|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * irixelf.c: Code to load IRIX ELF executables conforming to the MIPS ABI. | 
|  | *            Based off of work by Eric Youngdale. | 
|  | * | 
|  | * Copyright (C) 1993 - 1994 Eric Youngdale <ericy@cais.com> | 
|  | * Copyright (C) 1996 - 2004 David S. Miller <dm@engr.sgi.com> | 
|  | * Copyright (C) 2004 - 2005 Steven J. Hill <sjhill@realitydiluted.com> | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/a.out.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/smp_lock.h> | 
|  |  | 
|  | #include <asm/mipsregs.h> | 
|  | #include <asm/namei.h> | 
|  | #include <asm/prctl.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #define DLINFO_ITEMS 12 | 
|  |  | 
|  | #include <linux/elf.h> | 
|  |  | 
|  | #undef DEBUG | 
|  |  | 
|  | static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs); | 
|  | static int load_irix_library(struct file *); | 
|  | static int irix_core_dump(long signr, struct pt_regs * regs, | 
|  | struct file *file); | 
|  |  | 
|  | static struct linux_binfmt irix_format = { | 
|  | NULL, THIS_MODULE, load_irix_binary, load_irix_library, | 
|  | irix_core_dump, PAGE_SIZE | 
|  | }; | 
|  |  | 
|  | #ifndef elf_addr_t | 
|  | #define elf_addr_t unsigned long | 
|  | #endif | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /* Debugging routines. */ | 
|  | static char *get_elf_p_type(Elf32_Word p_type) | 
|  | { | 
|  | int i = (int) p_type; | 
|  |  | 
|  | switch(i) { | 
|  | case PT_NULL: return("PT_NULL"); break; | 
|  | case PT_LOAD: return("PT_LOAD"); break; | 
|  | case PT_DYNAMIC: return("PT_DYNAMIC"); break; | 
|  | case PT_INTERP: return("PT_INTERP"); break; | 
|  | case PT_NOTE: return("PT_NOTE"); break; | 
|  | case PT_SHLIB: return("PT_SHLIB"); break; | 
|  | case PT_PHDR: return("PT_PHDR"); break; | 
|  | case PT_LOPROC: return("PT_LOPROC/REGINFO"); break; | 
|  | case PT_HIPROC: return("PT_HIPROC"); break; | 
|  | default: return("PT_BOGUS"); break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void print_elfhdr(struct elfhdr *ehp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | printk("ELFHDR: e_ident<"); | 
|  | for(i = 0; i < (EI_NIDENT - 1); i++) printk("%x ", ehp->e_ident[i]); | 
|  | printk("%x>\n", ehp->e_ident[i]); | 
|  | printk("        e_type[%04x] e_machine[%04x] e_version[%08lx]\n", | 
|  | (unsigned short) ehp->e_type, (unsigned short) ehp->e_machine, | 
|  | (unsigned long) ehp->e_version); | 
|  | printk("        e_entry[%08lx] e_phoff[%08lx] e_shoff[%08lx] " | 
|  | "e_flags[%08lx]\n", | 
|  | (unsigned long) ehp->e_entry, (unsigned long) ehp->e_phoff, | 
|  | (unsigned long) ehp->e_shoff, (unsigned long) ehp->e_flags); | 
|  | printk("        e_ehsize[%04x] e_phentsize[%04x] e_phnum[%04x]\n", | 
|  | (unsigned short) ehp->e_ehsize, (unsigned short) ehp->e_phentsize, | 
|  | (unsigned short) ehp->e_phnum); | 
|  | printk("        e_shentsize[%04x] e_shnum[%04x] e_shstrndx[%04x]\n", | 
|  | (unsigned short) ehp->e_shentsize, (unsigned short) ehp->e_shnum, | 
|  | (unsigned short) ehp->e_shstrndx); | 
|  | } | 
|  |  | 
|  | static void print_phdr(int i, struct elf_phdr *ep) | 
|  | { | 
