| /* | 
 |  *  Kernel Probes (KProbes) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  * | 
 |  * Copyright (C) IBM Corporation, 2002, 2004 | 
 |  * | 
 |  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel | 
 |  *		Probes initial implementation ( includes contributions from | 
 |  *		Rusty Russell). | 
 |  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes | 
 |  *		interface to access function arguments. | 
 |  * 2004-Oct	Jim Keniston <jkenisto@us.ibm.com> and Prasanna S Panchamukhi | 
 |  *		<prasanna@in.ibm.com> adapted for x86_64 from i386. | 
 |  * 2005-Mar	Roland McGrath <roland@redhat.com> | 
 |  *		Fixed to handle %rip-relative addressing mode correctly. | 
 |  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston | 
 |  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi | 
 |  *		<prasanna@in.ibm.com> added function-return probes. | 
 |  * 2005-May	Rusty Lynch <rusty.lynch@intel.com> | 
 |  *		Added function return probes functionality | 
 |  * 2006-Feb	Masami Hiramatsu <hiramatu@sdl.hitachi.co.jp> added | 
 |  *		kprobe-booster and kretprobe-booster for i386. | 
 |  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com> added kprobe-booster | 
 |  *		and kretprobe-booster for x86-64 | 
 |  * 2007-Dec	Masami Hiramatsu <mhiramat@redhat.com>, Arjan van de Ven | 
 |  *		<arjan@infradead.org> and Jim Keniston <jkenisto@us.ibm.com> | 
 |  *		unified x86 kprobes code. | 
 |  */ | 
 | #include <linux/kprobes.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/string.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/hardirq.h> | 
 | #include <linux/preempt.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kdebug.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/ftrace.h> | 
 |  | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/alternative.h> | 
 | #include <asm/insn.h> | 
 | #include <asm/debugreg.h> | 
 |  | 
 | #include "common.h" | 
 |  | 
 | void jprobe_return_end(void); | 
 |  | 
 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
 |  | 
 | #define stack_addr(regs) ((unsigned long *)kernel_stack_pointer(regs)) | 
 |  | 
 | #define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\ | 
 | 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \ | 
 | 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \ | 
 | 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \ | 
 | 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \ | 
 | 	 << (row % 32)) | 
 | 	/* | 
 | 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension | 
 | 	 * Groups, and some special opcodes can not boost. | 
 | 	 * This is non-const and volatile to keep gcc from statically | 
 | 	 * optimizing it out, as variable_test_bit makes gcc think only | 
 | 	 * *(unsigned long*) is used. | 
 | 	 */ | 
 | static volatile u32 twobyte_is_boostable[256 / 32] = { | 
 | 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */ | 
 | 	/*      ----------------------------------------------          */ | 
 | 	W(0x00, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0) | /* 00 */ | 
 | 	W(0x10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 10 */ | 
 | 	W(0x20, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 20 */ | 
 | 	W(0x30, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 30 */ | 
 | 	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */ | 
 | 	W(0x50, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) , /* 50 */ | 
 | 	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1) | /* 60 */ | 
 | 	W(0x70, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1) , /* 70 */ | 
 | 	W(0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) | /* 80 */ | 
 | 	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */ | 
 | 	W(0xa0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* a0 */ | 
 | 	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1) , /* b0 */ | 
 | 	W(0xc0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */ | 
 | 	W(0xd0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) , /* d0 */ | 
 | 	W(0xe0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1) | /* e0 */ | 
 | 	W(0xf0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0)   /* f0 */ | 
 | 	/*      -----------------------------------------------         */ | 
 | 	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f          */ | 
 | }; | 
 | #undef W | 
 |  | 
 | struct kretprobe_blackpoint kretprobe_blacklist[] = { | 
