| /* |
| * Accelerated GHASH implementation with ARMv8 PMULL instructions. |
| * |
| * Copyright (C) 2014 - 2018 Linaro Ltd. <ard.biesheuvel@linaro.org> |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License version 2 as published |
| * by the Free Software Foundation. |
| */ |
| |
| #include <asm/neon.h> |
| #include <asm/simd.h> |
| #include <asm/unaligned.h> |
| #include <crypto/aes.h> |
| #include <crypto/algapi.h> |
| #include <crypto/b128ops.h> |
| #include <crypto/gf128mul.h> |
| #include <crypto/internal/aead.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/simd.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/cpufeature.h> |
| #include <linux/crypto.h> |
| #include <linux/module.h> |
| |
| MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions"); |
| MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); |
| MODULE_LICENSE("GPL v2"); |
| MODULE_ALIAS_CRYPTO("ghash"); |
| |
| #define GHASH_BLOCK_SIZE 16 |
| #define GHASH_DIGEST_SIZE 16 |
| #define GCM_IV_SIZE 12 |
| |
| struct ghash_key { |
| u64 h[2]; |
| u64 h2[2]; |
| u64 h3[2]; |
| u64 h4[2]; |
| |
| be128 k; |
| }; |
| |
| struct ghash_desc_ctx { |
| u64 digest[GHASH_DIGEST_SIZE/sizeof(u64)]; |
| u8 buf[GHASH_BLOCK_SIZE]; |
| u32 count; |
| }; |
| |
| struct gcm_aes_ctx { |
| struct crypto_aes_ctx aes_key; |
| struct ghash_key ghash_key; |
| }; |
| |
| asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src, |
| struct ghash_key const *k, |
| const char *head); |
| |
| asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src, |
| struct ghash_key const *k, |
| const char *head); |
| |
| asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[], |
| const u8 src[], struct ghash_key const *k, |
| u8 ctr[], u32 const rk[], int rounds, |
| u8 ks[]); |
| |
| asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[], |
| const u8 src[], struct ghash_key const *k, |
| u8 ctr[], u32 const rk[], int rounds); |
| |
| asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[], |
| u32 const rk[], int rounds); |
| |
| asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds); |
| |
| static int ghash_init(struct shash_desc *desc) |
| { |
| struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| |
| *ctx = (struct ghash_desc_ctx){}; |
| return 0; |
| } |
| |
| static void ghash_do_update(int blocks, u64 dg[], const char *src, |
| struct ghash_key *key, const char *head, |
| void (*simd_update)(int blocks, u64 dg[], |
| const char *src, |
| struct ghash_key const *k, |
| const char *head)) |
| { |
| if (likely(crypto_simd_usable())) { |
| kernel_neon_begin(); |
| simd_update(blocks, dg, src, key, head); |
| kernel_neon_end(); |
| } else { |
| be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) }; |
| |
| do { |
| const u8 *in = src; |
| |
| if (head) { |
| in = head; |
| blocks++; |
| head = NULL; |
| } else { |
| src += GHASH_BLOCK_SIZE; |
| } |
| |
| crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE); |
| gf128mul_lle(&dst, &key->k); |
| } while (--blocks); |
| |
| dg[0] = be64_to_cpu(dst.b); |
| dg[1] = be64_to_cpu(dst.a); |
| } |
| } |
| |
| /* avoid hogging the CPU for too long */ |
| #define MAX_BLOCKS (SZ_64K / GHASH_BLOCK_SIZE) |
| |
| static int __ghash_update(struct shash_desc *desc, const u8 *src, |
| unsigned int len, |
