST_DISABLE); | 
|  |  | 
|  | out: | 
|  | unlock_device_hotplug(); | 
|  | mutex_unlock(&bL_switcher_activation_lock); | 
|  | } | 
|  |  | 
|  | static ssize_t bL_switcher_active_show(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", bL_switcher_active); | 
|  | } | 
|  |  | 
|  | static ssize_t bL_switcher_active_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | switch (buf[0]) { | 
|  | case '0': | 
|  | bL_switcher_disable(); | 
|  | ret = 0; | 
|  | break; | 
|  | case '1': | 
|  | ret = bL_switcher_enable(); | 
|  | break; | 
|  | default: | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | return (ret >= 0) ? count : ret; | 
|  | } | 
|  |  | 
|  | static ssize_t bL_switcher_trace_trigger_store(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, const char *buf, size_t count) | 
|  | { | 
|  | int ret = bL_switcher_trace_trigger(); | 
|  |  | 
|  | return ret ? ret : count; | 
|  | } | 
|  |  | 
|  | static struct kobj_attribute bL_switcher_active_attr = | 
|  | __ATTR(active, 0644, bL_switcher_active_show, bL_switcher_active_store); | 
|  |  | 
|  | static struct kobj_attribute bL_switcher_trace_trigger_attr = | 
|  | __ATTR(trace_trigger, 0200, NULL, bL_switcher_trace_trigger_store); | 
|  |  | 
|  | static struct attribute *bL_switcher_attrs[] = { | 
|  | &bL_switcher_active_attr.attr, | 
|  | &bL_switcher_trace_trigger_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group bL_switcher_attr_group = { | 
|  | .attrs = bL_switcher_attrs, | 
|  | }; | 
|  |  | 
|  | static struct kobject *bL_switcher_kobj; | 
|  |  | 
|  | static int __init bL_switcher_sysfs_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | bL_switcher_kobj = kobject_create_and_add("bL_switcher", kernel_kobj); | 
|  | if (!bL_switcher_kobj) | 
|  | return -ENOMEM; | 
|  | ret = sysfs_create_group(bL_switcher_kobj, &bL_switcher_attr_group); | 
|  | if (ret) | 
|  | kobject_put(bL_switcher_kobj); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #endif  /* CONFIG_SYSFS */ | 
|  |  | 
|  | bool bL_switcher_get_enabled(void) | 
|  | { | 
|  | mutex_lock(&bL_switcher_activation_lock); | 
|  |  | 
|  | return bL_switcher_active; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bL_switcher_get_enabled); | 
|  |  | 
|  | void bL_switcher_put_enabled(void) | 
|  | { | 
|  | mutex_unlock(&bL_switcher_activation_lock); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(bL_switcher_put_enabled); | 
|  |  | 
|  | /* | 
|  | * Veto any CPU hotplug operation on those CPUs we've removed | 
|  | * while the switcher is active. | 
|  | * We're just not ready to deal with that given the trickery involved. | 
|  | */ | 
|  | static int bL_switcher_hotplug_callback(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | if (bL_switcher_active) { | 
|  | int pairing = bL_switcher_cpu_pairing[(unsigned long)hcpu]; | 
|  | switch (action & 0xf) { | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_DOWN_PREPARE: | 
|  | if (pairing == -1) | 
|  | return NOTIFY_BAD; | 
|  | } | 
|  | } | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static bool no_bL_switcher; | 
|  | core_param(no_bL_switcher, no_bL_switcher, bool, 0644); | 
|  |  | 
|  | static int __init bL_switcher_init(void) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!mcpm_is_available()) | 
|  | return -ENODEV; | 
|  |  | 
|  | cpu_notifier(bL_switcher_hotplug_callback, 0); | 
|  |  | 
|  | if (!no_bL_switcher) { | 
|  | ret = bL_switcher_enable(); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | ret = bL_switcher_sysfs_init(); | 
|  | if (ret) | 
|  | pr_err("%s: unable to create sysfs entry\n", __func__); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | late_initcall(bL_switcher_init); |