 | 	{"__switch_to", }, /* This function switches only current task, but | 
 | 			      doesn't switch kernel stack.*/ | 
 | 	{NULL, NULL}	/* Terminator */ | 
 | }; | 
 |  | 
 | const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist); | 
 |  | 
 | static void __kprobes __synthesize_relative_insn(void *from, void *to, u8 op) | 
 | { | 
 | 	struct __arch_relative_insn { | 
 | 		u8 op; | 
 | 		s32 raddr; | 
 | 	} __packed *insn; | 
 |  | 
 | 	insn = (struct __arch_relative_insn *)from; | 
 | 	insn->raddr = (s32)((long)(to) - ((long)(from) + 5)); | 
 | 	insn->op = op; | 
 | } | 
 |  | 
 | /* Insert a jump instruction at address 'from', which jumps to address 'to'.*/ | 
 | void __kprobes synthesize_reljump(void *from, void *to) | 
 | { | 
 | 	__synthesize_relative_insn(from, to, RELATIVEJUMP_OPCODE); | 
 | } | 
 |  | 
 | /* Insert a call instruction at address 'from', which calls address 'to'.*/ | 
 | void __kprobes synthesize_relcall(void *from, void *to) | 
 | { | 
 | 	__synthesize_relative_insn(from, to, RELATIVECALL_OPCODE); | 
 | } | 
 |  | 
 | /* | 
 |  * Skip the prefixes of the instruction. | 
 |  */ | 
 | static kprobe_opcode_t *__kprobes skip_prefixes(kprobe_opcode_t *insn) | 
 | { | 
 | 	insn_attr_t attr; | 
 |  | 
 | 	attr = inat_get_opcode_attribute((insn_byte_t)*insn); | 
 | 	while (inat_is_legacy_prefix(attr)) { | 
 | 		insn++; | 
 | 		attr = inat_get_opcode_attribute((insn_byte_t)*insn); | 
 | 	} | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (inat_is_rex_prefix(attr)) | 
 | 		insn++; | 
 | #endif | 
 | 	return insn; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns non-zero if opcode is boostable. | 
 |  * RIP relative instructions are adjusted at copying time in 64 bits mode | 
 |  */ | 
 | int __kprobes can_boost(kprobe_opcode_t *opcodes) | 
 | { | 
 | 	kprobe_opcode_t opcode; | 
 | 	kprobe_opcode_t *orig_opcodes = opcodes; | 
 |  | 
 | 	if (search_exception_tables((unsigned long)opcodes)) | 
 | 		return 0;	/* Page fault may occur on this address. */ | 
 |  | 
 | retry: | 
 | 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) | 
 | 		return 0; | 
 | 	opcode = *(opcodes++); | 
 |  | 
 | 	/* 2nd-byte opcode */ | 
 | 	if (opcode == 0x0f) { | 
 | 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) | 
 | 			return 0; | 
 | 		return test_bit(*opcodes, | 
 | 				(unsigned long *)twobyte_is_boostable); | 
 | 	} | 
 |  | 
 | 	switch (opcode & 0xf0) { | 
 | #ifdef CONFIG_X86_64 | 
 | 	case 0x40: | 
 | 		goto retry; /* REX prefix is boostable */ | 
 | #endif | 
 | 	case 0x60: | 
 | 		if (0x63 < opcode && opcode < 0x67) | 
 | 			goto retry; /* prefixes */ | 
 | 		/* can't boost Address-size override and bound */ | 
 | 		return (opcode != 0x62 && opcode != 0x67); | 
 | 	case 0x70: | 
 | 		return 0; /* can't boost conditional jump */ | 
 | 	case 0xc0: | 
 | 		/* can't boost software-interruptions */ | 
 | 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; | 
 | 	case 0xd0: | 
 | 		/* can boost AA* and XLAT */ | 
 | 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); | 
 | 	case 0xe0: | 
 | 		/* can boost in/out and absolute jmps */ | 
 | 		return ((opcode & 0x04) || opcode == 0xea); | 
 | 	case 0xf0: | 
 | 		if ((opcode & 0x0c) == 0 && opcode != 0xf1) | 
 | 			goto retry; /* lock/rep(ne) prefix */ | 
 | 		/* clear and set flags are boostable */ | 
 | 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); | 
 | 	default: | 
 | 		/* segment override prefixes are boostable */ | 
 | 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) | 
 | 			goto retry; /* prefixes */ | 
 | 		/* CS override prefix and call are not boostable */ | 
 | 		return (opcode != 0x2e && opcode != 0x9a); | 
 | 	} | 
 | } | 
 |  | 
 | static unsigned long | 
 | __recover_probed_insn(kprobe_opcode_t *buf, unsigned long addr) | 
 | { | 
 | 	struct kprobe *kp; | 
 |  | 
 | 	kp = get_kprobe((void *)addr); | 
 | 	/* There is no probe, return original address */ | 
 | 	if (!kp) | 
 | 		return addr; | 
 |  | 
 | 	/* | 
 | 	 *  Basically, kp->ainsn.insn has an original instruction. | 
 | 	 *  However, RIP-relative instruction can not do single-stepping | 
 | 	 *  at different place, __copy_instruction() tweaks the displacement of | 
 | 	 *  that instruction. In that case, we can't recover the instruction | 
 | 	 *  from the kp->ainsn.insn. | 
 | 	 * | 