| void (*simd_update)(int blocks, u64 dg[], |
| const char *src, |
| struct ghash_key const *k, |
| const char *head)) |
| { |
| struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; |
| |
| ctx->count += len; |
| |
| if ((partial + len) >= GHASH_BLOCK_SIZE) { |
| struct ghash_key *key = crypto_shash_ctx(desc->tfm); |
| int blocks; |
| |
| if (partial) { |
| int p = GHASH_BLOCK_SIZE - partial; |
| |
| memcpy(ctx->buf + partial, src, p); |
| src += p; |
| len -= p; |
| } |
| |
| blocks = len / GHASH_BLOCK_SIZE; |
| len %= GHASH_BLOCK_SIZE; |
| |
| do { |
| int chunk = min(blocks, MAX_BLOCKS); |
| |
| ghash_do_update(chunk, ctx->digest, src, key, |
| partial ? ctx->buf : NULL, |
| simd_update); |
| |
| blocks -= chunk; |
| src += chunk * GHASH_BLOCK_SIZE; |
| partial = 0; |
| } while (unlikely(blocks > 0)); |
| } |
| if (len) |
| memcpy(ctx->buf + partial, src, len); |
| return 0; |
| } |
| |
| static int ghash_update_p8(struct shash_desc *desc, const u8 *src, |
| unsigned int len) |
| { |
| return __ghash_update(desc, src, len, pmull_ghash_update_p8); |
| } |
| |
| static int ghash_update_p64(struct shash_desc *desc, const u8 *src, |
| unsigned int len) |
| { |
| return __ghash_update(desc, src, len, pmull_ghash_update_p64); |
| } |
| |
| static int ghash_final_p8(struct shash_desc *desc, u8 *dst) |
| { |
| struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; |
| |
| if (partial) { |
| struct ghash_key *key = crypto_shash_ctx(desc->tfm); |
| |
| memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); |
| |
| ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, |
| pmull_ghash_update_p8); |
| } |
| put_unaligned_be64(ctx->digest[1], dst); |
| put_unaligned_be64(ctx->digest[0], dst + 8); |
| |
| *ctx = (struct ghash_desc_ctx){}; |
| return 0; |
| } |
| |
| static int ghash_final_p64(struct shash_desc *desc, u8 *dst) |
| { |
| struct ghash_desc_ctx *ctx = shash_desc_ctx(desc); |
| unsigned int partial = ctx->count % GHASH_BLOCK_SIZE; |
| |
| if (partial) { |
| struct ghash_key *key = crypto_shash_ctx(desc->tfm); |
| |
| memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial); |
| |
| ghash_do_update(1, ctx->digest, ctx->buf, key, NULL, |
| pmull_ghash_update_p64); |
| } |
| put_unaligned_be64(ctx->digest[1], dst); |
| put_unaligned_be64(ctx->digest[0], dst + 8); |
| |
| *ctx = (struct ghash_desc_ctx){}; |
| return 0; |
| } |
| |
| static void ghash_reflect(u64 h[], const be128 *k) |
| { |
| u64 carry = be64_to_cpu(k->a) & BIT(63) ? 1 : 0; |
| |
| h[0] = (be64_to_cpu(k->b) << 1) | carry; |
| h[1] = (be64_to_cpu(k->a) << 1) | (be64_to_cpu(k->b) >> 63); |
| |
| if (carry) |
| h[1] ^= 0xc200000000000000UL; |
| } |
| |
| static int __ghash_setkey(struct ghash_key *key, |
| const u8 *inkey, unsigned int keylen) |
| { |
| be128 h; |
| |
| /* needed for the fallback */ |
| memcpy(&key->k, inkey, GHASH_BLOCK_SIZE); |
| |
| ghash_reflect(key->h, &key->k); |
| |
| h = key->k; |
| gf128mul_lle(&h, &key->k); |
| ghash_reflect(key->h2, &h); |
| |
| gf128mul_lle(&h, &key->k); |
| ghash_reflect(key->h3, &h); |
| |
| gf128mul_lle(&h, &key->k); |
| ghash_reflect(key->h4, &h); |
| |
| return 0; |
| } |
| |
| static int ghash_setkey(struct crypto_shash *tfm, |
| const u8 *inkey, unsigned int keylen) |
| { |
| struct ghash_key *key = crypto_shash_ctx(tfm); |