|  | printk("PHDR[%d]: p_type[%s] p_offset[%08lx] p_vaddr[%08lx] " | 
|  | "p_paddr[%08lx]\n", i, get_elf_p_type(ep->p_type), | 
|  | (unsigned long) ep->p_offset, (unsigned long) ep->p_vaddr, | 
|  | (unsigned long) ep->p_paddr); | 
|  | printk("         p_filesz[%08lx] p_memsz[%08lx] p_flags[%08lx] " | 
|  | "p_align[%08lx]\n", (unsigned long) ep->p_filesz, | 
|  | (unsigned long) ep->p_memsz, (unsigned long) ep->p_flags, | 
|  | (unsigned long) ep->p_align); | 
|  | } | 
|  |  | 
|  | static void dump_phdrs(struct elf_phdr *ep, int pnum) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < pnum; i++, ep++) { | 
|  | if((ep->p_type == PT_LOAD) || | 
|  | (ep->p_type == PT_INTERP) || | 
|  | (ep->p_type == PT_PHDR)) | 
|  | print_phdr(i, ep); | 
|  | } | 
|  | } | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | static void set_brk(unsigned long start, unsigned long end) | 
|  | { | 
|  | start = PAGE_ALIGN(start); | 
|  | end = PAGE_ALIGN(end); | 
|  | if (end <= start) | 
|  | return; | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | do_brk(start, end - start); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* We need to explicitly zero any fractional pages | 
|  | * after the data section (i.e. bss).  This would | 
|  | * contain the junk from the file that should not | 
|  | * be in memory. | 
|  | */ | 
|  | static void padzero(unsigned long elf_bss) | 
|  | { | 
|  | unsigned long nbyte; | 
|  |  | 
|  | nbyte = elf_bss & (PAGE_SIZE-1); | 
|  | if (nbyte) { | 
|  | nbyte = PAGE_SIZE - nbyte; | 
|  | clear_user((void __user *) elf_bss, nbyte); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long * create_irix_tables(char * p, int argc, int envc, | 
|  | struct elfhdr * exec, unsigned int load_addr, | 
|  | unsigned int interp_load_addr, struct pt_regs *regs, | 
|  | struct elf_phdr *ephdr) | 
|  | { | 
|  | elf_addr_t *argv; | 
|  | elf_addr_t *envp; | 
|  | elf_addr_t *sp, *csp; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | printk("create_irix_tables: p[%p] argc[%d] envc[%d] " | 
|  | "load_addr[%08x] interp_load_addr[%08x]\n", | 
|  | p, argc, envc, load_addr, interp_load_addr); | 
|  | #endif | 
|  | sp = (elf_addr_t *) (~15UL & (unsigned long) p); | 
|  | csp = sp; | 
|  | csp -= exec ? DLINFO_ITEMS*2 : 2; | 
|  | csp -= envc+1; | 
|  | csp -= argc+1; | 
|  | csp -= 1;		/* argc itself */ | 
|  | if ((unsigned long)csp & 15UL) { | 
|  | sp -= (16UL - ((unsigned long)csp & 15UL)) / sizeof(*sp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Put the ELF interpreter info on the stack | 
|  | */ | 
|  | #define NEW_AUX_ENT(nr, id, val) \ | 
|  | __put_user ((id), sp+(nr*2)); \ | 
|  | __put_user ((val), sp+(nr*2+1)); \ | 
|  |  | 
|  | sp -= 2; | 
|  | NEW_AUX_ENT(0, AT_NULL, 0); | 
|  |  | 
|  | if(exec) { | 
|  | sp -= 11*2; | 
|  |  | 
|  | NEW_AUX_ENT (0, AT_PHDR, load_addr + exec->e_phoff); | 
|  | NEW_AUX_ENT (1, AT_PHENT, sizeof (struct elf_phdr)); | 
|  | NEW_AUX_ENT (2, AT_PHNUM, exec->e_phnum); | 
|  | NEW_AUX_ENT (3, AT_PAGESZ, ELF_EXEC_PAGESIZE); | 
|  | NEW_AUX_ENT (4, AT_BASE, interp_load_addr); | 
|  | NEW_AUX_ENT (5, AT_FLAGS, 0); | 
|  | NEW_AUX_ENT (6, AT_ENTRY, (elf_addr_t) exec->e_entry); | 