 | 	 *  On the other hand, kp->opcode has a copy of the first byte of | 
 | 	 *  the probed instruction, which is overwritten by int3. And | 
 | 	 *  the instruction at kp->addr is not modified by kprobes except | 
 | 	 *  for the first byte, we can recover the original instruction | 
 | 	 *  from it and kp->opcode. | 
 | 	 */ | 
 | 	memcpy(buf, kp->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); | 
 | 	buf[0] = kp->opcode; | 
 | 	return (unsigned long)buf; | 
 | } | 
 |  | 
 | /* | 
 |  * Recover the probed instruction at addr for further analysis. | 
 |  * Caller must lock kprobes by kprobe_mutex, or disable preemption | 
 |  * for preventing to release referencing kprobes. | 
 |  */ | 
 | unsigned long recover_probed_instruction(kprobe_opcode_t *buf, unsigned long addr) | 
 | { | 
 | 	unsigned long __addr; | 
 |  | 
 | 	__addr = __recover_optprobed_insn(buf, addr); | 
 | 	if (__addr != addr) | 
 | 		return __addr; | 
 |  | 
 | 	return __recover_probed_insn(buf, addr); | 
 | } | 
 |  | 
 | /* Check if paddr is at an instruction boundary */ | 
 | static int __kprobes can_probe(unsigned long paddr) | 
 | { | 
 | 	unsigned long addr, __addr, offset = 0; | 
 | 	struct insn insn; | 
 | 	kprobe_opcode_t buf[MAX_INSN_SIZE]; | 
 |  | 
 | 	if (!kallsyms_lookup_size_offset(paddr, NULL, &offset)) | 
 | 		return 0; | 
 |  | 
 | 	/* Decode instructions */ | 
 | 	addr = paddr - offset; | 
 | 	while (addr < paddr) { | 
 | 		/* | 
 | 		 * Check if the instruction has been modified by another | 
 | 		 * kprobe, in which case we replace the breakpoint by the | 
 | 		 * original instruction in our buffer. | 
 | 		 * Also, jump optimization will change the breakpoint to | 
 | 		 * relative-jump. Since the relative-jump itself is | 
 | 		 * normally used, we just go through if there is no kprobe. | 
 | 		 */ | 
 | 		__addr = recover_probed_instruction(buf, addr); | 
 | 		kernel_insn_init(&insn, (void *)__addr); | 
 | 		insn_get_length(&insn); | 
 |  | 
 | 		/* | 
 | 		 * Another debugging subsystem might insert this breakpoint. | 
 | 		 * In that case, we can't recover it. | 
 | 		 */ | 
 | 		if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) | 
 | 			return 0; | 
 | 		addr += insn.length; | 
 | 	} | 
 |  | 
 | 	return (addr == paddr); | 
 | } | 
 |  | 
 | /* | 
 |  * Returns non-zero if opcode modifies the interrupt flag. | 
 |  */ | 
 | static int __kprobes is_IF_modifier(kprobe_opcode_t *insn) | 
 | { | 
 | 	/* Skip prefixes */ | 
 | 	insn = skip_prefixes(insn); | 
 |  | 
 | 	switch (*insn) { | 
 | 	case 0xfa:		/* cli */ | 
 | 	case 0xfb:		/* sti */ | 
 | 	case 0xcf:		/* iret/iretd */ | 
 | 	case 0x9d:		/* popf/popfd */ | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Copy an instruction and adjust the displacement if the instruction | 
 |  * uses the %rip-relative addressing mode. | 
 |  * If it does, Return the address of the 32-bit displacement word. | 
 |  * If not, return null. | 
 |  * Only applicable to 64-bit x86. | 
 |  */ | 
 | int __kprobes __copy_instruction(u8 *dest, u8 *src) | 
 | { | 
 | 	struct insn insn; | 
 | 	kprobe_opcode_t buf[MAX_INSN_SIZE]; | 
 |  | 
 | 	kernel_insn_init(&insn, (void *)recover_probed_instruction(buf, (unsigned long)src)); | 
 | 	insn_get_length(&insn); | 
 | 	/* Another subsystem puts a breakpoint, failed to recover */ | 
 | 	if (insn.opcode.bytes[0] == BREAKPOINT_INSTRUCTION) | 
 | 		return 0; | 
 | 	memcpy(dest, insn.kaddr, insn.length); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (insn_rip_relative(&insn)) { | 
 | 		s64 newdisp; | 
 | 		u8 *disp; | 
 | 		kernel_insn_init(&insn, dest); | 
 | 		insn_get_displacement(&insn); | 
 | 		/* | 
 | 		 * The copied instruction uses the %rip-relative addressing | 
 | 		 * mode.  Adjust the displacement for the difference between | 
 | 		 * the original location of this instruction and the location | 
 | 		 * of the copy that will actually be run.  The tricky bit here | 
 | 		 * is making sure that the sign extension happens correctly in | 
 | 		 * this calculation, since we need a signed 32-bit result to | 
 | 		 * be sign-extended to 64 bits when it's added to the %rip | 
 | 		 * value and yield the same 64-bit result that the sign- | 
 | 		 * extension of the original signed 32-bit displacement would | 
 | 		 * have given. | 
 | 		 */ | 
 | 		newdisp = (u8 *) src + (s64) insn.displacement.value - (u8 *) dest; | 