| |
| if (keylen != GHASH_BLOCK_SIZE) { |
| crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); |
| return -EINVAL; |
| } |
| |
| return __ghash_setkey(key, inkey, keylen); |
| } |
| |
| static struct shash_alg ghash_alg[] = {{ |
| .base.cra_name = "ghash", |
| .base.cra_driver_name = "ghash-neon", |
| .base.cra_priority = 100, |
| .base.cra_blocksize = GHASH_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct ghash_key), |
| .base.cra_module = THIS_MODULE, |
| |
| .digestsize = GHASH_DIGEST_SIZE, |
| .init = ghash_init, |
| .update = ghash_update_p8, |
| .final = ghash_final_p8, |
| .setkey = ghash_setkey, |
| .descsize = sizeof(struct ghash_desc_ctx), |
| }, { |
| .base.cra_name = "ghash", |
| .base.cra_driver_name = "ghash-ce", |
| .base.cra_priority = 200, |
| .base.cra_blocksize = GHASH_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct ghash_key), |
| .base.cra_module = THIS_MODULE, |
| |
| .digestsize = GHASH_DIGEST_SIZE, |
| .init = ghash_init, |
| .update = ghash_update_p64, |
| .final = ghash_final_p64, |
| .setkey = ghash_setkey, |
| .descsize = sizeof(struct ghash_desc_ctx), |
| }}; |
| |
| static int num_rounds(struct crypto_aes_ctx *ctx) |
| { |
| /* |
| * # of rounds specified by AES: |
| * 128 bit key 10 rounds |
| * 192 bit key 12 rounds |
| * 256 bit key 14 rounds |
| * => n byte key => 6 + (n/4) rounds |
| */ |
| return 6 + ctx->key_length / 4; |
| } |
| |
| static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey, |
| unsigned int keylen) |
| { |
| struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm); |
| u8 key[GHASH_BLOCK_SIZE]; |
| int ret; |
| |
| ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen); |
| if (ret) { |
| tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; |
| return -EINVAL; |
| } |
| |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){}, |
| num_rounds(&ctx->aes_key)); |
| |
| return __ghash_setkey(&ctx->ghash_key, key, sizeof(be128)); |
| } |
| |
| static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize) |
| { |
| switch (authsize) { |
| case 4: |
| case 8: |
| case 12 ... 16: |
| break; |
| default: |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[], |
| int *buf_count, struct gcm_aes_ctx *ctx) |
| { |
| if (*buf_count > 0) { |
| int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count); |
| |
| memcpy(&buf[*buf_count], src, buf_added); |
| |
| *buf_count += buf_added; |
| src += buf_added; |
| count -= buf_added; |
| } |
| |
| if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) { |
| int blocks = count / GHASH_BLOCK_SIZE; |
| |
| ghash_do_update(blocks, dg, src, &ctx->ghash_key, |
| *buf_count ? buf : NULL, |
| pmull_ghash_update_p64); |
| |
| src += blocks * GHASH_BLOCK_SIZE; |
| count %= GHASH_BLOCK_SIZE; |
| *buf_count = 0; |
| } |
| |
| if (count > 0) { |
| memcpy(buf, src, count); |
| *buf_count = count; |
| } |
| } |
| |
| static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[]) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); |
| u8 buf[GHASH_BLOCK_SIZE]; |
| struct scatter_walk walk; |
| u32 len = req->assoclen; |
| int buf_count = 0; |
| |
| scatterwalk_start(&walk, req->src); |
| |
| do { |
| u32 n = scatterwalk_clamp(&walk, len); |
| u8 *p; |
| |
| if (!n) { |
