| /* |
| * Twofish Cipher 3-way parallel algorithm (x86_64) |
| * |
| * Copyright (C) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 |
| * USA |
| * |
| */ |
| |
| #include <linux/linkage.h> |
| |
| .file "twofish-x86_64-asm-3way.S" |
| .text |
| |
| /* structure of crypto context */ |
| #define s0 0 |
| #define s1 1024 |
| #define s2 2048 |
| #define s3 3072 |
| #define w 4096 |
| #define k 4128 |
| |
| /********************************************************************** |
| 3-way twofish |
| **********************************************************************/ |
| #define CTX %rdi |
| #define RIO %rdx |
| |
| #define RAB0 %rax |
| #define RAB1 %rbx |
| #define RAB2 %rcx |
| |
| #define RAB0d %eax |
| #define RAB1d %ebx |
| #define RAB2d %ecx |
| |
| #define RAB0bh %ah |
| #define RAB1bh %bh |
| #define RAB2bh %ch |
| |
| #define RAB0bl %al |
| #define RAB1bl %bl |
| #define RAB2bl %cl |
| |
| #define CD0 0x0(%rsp) |
| #define CD1 0x8(%rsp) |
| #define CD2 0x10(%rsp) |
| |
| # used only before/after all rounds |
| #define RCD0 %r8 |
| #define RCD1 %r9 |
| #define RCD2 %r10 |
| |
| # used only during rounds |
| #define RX0 %r8 |
| #define RX1 %r9 |
| #define RX2 %r10 |
| |
| #define RX0d %r8d |
| #define RX1d %r9d |
| #define RX2d %r10d |
| |
| #define RY0 %r11 |
| #define RY1 %r12 |
| #define RY2 %r13 |
| |
| #define RY0d %r11d |
| #define RY1d %r12d |
| #define RY2d %r13d |
| |
| #define RT0 %rdx |
| #define RT1 %rsi |
| |
| #define RT0d %edx |
| #define RT1d %esi |
| |
| #define RT1bl %sil |
| |
| #define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \ |
| movzbl ab ## bl, tmp2 ## d; \ |
| movzbl ab ## bh, tmp1 ## d; \ |
| rorq $(rot), ab; \ |
| op1##l T0(CTX, tmp2, 4), dst ## d; \ |
| op2##l T1(CTX, tmp1, 4), dst ## d; |
| |
| #define swap_ab_with_cd(ab, cd, tmp) \ |
| movq cd, tmp; \ |
| movq ab, cd; \ |
| movq tmp, ab; |
| |
| /* |
| * Combined G1 & G2 function. Reordered with help of rotates to have moves |
| * at begining. |
| */ |
| #define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \ |
| /* G1,1 && G2,1 */ \ |
| do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \ |
| do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \ |
| \ |
| do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \ |
| do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \ |
| \ |
| do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \ |
| do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \ |
| \ |
| /* G1,2 && G2,2 */ \ |
| do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \ |
| do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \ |
| swap_ab_with_cd(ab ## 0, cd ## 0, RT0); \ |
| \ |
| do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \ |
| do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \ |
| swap_ab_with_cd(ab ## 1, cd ## 1, RT0); \ |
| \ |
| do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \ |
| do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \ |
| swap_ab_with_cd(ab ## 2, cd ## 2, RT0); |
| |
| #define enc_round_end(ab, x, y, n) \ |
| addl y ## d, x ## d; \ |
| addl x ## d, y ## d; \ |
| addl k+4*(2*(n))(CTX), x ## d; \ |
| xorl ab ## d, x ## d; \ |
| addl k+4*(2*(n)+1)(CTX), y ## d; \ |
| shrq $32, ab; \ |
| roll $1, ab ## d; \ |
| xorl y ## d, ab ## d; \ |
| shlq $32, ab; \ |
| rorl $1, x ## d; \ |
| orq x, ab; |
| |
| #define dec_round_end(ba, x, y, n) \ |
| addl y ## d, x ## d; \ |
| addl x ## d, y ## d; \ |
| addl k+4*(2*(n))(CTX), x ## d; \ |
| addl k+4*(2*(n)+1)(CTX), y ## d; \ |
| xorl ba ## d, y ## d; \ |
| shrq $32, ba; \ |
| roll $1, ba ## d; \ |
| xorl x ## d, ba ## d; \ |
| shlq $32, ba; \ |