 | 		BUG_ON((s64) (s32) newdisp != newdisp); /* Sanity check.  */ | 
 | 		disp = (u8 *) dest + insn_offset_displacement(&insn); | 
 | 		*(s32 *) disp = (s32) newdisp; | 
 | 	} | 
 | #endif | 
 | 	return insn.length; | 
 | } | 
 |  | 
 | static void __kprobes arch_copy_kprobe(struct kprobe *p) | 
 | { | 
 | 	/* Copy an instruction with recovering if other optprobe modifies it.*/ | 
 | 	__copy_instruction(p->ainsn.insn, p->addr); | 
 |  | 
 | 	/* | 
 | 	 * __copy_instruction can modify the displacement of the instruction, | 
 | 	 * but it doesn't affect boostable check. | 
 | 	 */ | 
 | 	if (can_boost(p->ainsn.insn)) | 
 | 		p->ainsn.boostable = 0; | 
 | 	else | 
 | 		p->ainsn.boostable = -1; | 
 |  | 
 | 	/* Also, displacement change doesn't affect the first byte */ | 
 | 	p->opcode = p->ainsn.insn[0]; | 
 | } | 
 |  | 
 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
 | { | 
 | 	if (alternatives_text_reserved(p->addr, p->addr)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (!can_probe((unsigned long)p->addr)) | 
 | 		return -EILSEQ; | 
 | 	/* insn: must be on special executable page on x86. */ | 
 | 	p->ainsn.insn = get_insn_slot(); | 
 | 	if (!p->ainsn.insn) | 
 | 		return -ENOMEM; | 
 | 	arch_copy_kprobe(p); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
 | { | 
 | 	text_poke(p->addr, ((unsigned char []){BREAKPOINT_INSTRUCTION}), 1); | 
 | } | 
 |  | 
 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
 | { | 
 | 	text_poke(p->addr, &p->opcode, 1); | 
 | } | 
 |  | 
 | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
 | { | 
 | 	if (p->ainsn.insn) { | 
 | 		free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); | 
 | 		p->ainsn.insn = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	kcb->prev_kprobe.kp = kprobe_running(); | 
 | 	kcb->prev_kprobe.status = kcb->kprobe_status; | 
 | 	kcb->prev_kprobe.old_flags = kcb->kprobe_old_flags; | 
 | 	kcb->prev_kprobe.saved_flags = kcb->kprobe_saved_flags; | 
 | } | 
 |  | 
 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); | 
 | 	kcb->kprobe_status = kcb->prev_kprobe.status; | 
 | 	kcb->kprobe_old_flags = kcb->prev_kprobe.old_flags; | 
 | 	kcb->kprobe_saved_flags = kcb->prev_kprobe.saved_flags; | 
 | } | 
 |  | 
 | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
 | 				struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__this_cpu_write(current_kprobe, p); | 
 | 	kcb->kprobe_saved_flags = kcb->kprobe_old_flags | 
 | 		= (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF)); | 
 | 	if (is_IF_modifier(p->ainsn.insn)) | 
 | 		kcb->kprobe_saved_flags &= ~X86_EFLAGS_IF; | 
 | } | 
 |  | 
 | static void __kprobes clear_btf(void) | 
 | { | 
 | 	if (test_thread_flag(TIF_BLOCKSTEP)) { | 
 | 		unsigned long debugctl = get_debugctlmsr(); | 
 |  | 
 | 		debugctl &= ~DEBUGCTLMSR_BTF; | 
 | 		update_debugctlmsr(debugctl); | 
 | 	} | 
 | } | 
 |  | 
 | static void __kprobes restore_btf(void) | 
 | { | 
 | 	if (test_thread_flag(TIF_BLOCKSTEP)) { | 
 | 		unsigned long debugctl = get_debugctlmsr(); | 
 |  | 
 | 		debugctl |= DEBUGCTLMSR_BTF; | 
 | 		update_debugctlmsr(debugctl); | 
 | 	} | 
 | } | 
 |  | 
 | void __kprobes | 
 | arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs) | 
 | { | 
 | 	unsigned long *sara = stack_addr(regs); | 
 |  | 
 | 	ri->ret_addr = (kprobe_opcode_t *) *sara; | 
 |  | 
 | 	/* Replace the return addr with trampoline addr */ | 
 | 	*sara = (unsigned long) &kretprobe_trampoline; | 
 | } | 
 |  | 
 | static void __kprobes | 
 | setup_singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb, int reenter) | 
 | { | 
 | 	if (setup_detour_execution(p, regs, reenter)) | 
 | 		return; | 
 |  | 
 | #if !defined(CONFIG_PREEMPT) | 
 | 	if (p->ainsn.boostable == 1 && !p->post_handler) { | 
 | 		/* Boost up -- we can execute copied instructions directly */ | 
 | 		if (!reenter) | 
 | 			reset_current_kprobe(); | 
 | 		/* | 
 | 		 * Reentering boosted probe doesn't reset current_kprobe, | 
 | 		 * nor set current_kprobe, because it doesn't use single | 
 | 		 * stepping. | 
 | 		 */ | 
 | 		regs->ip = (unsigned long)p->ainsn.insn; | 
 | 		preempt_enable_no_resched(); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	if (reenter) { | 
 | 		save_previous_kprobe(kcb); | 
 | 		set_current_kprobe(p, regs, kcb); | 
 | 		kcb->kprobe_status = KPROBE_REENTER; | 
 | 	} else | 
 | 		kcb->kprobe_status = KPROBE_HIT_SS; | 