| scatterwalk_start(&walk, sg_next(walk.sg)); |
| n = scatterwalk_clamp(&walk, len); |
| } |
| p = scatterwalk_map(&walk); |
| |
| gcm_update_mac(dg, p, n, buf, &buf_count, ctx); |
| len -= n; |
| |
| scatterwalk_unmap(p); |
| scatterwalk_advance(&walk, n); |
| scatterwalk_done(&walk, 0, len); |
| } while (len); |
| |
| if (buf_count) { |
| memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count); |
| ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL, |
| pmull_ghash_update_p64); |
| } |
| } |
| |
| static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx, |
| u64 dg[], u8 tag[], int cryptlen) |
| { |
| u8 mac[AES_BLOCK_SIZE]; |
| u128 lengths; |
| |
| lengths.a = cpu_to_be64(req->assoclen * 8); |
| lengths.b = cpu_to_be64(cryptlen * 8); |
| |
| ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL, |
| pmull_ghash_update_p64); |
| |
| put_unaligned_be64(dg[1], mac); |
| put_unaligned_be64(dg[0], mac + 8); |
| |
| crypto_xor(tag, mac, AES_BLOCK_SIZE); |
| } |
| |
| static int gcm_encrypt(struct aead_request *req) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); |
| struct skcipher_walk walk; |
| u8 iv[AES_BLOCK_SIZE]; |
| u8 ks[2 * AES_BLOCK_SIZE]; |
| u8 tag[AES_BLOCK_SIZE]; |
| u64 dg[2] = {}; |
| int nrounds = num_rounds(&ctx->aes_key); |
| int err; |
| |
| if (req->assoclen) |
| gcm_calculate_auth_mac(req, dg); |
| |
| memcpy(iv, req->iv, GCM_IV_SIZE); |
| put_unaligned_be32(1, iv + GCM_IV_SIZE); |
| |
| err = skcipher_walk_aead_encrypt(&walk, req, false); |
| |
| if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) { |
| u32 const *rk = NULL; |
| |
| kernel_neon_begin(); |
| pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds); |
| put_unaligned_be32(2, iv + GCM_IV_SIZE); |
| pmull_gcm_encrypt_block(ks, iv, NULL, nrounds); |
| put_unaligned_be32(3, iv + GCM_IV_SIZE); |
| pmull_gcm_encrypt_block(ks + AES_BLOCK_SIZE, iv, NULL, nrounds); |
| put_unaligned_be32(4, iv + GCM_IV_SIZE); |
| |
| do { |
| int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; |
| |
| if (rk) |
| kernel_neon_begin(); |
| |
| pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr, |
| walk.src.virt.addr, &ctx->ghash_key, |
| iv, rk, nrounds, ks); |
| kernel_neon_end(); |
| |
| err = skcipher_walk_done(&walk, |
| walk.nbytes % (2 * AES_BLOCK_SIZE)); |
| |
| rk = ctx->aes_key.key_enc; |
| } while (walk.nbytes >= 2 * AES_BLOCK_SIZE); |
| } else { |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds); |
| put_unaligned_be32(2, iv + GCM_IV_SIZE); |
| |
| while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) { |
| const int blocks = |
| walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; |
| u8 *dst = walk.dst.virt.addr; |
| u8 *src = walk.src.virt.addr; |
| int remaining = blocks; |
| |
| do { |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, |
| ks, iv, nrounds); |
| crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE); |
| crypto_inc(iv, AES_BLOCK_SIZE); |
| |
| dst += AES_BLOCK_SIZE; |
| src += AES_BLOCK_SIZE; |
| } while (--remaining > 0); |
| |
| ghash_do_update(blocks, dg, |
| walk.dst.virt.addr, &ctx->ghash_key, |
| NULL, pmull_ghash_update_p64); |
| |
| err = skcipher_walk_done(&walk, |
| walk.nbytes % (2 * AES_BLOCK_SIZE)); |
| } |
| if (walk.nbytes) { |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv, |