|  | NEW_AUX_ENT (7, AT_UID, (elf_addr_t) current->uid); | 
|  | NEW_AUX_ENT (8, AT_EUID, (elf_addr_t) current->euid); | 
|  | NEW_AUX_ENT (9, AT_GID, (elf_addr_t) current->gid); | 
|  | NEW_AUX_ENT (10, AT_EGID, (elf_addr_t) current->egid); | 
|  | } | 
|  | #undef NEW_AUX_ENT | 
|  |  | 
|  | sp -= envc+1; | 
|  | envp = sp; | 
|  | sp -= argc+1; | 
|  | argv = sp; | 
|  |  | 
|  | __put_user((elf_addr_t)argc,--sp); | 
|  | current->mm->arg_start = (unsigned long) p; | 
|  | while (argc-->0) { | 
|  | __put_user((unsigned long)p,argv++); | 
|  | p += strlen_user(p); | 
|  | } | 
|  | __put_user((unsigned long) NULL, argv); | 
|  | current->mm->arg_end = current->mm->env_start = (unsigned long) p; | 
|  | while (envc-->0) { | 
|  | __put_user((unsigned long)p,envp++); | 
|  | p += strlen_user(p); | 
|  | } | 
|  | __put_user((unsigned long) NULL, envp); | 
|  | current->mm->env_end = (unsigned long) p; | 
|  | return sp; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This is much more generalized than the library routine read function, | 
|  | * so we keep this separate.  Technically the library read function | 
|  | * is only provided so that we can read a.out libraries that have | 
|  | * an ELF header. | 
|  | */ | 
|  | static unsigned int load_irix_interp(struct elfhdr * interp_elf_ex, | 
|  | struct file * interpreter, | 
|  | unsigned int *interp_load_addr) | 
|  | { | 
|  | struct elf_phdr *elf_phdata  =  NULL; | 
|  | struct elf_phdr *eppnt; | 
|  | unsigned int len; | 
|  | unsigned int load_addr; | 
|  | int elf_bss; | 
|  | int retval; | 
|  | unsigned int last_bss; | 
|  | int error; | 
|  | int i; | 
|  | unsigned int k; | 
|  |  | 
|  | elf_bss = 0; | 
|  | last_bss = 0; | 
|  | error = load_addr = 0; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | print_elfhdr(interp_elf_ex); | 
|  | #endif | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if ((interp_elf_ex->e_type != ET_EXEC && | 
|  | interp_elf_ex->e_type != ET_DYN) || | 
|  | !interpreter->f_op->mmap) { | 
|  | printk("IRIX interp has bad e_type %d\n", interp_elf_ex->e_type); | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  | if(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > PAGE_SIZE) { | 
|  | printk("IRIX interp header bigger than a page (%d)\n", | 
|  | (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum)); | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | elf_phdata = kmalloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum, | 
|  | GFP_KERNEL); | 
|  |  | 
|  | if(!elf_phdata) { | 
|  | printk("Cannot kmalloc phdata for IRIX interp.\n"); | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | /* If the size of this structure has changed, then punt, since | 
|  | * we will be doing the wrong thing. | 
|  | */ | 
|  | if(interp_elf_ex->e_phentsize != 32) { | 
|  | printk("IRIX interp e_phentsize == %d != 32 ", | 
|  | interp_elf_ex->e_phentsize); | 
|  | kfree(elf_phdata); | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | retval = kernel_read(interpreter, interp_elf_ex->e_phoff, | 
|  | (char *) elf_phdata, | 
|  | sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | dump_phdrs(elf_phdata, interp_elf_ex->e_phnum); | 