 | 	/* Prepare real single stepping */ | 
 | 	clear_btf(); | 
 | 	regs->flags |= X86_EFLAGS_TF; | 
 | 	regs->flags &= ~X86_EFLAGS_IF; | 
 | 	/* single step inline if the instruction is an int3 */ | 
 | 	if (p->opcode == BREAKPOINT_INSTRUCTION) | 
 | 		regs->ip = (unsigned long)p->addr; | 
 | 	else | 
 | 		regs->ip = (unsigned long)p->ainsn.insn; | 
 | } | 
 |  | 
 | /* | 
 |  * We have reentered the kprobe_handler(), since another probe was hit while | 
 |  * within the handler. We save the original kprobes variables and just single | 
 |  * step on the instruction of the new probe without calling any user handlers. | 
 |  */ | 
 | static int __kprobes | 
 | reenter_kprobe(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	switch (kcb->kprobe_status) { | 
 | 	case KPROBE_HIT_SSDONE: | 
 | 	case KPROBE_HIT_ACTIVE: | 
 | 		kprobes_inc_nmissed_count(p); | 
 | 		setup_singlestep(p, regs, kcb, 1); | 
 | 		break; | 
 | 	case KPROBE_HIT_SS: | 
 | 		/* A probe has been hit in the codepath leading up to, or just | 
 | 		 * after, single-stepping of a probed instruction. This entire | 
 | 		 * codepath should strictly reside in .kprobes.text section. | 
 | 		 * Raise a BUG or we'll continue in an endless reentering loop | 
 | 		 * and eventually a stack overflow. | 
 | 		 */ | 
 | 		printk(KERN_WARNING "Unrecoverable kprobe detected at %p.\n", | 
 | 		       p->addr); | 
 | 		dump_kprobe(p); | 
 | 		BUG(); | 
 | 	default: | 
 | 		/* impossible cases */ | 
 | 		WARN_ON(1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupts are disabled on entry as trap3 is an interrupt gate and they | 
 |  * remain disabled throughout this function. | 
 |  */ | 
 | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	kprobe_opcode_t *addr; | 
 | 	struct kprobe *p; | 
 | 	struct kprobe_ctlblk *kcb; | 
 |  | 
 | 	addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t)); | 
 | 	/* | 
 | 	 * We don't want to be preempted for the entire | 
 | 	 * duration of kprobe processing. We conditionally | 
 | 	 * re-enable preemption at the end of this function, | 
 | 	 * and also in reenter_kprobe() and setup_singlestep(). | 
 | 	 */ | 
 | 	preempt_disable(); | 
 |  | 
 | 	kcb = get_kprobe_ctlblk(); | 
 | 	p = get_kprobe(addr); | 
 |  | 
 | 	if (p) { | 
 | 		if (kprobe_running()) { | 
 | 			if (reenter_kprobe(p, regs, kcb)) | 
 | 				return 1; | 
 | 		} else { | 
 | 			set_current_kprobe(p, regs, kcb); | 
 | 			kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
 |  | 
 | 			/* | 
 | 			 * If we have no pre-handler or it returned 0, we | 
 | 			 * continue with normal processing.  If we have a | 
 | 			 * pre-handler and it returned non-zero, it prepped | 
 | 			 * for calling the break_handler below on re-entry | 
 | 			 * for jprobe processing, so get out doing nothing | 
 | 			 * more here. | 
 | 			 */ | 
 | 			if (!p->pre_handler || !p->pre_handler(p, regs)) | 
 | 				setup_singlestep(p, regs, kcb, 0); | 
 | 			return 1; | 
 | 		} | 
 | 	} else if (*addr != BREAKPOINT_INSTRUCTION) { | 
 | 		/* | 
 | 		 * The breakpoint instruction was removed right | 
 | 		 * after we hit it.  Another cpu has removed | 
 | 		 * either a probepoint or a debugger breakpoint | 
 | 		 * at this address.  In either case, no further | 
 | 		 * handling of this interrupt is appropriate. | 
 | 		 * Back up over the (now missing) int3 and run | 
 | 		 * the original instruction. | 
 | 		 */ | 
 | 		regs->ip = (unsigned long)addr; | 
 | 		preempt_enable_no_resched(); | 
 | 		return 1; | 
 | 	} else if (kprobe_running()) { | 
 | 		p = __this_cpu_read(current_kprobe); | 
 | 		if (p->break_handler && p->break_handler(p, regs)) { | 
 | 			if (!skip_singlestep(p, regs, kcb)) | 
 | 				setup_singlestep(p, regs, kcb, 0); | 
 | 			return 1; | 
 | 		} | 
 | 	} /* else: not a kprobe fault; let the kernel handle it */ | 
 |  | 
 | 	preempt_enable_no_resched(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * When a retprobed function returns, this code saves registers and | 
 |  * calls trampoline_handler() runs, which calls the kretprobe's handler. | 
 |  */ | 
 | static void __used __kprobes kretprobe_trampoline_holder(void) | 
 | { | 
 | 	asm volatile ( | 
 | 			".global kretprobe_trampoline\n" | 
 | 			"kretprobe_trampoline: \n" | 
 | #ifdef CONFIG_X86_64 | 
 | 			/* We don't bother saving the ss register */ | 
 | 			"	pushq %rsp\n" | 