| nrounds); |
| if (walk.nbytes > AES_BLOCK_SIZE) { |
| crypto_inc(iv, AES_BLOCK_SIZE); |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, |
| ks + AES_BLOCK_SIZE, iv, |
| nrounds); |
| } |
| } |
| } |
| |
| /* handle the tail */ |
| if (walk.nbytes) { |
| u8 buf[GHASH_BLOCK_SIZE]; |
| unsigned int nbytes = walk.nbytes; |
| u8 *dst = walk.dst.virt.addr; |
| u8 *head = NULL; |
| |
| crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks, |
| walk.nbytes); |
| |
| if (walk.nbytes > GHASH_BLOCK_SIZE) { |
| head = dst; |
| dst += GHASH_BLOCK_SIZE; |
| nbytes %= GHASH_BLOCK_SIZE; |
| } |
| |
| memcpy(buf, dst, nbytes); |
| memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); |
| ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head, |
| pmull_ghash_update_p64); |
| |
| err = skcipher_walk_done(&walk, 0); |
| } |
| |
| if (err) |
| return err; |
| |
| gcm_final(req, ctx, dg, tag, req->cryptlen); |
| |
| /* copy authtag to end of dst */ |
| scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen, |
| crypto_aead_authsize(aead), 1); |
| |
| return 0; |
| } |
| |
| static int gcm_decrypt(struct aead_request *req) |
| { |
| struct crypto_aead *aead = crypto_aead_reqtfm(req); |
| struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead); |
| unsigned int authsize = crypto_aead_authsize(aead); |
| struct skcipher_walk walk; |
| u8 iv[2 * AES_BLOCK_SIZE]; |
| u8 tag[AES_BLOCK_SIZE]; |
| u8 buf[2 * GHASH_BLOCK_SIZE]; |
| u64 dg[2] = {}; |
| int nrounds = num_rounds(&ctx->aes_key); |
| int err; |
| |
| if (req->assoclen) |
| gcm_calculate_auth_mac(req, dg); |
| |
| memcpy(iv, req->iv, GCM_IV_SIZE); |
| put_unaligned_be32(1, iv + GCM_IV_SIZE); |
| |
| err = skcipher_walk_aead_decrypt(&walk, req, false); |
| |
| if (likely(crypto_simd_usable() && walk.total >= 2 * AES_BLOCK_SIZE)) { |
| u32 const *rk = NULL; |
| |
| kernel_neon_begin(); |
| pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc, nrounds); |
| put_unaligned_be32(2, iv + GCM_IV_SIZE); |
| |
| do { |
| int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; |
| int rem = walk.total - blocks * AES_BLOCK_SIZE; |
| |
| if (rk) |
| kernel_neon_begin(); |
| |
| pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr, |
| walk.src.virt.addr, &ctx->ghash_key, |
| iv, rk, nrounds); |
| |
| /* check if this is the final iteration of the loop */ |
| if (rem < (2 * AES_BLOCK_SIZE)) { |
| u8 *iv2 = iv + AES_BLOCK_SIZE; |
| |
| if (rem > AES_BLOCK_SIZE) { |
| memcpy(iv2, iv, AES_BLOCK_SIZE); |
| crypto_inc(iv2, AES_BLOCK_SIZE); |
| } |
| |
| pmull_gcm_encrypt_block(iv, iv, NULL, nrounds); |
| |
| if (rem > AES_BLOCK_SIZE) |
| pmull_gcm_encrypt_block(iv2, iv2, NULL, |
| nrounds); |
| } |
| |
| kernel_neon_end(); |
| |
| err = skcipher_walk_done(&walk, |
| walk.nbytes % (2 * AES_BLOCK_SIZE)); |
| |
| rk = ctx->aes_key.key_enc; |
| } while (walk.nbytes >= 2 * AES_BLOCK_SIZE); |
| } else { |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv, nrounds); |
| put_unaligned_be32(2, iv + GCM_IV_SIZE); |
| |
| while (walk.nbytes >= (2 * AES_BLOCK_SIZE)) { |
| int blocks = walk.nbytes / (2 * AES_BLOCK_SIZE) * 2; |
| u8 *dst = walk.dst.virt.addr; |
| u8 *src = walk.src.virt.addr; |
| |
| ghash_do_update(blocks, dg, walk.src.virt.addr, |
| &ctx->ghash_key, NULL, |