| rorl $1, y ## d; \ |
| orq y, ba; |
| |
| #define encrypt_round3(ab, cd, n) \ |
| g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \ |
| \ |
| enc_round_end(ab ## 0, RX0, RY0, n); \ |
| enc_round_end(ab ## 1, RX1, RY1, n); \ |
| enc_round_end(ab ## 2, RX2, RY2, n); |
| |
| #define decrypt_round3(ba, dc, n) \ |
| g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \ |
| \ |
| dec_round_end(ba ## 0, RX0, RY0, n); \ |
| dec_round_end(ba ## 1, RX1, RY1, n); \ |
| dec_round_end(ba ## 2, RX2, RY2, n); |
| |
| #define encrypt_cycle3(ab, cd, n) \ |
| encrypt_round3(ab, cd, n*2); \ |
| encrypt_round3(ab, cd, (n*2)+1); |
| |
| #define decrypt_cycle3(ba, dc, n) \ |
| decrypt_round3(ba, dc, (n*2)+1); \ |
| decrypt_round3(ba, dc, (n*2)); |
| |
| #define push_cd() \ |
| pushq RCD2; \ |
| pushq RCD1; \ |
| pushq RCD0; |
| |
| #define pop_cd() \ |
| popq RCD0; \ |
| popq RCD1; \ |
| popq RCD2; |
| |
| #define inpack3(in, n, xy, m) \ |
| movq 4*(n)(in), xy ## 0; \ |
| xorq w+4*m(CTX), xy ## 0; \ |
| \ |
| movq 4*(4+(n))(in), xy ## 1; \ |
| xorq w+4*m(CTX), xy ## 1; \ |
| \ |
| movq 4*(8+(n))(in), xy ## 2; \ |
| xorq w+4*m(CTX), xy ## 2; |
| |
| #define outunpack3(op, out, n, xy, m) \ |
| xorq w+4*m(CTX), xy ## 0; \ |
| op ## q xy ## 0, 4*(n)(out); \ |
| \ |
| xorq w+4*m(CTX), xy ## 1; \ |
| op ## q xy ## 1, 4*(4+(n))(out); \ |
| \ |
| xorq w+4*m(CTX), xy ## 2; \ |
| op ## q xy ## 2, 4*(8+(n))(out); |
| |
| #define inpack_enc3() \ |
| inpack3(RIO, 0, RAB, 0); \ |
| inpack3(RIO, 2, RCD, 2); |
| |
| #define outunpack_enc3(op) \ |
| outunpack3(op, RIO, 2, RAB, 6); \ |
| outunpack3(op, RIO, 0, RCD, 4); |
| |
| #define inpack_dec3() \ |
| inpack3(RIO, 0, RAB, 4); \ |
| rorq $32, RAB0; \ |
| rorq $32, RAB1; \ |
| rorq $32, RAB2; \ |
| inpack3(RIO, 2, RCD, 6); \ |
| rorq $32, RCD0; \ |
| rorq $32, RCD1; \ |
| rorq $32, RCD2; |
| |
| #define outunpack_dec3() \ |
| rorq $32, RCD0; \ |
| rorq $32, RCD1; \ |
| rorq $32, RCD2; \ |
| outunpack3(mov, RIO, 0, RCD, 0); \ |
| rorq $32, RAB0; \ |
| rorq $32, RAB1; \ |
| rorq $32, RAB2; \ |
| outunpack3(mov, RIO, 2, RAB, 2); |
| |
| ENTRY(__twofish_enc_blk_3way) |
| /* input: |
| * %rdi: ctx, CTX |
| * %rsi: dst |
| * %rdx: src, RIO |
| * %rcx: bool, if true: xor output |
| */ |
| pushq %r13; |
| pushq %r12; |
| pushq %rbx; |
| |
| pushq %rcx; /* bool xor */ |
| pushq %rsi; /* dst */ |
| |
| inpack_enc3(); |
| |
| push_cd(); |
| encrypt_cycle3(RAB, CD, 0); |
| encrypt_cycle3(RAB, CD, 1); |
| encrypt_cycle3(RAB, CD, 2); |
| encrypt_cycle3(RAB, CD, 3); |
| encrypt_cycle3(RAB, CD, 4); |
| encrypt_cycle3(RAB, CD, 5); |
| encrypt_cycle3(RAB, CD, 6); |
| encrypt_cycle3(RAB, CD, 7); |
| pop_cd(); |
| |
| popq RIO; /* dst */ |
| popq RT1; /* bool xor */ |
| |
| testb RT1bl, RT1bl; |
| jnz .L__enc_xor3; |
| |
| outunpack_enc3(mov); |
| |
| popq %rbx; |
| popq %r12; |
| popq %r13; |
| ret; |
| |
| .L__enc_xor3: |
| outunpack_enc3(xor); |
| |
| popq %rbx; |
| popq %r12; |
| popq %r13; |
| ret; |
| ENDPROC(__twofish_enc_blk_3way) |
| |
| ENTRY(twofish_dec_blk_3way) |
| /* input: |
| * %rdi: ctx, CTX |
| * %rsi: dst |
| * %rdx: src, RIO |
| */ |
| pushq %r13; |
| pushq %r12; |
| pushq %rbx; |
| |
| pushq %rsi; /* dst */ |
| |
| inpack_dec3(); |
| |
| push_cd(); |
| decrypt_cycle3(RAB, CD, 7); |
| decrypt_cycle3(RAB, CD, 6); |
| decrypt_cycle3(RAB, CD, 5); |
| decrypt_cycle3(RAB, CD, 4); |
| decrypt_cycle3(RAB, CD, 3); |
| decrypt_cycle3(RAB, CD, 2); |
| decrypt_cycle3(RAB, CD, 1); |
| decrypt_cycle3(RAB, CD, 0); |
| pop_cd(); |
| |
| popq RIO; /* dst */ |
| |
| outunpack_dec3(); |
| |
| popq %rbx; |
| popq %r12; |
| popq %r13; |
| ret; |
| ENDPROC(twofish_dec_blk_3way) |