 | 			"	pushfq\n" | 
 | 			SAVE_REGS_STRING | 
 | 			"	movq %rsp, %rdi\n" | 
 | 			"	call trampoline_handler\n" | 
 | 			/* Replace saved sp with true return address. */ | 
 | 			"	movq %rax, 152(%rsp)\n" | 
 | 			RESTORE_REGS_STRING | 
 | 			"	popfq\n" | 
 | #else | 
 | 			"	pushf\n" | 
 | 			SAVE_REGS_STRING | 
 | 			"	movl %esp, %eax\n" | 
 | 			"	call trampoline_handler\n" | 
 | 			/* Move flags to cs */ | 
 | 			"	movl 56(%esp), %edx\n" | 
 | 			"	movl %edx, 52(%esp)\n" | 
 | 			/* Replace saved flags with true return address. */ | 
 | 			"	movl %eax, 56(%esp)\n" | 
 | 			RESTORE_REGS_STRING | 
 | 			"	popf\n" | 
 | #endif | 
 | 			"	ret\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from kretprobe_trampoline | 
 |  */ | 
 | static __used __kprobes void *trampoline_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kretprobe_instance *ri = NULL; | 
 | 	struct hlist_head *head, empty_rp; | 
 | 	struct hlist_node *tmp; | 
 | 	unsigned long flags, orig_ret_address = 0; | 
 | 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; | 
 | 	kprobe_opcode_t *correct_ret_addr = NULL; | 
 |  | 
 | 	INIT_HLIST_HEAD(&empty_rp); | 
 | 	kretprobe_hash_lock(current, &head, &flags); | 
 | 	/* fixup registers */ | 
 | #ifdef CONFIG_X86_64 | 
 | 	regs->cs = __KERNEL_CS; | 
 | #else | 
 | 	regs->cs = __KERNEL_CS | get_kernel_rpl(); | 
 | 	regs->gs = 0; | 
 | #endif | 
 | 	regs->ip = trampoline_address; | 
 | 	regs->orig_ax = ~0UL; | 
 |  | 
 | 	/* | 
 | 	 * It is possible to have multiple instances associated with a given | 
 | 	 * task either because multiple functions in the call path have | 
 | 	 * return probes installed on them, and/or more than one | 
 | 	 * return probe was registered for a target function. | 
 | 	 * | 
 | 	 * We can handle this because: | 
 | 	 *     - instances are always pushed into the head of the list | 
 | 	 *     - when multiple return probes are registered for the same | 
 | 	 *	 function, the (chronologically) first instance's ret_addr | 
 | 	 *	 will be the real return address, and all the rest will | 
 | 	 *	 point to kretprobe_trampoline. | 
 | 	 */ | 
 | 	hlist_for_each_entry_safe(ri, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 |  | 
 | 		if (orig_ret_address != trampoline_address) | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
 |  | 
 | 	correct_ret_addr = ri->ret_addr; | 
 | 	hlist_for_each_entry_safe(ri, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 		if (ri->rp && ri->rp->handler) { | 
 | 			__this_cpu_write(current_kprobe, &ri->rp->kp); | 
 | 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; | 
 | 			ri->ret_addr = correct_ret_addr; | 
 | 			ri->rp->handler(ri, regs); | 
 | 			__this_cpu_write(current_kprobe, NULL); | 
 | 		} | 
 |  | 
 | 		recycle_rp_inst(ri, &empty_rp); | 
 |  | 
 | 		if (orig_ret_address != trampoline_address) | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	kretprobe_hash_unlock(current, &flags); | 
 |  | 
 | 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { | 
 | 		hlist_del(&ri->hlist); | 
 | 		kfree(ri); | 
 | 	} | 
 | 	return (void *)orig_ret_address; | 
 | } | 
 |  | 
 | /* | 
 |  * Called after single-stepping.  p->addr is the address of the | 
 |  * instruction whose first byte has been replaced by the "int 3" | 
 |  * instruction.  To avoid the SMP problems that can occur when we | 
 |  * temporarily put back the original opcode to single-step, we | 
 |  * single-stepped a copy of the instruction.  The address of this | 
 |  * copy is p->ainsn.insn. | 
 |  * | 
 |  * This function prepares to return from the post-single-step | 
 |  * interrupt.  We have to fix up the stack as follows: | 
 |  * | 
 |  * 0) Except in the case of absolute or indirect jump or call instructions, | 
 |  * the new ip is relative to the copied instruction.  We need to make | 
 |  * it relative to the original instruction. | 
 |  * | 
 |  * 1) If the single-stepped instruction was pushfl, then the TF and IF | 
 |  * flags are set in the just-pushed flags, and may need to be cleared. | 
 |  * | 
 |  * 2) If the single-stepped instruction was a call, the return address | 
 |  * that is atop the stack is the address following the copied instruction. | 
 |  * We need to make it the address following the original instruction. | 
 |  * | 
 |  * If this is the first time we've single-stepped the instruction at | 