| pmull_ghash_update_p64); |
| |
| do { |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, |
| buf, iv, nrounds); |
| crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE); |
| crypto_inc(iv, AES_BLOCK_SIZE); |
| |
| dst += AES_BLOCK_SIZE; |
| src += AES_BLOCK_SIZE; |
| } while (--blocks > 0); |
| |
| err = skcipher_walk_done(&walk, |
| walk.nbytes % (2 * AES_BLOCK_SIZE)); |
| } |
| if (walk.nbytes) { |
| if (walk.nbytes > AES_BLOCK_SIZE) { |
| u8 *iv2 = iv + AES_BLOCK_SIZE; |
| |
| memcpy(iv2, iv, AES_BLOCK_SIZE); |
| crypto_inc(iv2, AES_BLOCK_SIZE); |
| |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, iv2, |
| iv2, nrounds); |
| } |
| __aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv, |
| nrounds); |
| } |
| } |
| |
| /* handle the tail */ |
| if (walk.nbytes) { |
| const u8 *src = walk.src.virt.addr; |
| const u8 *head = NULL; |
| unsigned int nbytes = walk.nbytes; |
| |
| if (walk.nbytes > GHASH_BLOCK_SIZE) { |
| head = src; |
| src += GHASH_BLOCK_SIZE; |
| nbytes %= GHASH_BLOCK_SIZE; |
| } |
| |
| memcpy(buf, src, nbytes); |
| memset(buf + nbytes, 0, GHASH_BLOCK_SIZE - nbytes); |
| ghash_do_update(!!nbytes, dg, buf, &ctx->ghash_key, head, |
| pmull_ghash_update_p64); |
| |
| crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv, |
| walk.nbytes); |
| |
| err = skcipher_walk_done(&walk, 0); |
| } |
| |
| if (err) |
| return err; |
| |
| gcm_final(req, ctx, dg, tag, req->cryptlen - authsize); |
| |
| /* compare calculated auth tag with the stored one */ |
| scatterwalk_map_and_copy(buf, req->src, |
| req->assoclen + req->cryptlen - authsize, |
| authsize, 0); |
| |
| if (crypto_memneq(tag, buf, authsize)) |
| return -EBADMSG; |
| return 0; |
| } |
| |
| static struct aead_alg gcm_aes_alg = { |
| .ivsize = GCM_IV_SIZE, |
| .chunksize = 2 * AES_BLOCK_SIZE, |
| .maxauthsize = AES_BLOCK_SIZE, |
| .setkey = gcm_setkey, |
| .setauthsize = gcm_setauthsize, |
| .encrypt = gcm_encrypt, |
| .decrypt = gcm_decrypt, |
| |
| .base.cra_name = "gcm(aes)", |
| .base.cra_driver_name = "gcm-aes-ce", |
| .base.cra_priority = 300, |
| .base.cra_blocksize = 1, |
| .base.cra_ctxsize = sizeof(struct gcm_aes_ctx), |
| .base.cra_module = THIS_MODULE, |
| }; |
| |
| static int __init ghash_ce_mod_init(void) |
| { |
| int ret; |
| |
| if (!cpu_have_named_feature(ASIMD)) |
| return -ENODEV; |
| |
| if (cpu_have_named_feature(PMULL)) |
| ret = crypto_register_shashes(ghash_alg, |
| ARRAY_SIZE(ghash_alg)); |
| else |
| /* only register the first array element */ |
| ret = crypto_register_shash(ghash_alg); |
| |
| if (ret) |
| return ret; |
| |
| if (cpu_have_named_feature(PMULL)) { |
| ret = crypto_register_aead(&gcm_aes_alg); |
| if (ret) |
| crypto_unregister_shashes(ghash_alg, |
| ARRAY_SIZE(ghash_alg)); |
| } |
| return ret; |
| } |
| |
| static void __exit ghash_ce_mod_exit(void) |
| { |
| if (cpu_have_named_feature(PMULL)) |
| crypto_unregister_shashes(ghash_alg, ARRAY_SIZE(ghash_alg)); |
| else |
| crypto_unregister_shash(ghash_alg); |
| crypto_unregister_aead(&gcm_aes_alg); |
| } |
| |
| static const struct cpu_feature ghash_cpu_feature[] = { |
| { cpu_feature(PMULL) }, { } |
| }; |
| MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature); |
| |
| module_init(ghash_ce_mod_init); |
| module_exit(ghash_ce_mod_exit); |