 |  * this probepoint, and the instruction is boostable, boost it: add a | 
 |  * jump instruction after the copied instruction, that jumps to the next | 
 |  * instruction after the probepoint. | 
 |  */ | 
 | static void __kprobes | 
 | resume_execution(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	unsigned long *tos = stack_addr(regs); | 
 | 	unsigned long copy_ip = (unsigned long)p->ainsn.insn; | 
 | 	unsigned long orig_ip = (unsigned long)p->addr; | 
 | 	kprobe_opcode_t *insn = p->ainsn.insn; | 
 |  | 
 | 	/* Skip prefixes */ | 
 | 	insn = skip_prefixes(insn); | 
 |  | 
 | 	regs->flags &= ~X86_EFLAGS_TF; | 
 | 	switch (*insn) { | 
 | 	case 0x9c:	/* pushfl */ | 
 | 		*tos &= ~(X86_EFLAGS_TF | X86_EFLAGS_IF); | 
 | 		*tos |= kcb->kprobe_old_flags; | 
 | 		break; | 
 | 	case 0xc2:	/* iret/ret/lret */ | 
 | 	case 0xc3: | 
 | 	case 0xca: | 
 | 	case 0xcb: | 
 | 	case 0xcf: | 
 | 	case 0xea:	/* jmp absolute -- ip is correct */ | 
 | 		/* ip is already adjusted, no more changes required */ | 
 | 		p->ainsn.boostable = 1; | 
 | 		goto no_change; | 
 | 	case 0xe8:	/* call relative - Fix return addr */ | 
 | 		*tos = orig_ip + (*tos - copy_ip); | 
 | 		break; | 
 | #ifdef CONFIG_X86_32 | 
 | 	case 0x9a:	/* call absolute -- same as call absolute, indirect */ | 
 | 		*tos = orig_ip + (*tos - copy_ip); | 
 | 		goto no_change; | 
 | #endif | 
 | 	case 0xff: | 
 | 		if ((insn[1] & 0x30) == 0x10) { | 
 | 			/* | 
 | 			 * call absolute, indirect | 
 | 			 * Fix return addr; ip is correct. | 
 | 			 * But this is not boostable | 
 | 			 */ | 
 | 			*tos = orig_ip + (*tos - copy_ip); | 
 | 			goto no_change; | 
 | 		} else if (((insn[1] & 0x31) == 0x20) || | 
 | 			   ((insn[1] & 0x31) == 0x21)) { | 
 | 			/* | 
 | 			 * jmp near and far, absolute indirect | 
 | 			 * ip is correct. And this is boostable | 
 | 			 */ | 
 | 			p->ainsn.boostable = 1; | 
 | 			goto no_change; | 
 | 		} | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (p->ainsn.boostable == 0) { | 
 | 		if ((regs->ip > copy_ip) && | 
 | 		    (regs->ip - copy_ip) + 5 < MAX_INSN_SIZE) { | 
 | 			/* | 
 | 			 * These instructions can be executed directly if it | 
 | 			 * jumps back to correct address. | 
 | 			 */ | 
 | 			synthesize_reljump((void *)regs->ip, | 
 | 				(void *)orig_ip + (regs->ip - copy_ip)); | 
 | 			p->ainsn.boostable = 1; | 
 | 		} else { | 
 | 			p->ainsn.boostable = -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	regs->ip += orig_ip - copy_ip; | 
 |  | 
 | no_change: | 
 | 	restore_btf(); | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupts are disabled on entry as trap1 is an interrupt gate and they | 
 |  * remain disabled throughout this function. | 
 |  */ | 
 | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (!cur) | 
 | 		return 0; | 
 |  | 
 | 	resume_execution(cur, regs, kcb); | 
 | 	regs->flags |= kcb->kprobe_saved_flags; | 
 |  | 
 | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
 | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
 | 		cur->post_handler(cur, regs, 0); | 
 | 	} | 
 |  | 
 | 	/* Restore back the original saved kprobes variables and continue. */ | 
 | 	if (kcb->kprobe_status == KPROBE_REENTER) { | 
 | 		restore_previous_kprobe(kcb); | 
 | 		goto out; | 
 | 	} | 
 | 	reset_current_kprobe(); | 
 | out: | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	/* | 
 | 	 * if somebody else is singlestepping across a probe point, flags | 
 | 	 * will have TF set, in which case, continue the remaining processing | 
 | 	 * of do_debug, as if this is not a probe hit. | 
 | 	 */ | 
 | 	if (regs->flags & X86_EFLAGS_TF) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	switch (kcb->kprobe_status) { | 
 | 	case KPROBE_HIT_SS: | 
 | 	case KPROBE_REENTER: | 
 | 		/* | 
 | 		 * We are here because the instruction being single | 
 | 		 * stepped caused a page fault. We reset the current | 
 | 		 * kprobe and the ip points back to the probe address | 
 | 		 * and allow the page fault handler to continue as a | 
 | 		 * normal page fault. | 
 | 		 */ | 
 | 		regs->ip = (unsigned long)cur->addr; | 
 | 		regs->flags |= kcb->kprobe_old_flags; | 
 | 		if (kcb->kprobe_status == KPROBE_REENTER) | 
 | 			restore_previous_kprobe(kcb); | 
 | 		else | 
 | 			reset_current_kprobe(); | 
 | 		preempt_enable_no_resched(); | 
 | 		break; | 
 | 	case KPROBE_HIT_ACTIVE: | 
 | 	case KPROBE_HIT_SSDONE: | 
 | 		/* | 
 | 		 * We increment the nmissed count for accounting, | 
 | 		 * we can also use npre/npostfault count for accounting | 
 | 		 * these specific fault cases. | 
 | 		 */ | 
 | 		kprobes_inc_nmissed_count(cur); | 
 |  | 
 | 		/* | 
 | 		 * We come here because instructions in the pre/post | 
 | 		 * handler caused the page_fault, this could happen | 
 | 		 * if handler tries to access user space by | 
 | 		 * copy_from_user(), get_user() etc. Let the | 
 | 		 * user-specified handler try to fix it first. | 
 | 		 */ | 
 | 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * In case the user-specified fault handler returned | 
 | 		 * zero, try to fix up. | 
 | 		 */ | 
 | 		if (fixup_exception(regs)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * fixup routine could not handle it, | 
 | 		 * Let do_page_fault() fix it. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wrapper routine for handling exceptions. | 
 |  */ | 
 | int __kprobes | 
 | kprobe_exceptions_notify(struct notifier_block *self, unsigned long val, void *data) | 
 | { | 
 | 	struct die_args *args = data; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	if (args->regs && user_mode_vm(args->regs)) | 
 | 		return ret; | 
 |  | 
 | 	switch (val) { | 
 | 	case DIE_INT3: | 
 | 		if (kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_DEBUG: | 
 | 		if (post_kprobe_handler(args->regs)) { | 
 | 			/* | 
 | 			 * Reset the BS bit in dr6 (pointed by args->err) to | 
 | 			 * denote completion of processing | 
 | 			 */ | 
 | 			(*(unsigned long *)ERR_PTR(args->err)) &= ~DR_STEP; | 
 | 			ret = NOTIFY_STOP; | 
 | 		} | 
 | 		break; | 
 | 	case DIE_GPF: | 
 | 		/* | 
 | 		 * To be potentially processing a kprobe fault and to | 
 | 		 * trust the result from kprobe_running(), we have | 
 | 		 * be non-preemptible. | 
 | 		 */ | 
 | 		if (!preemptible() && kprobe_running() && | 
 | 		    kprobe_fault_handler(args->regs, args->trapnr)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 | 	unsigned long addr; | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	kcb->jprobe_saved_regs = *regs; | 
 | 	kcb->jprobe_saved_sp = stack_addr(regs); | 
 | 	addr = (unsigned long)(kcb->jprobe_saved_sp); | 
 |  | 
 | 	/* | 
 | 	 * As Linus pointed out, gcc assumes that the callee | 
 | 	 * owns the argument space and could overwrite it, e.g. | 
 | 	 * tailcall optimization. So, to be absolutely safe | 
 | 	 * we also save and restore enough stack bytes to cover | 
 | 	 * the argument area. | 
 | 	 */ | 
 | 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, | 
 | 	       MIN_STACK_SIZE(addr)); | 
 | 	regs->flags &= ~X86_EFLAGS_IF; | 
 | 	trace_hardirqs_off(); | 
 | 	regs->ip = (unsigned long)(jp->entry); | 
 | 	return 1; | 
 | } | 
 |  | 
 | void __kprobes jprobe_return(void) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	asm volatile ( | 
 | #ifdef CONFIG_X86_64 | 
 | 			"       xchg   %%rbx,%%rsp	\n" | 
 | #else | 
 | 			"       xchgl   %%ebx,%%esp	\n" | 
 | #endif | 
 | 			"       int3			\n" | 
 | 			"       .globl jprobe_return_end\n" | 
 | 			"       jprobe_return_end:	\n" | 
 | 			"       nop			\n"::"b" | 
 | 			(kcb->jprobe_saved_sp):"memory"); | 
 | } | 
 |  | 
 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	u8 *addr = (u8 *) (regs->ip - 1); | 
 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 |  | 
 | 	if ((addr > (u8 *) jprobe_return) && | 
 | 	    (addr < (u8 *) jprobe_return_end)) { | 
 | 		if (stack_addr(regs) != kcb->jprobe_saved_sp) { | 
 | 			struct pt_regs *saved_regs = &kcb->jprobe_saved_regs; | 
 | 			printk(KERN_ERR | 
 | 			       "current sp %p does not match saved sp %p\n", | 
 | 			       stack_addr(regs), kcb->jprobe_saved_sp); | 
 | 			printk(KERN_ERR "Saved registers for jprobe %p\n", jp); | 
 | 			show_regs(saved_regs); | 
 | 			printk(KERN_ERR "Current registers\n"); | 
 | 			show_regs(regs); | 
 | 			BUG(); | 
 | 		} | 
 | 		*regs = kcb->jprobe_saved_regs; | 
 | 		memcpy((kprobe_opcode_t *)(kcb->jprobe_saved_sp), | 
 | 		       kcb->jprobes_stack, | 
 | 		       MIN_STACK_SIZE(kcb->jprobe_saved_sp)); | 
 | 		preempt_enable_no_resched(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init arch_init_kprobes(void) | 
 | { | 
 | 	return arch_init_optprobes(); | 
 | } | 
 |  | 
 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
 | { | 
 | 	return 0; | 
 | } |