|  | #endif | 
|  |  | 
|  | eppnt = elf_phdata; | 
|  | for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) { | 
|  | if(eppnt->p_type == PT_LOAD) { | 
|  | int elf_type = MAP_PRIVATE | MAP_DENYWRITE; | 
|  | int elf_prot = 0; | 
|  | unsigned long vaddr = 0; | 
|  | if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ; | 
|  | if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; | 
|  | if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; | 
|  | elf_type |= MAP_FIXED; | 
|  | vaddr = eppnt->p_vaddr; | 
|  |  | 
|  | pr_debug("INTERP do_mmap(%p, %08lx, %08lx, %08lx, %08lx, %08lx) ", | 
|  | interpreter, vaddr, | 
|  | (unsigned long) (eppnt->p_filesz + (eppnt->p_vaddr & 0xfff)), | 
|  | (unsigned long) elf_prot, (unsigned long) elf_type, | 
|  | (unsigned long) (eppnt->p_offset & 0xfffff000)); | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | error = do_mmap(interpreter, vaddr, | 
|  | eppnt->p_filesz + (eppnt->p_vaddr & 0xfff), | 
|  | elf_prot, elf_type, | 
|  | eppnt->p_offset & 0xfffff000); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  |  | 
|  | if(error < 0 && error > -1024) { | 
|  | printk("Aieee IRIX interp mmap error=%d\n", error); | 
|  | break;  /* Real error */ | 
|  | } | 
|  | pr_debug("error=%08lx ", (unsigned long) error); | 
|  | if(!load_addr && interp_elf_ex->e_type == ET_DYN) { | 
|  | load_addr = error; | 
|  | pr_debug("load_addr = error "); | 
|  | } | 
|  |  | 
|  | /* Find the end of the file  mapping for this phdr, and keep | 
|  | * track of the largest address we see for this. | 
|  | */ | 
|  | k = eppnt->p_vaddr + eppnt->p_filesz; | 
|  | if(k > elf_bss) elf_bss = k; | 
|  |  | 
|  | /* Do the same thing for the memory mapping - between | 
|  | * elf_bss and last_bss is the bss section. | 
|  | */ | 
|  | k = eppnt->p_memsz + eppnt->p_vaddr; | 
|  | if(k > last_bss) last_bss = k; | 
|  | pr_debug("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now use mmap to map the library into memory. */ | 
|  | if(error < 0 && error > -1024) { | 
|  | pr_debug("got error %d\n", error); | 
|  | kfree(elf_phdata); | 
|  | return 0xffffffff; | 
|  | } | 
|  |  | 
|  | /* Now fill out the bss section.  First pad the last page up | 
|  | * to the page boundary, and then perform a mmap to make sure | 
|  | * that there are zero-mapped pages up to and including the | 
|  | * last bss page. | 
|  | */ | 
|  | pr_debug("padzero(%08lx) ", (unsigned long) (elf_bss)); | 
|  | padzero(elf_bss); | 
|  | len = (elf_bss + 0xfff) & 0xfffff000; /* What we have mapped so far */ | 
|  |  | 
|  | pr_debug("last_bss[%08lx] len[%08lx]\n", (unsigned long) last_bss, | 
|  | (unsigned long) len); | 
|  |  | 
|  | /* Map the last of the bss segment */ | 
|  | if (last_bss > len) { | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | do_brk(len, (last_bss - len)); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  | kfree(elf_phdata); | 
|  |  | 
|  | *interp_load_addr = load_addr; | 
|  | return ((unsigned int) interp_elf_ex->e_entry); | 
|  | } | 
|  |  | 
|  | /* Check sanity of IRIX elf executable header. */ | 
|  | static int verify_binary(struct elfhdr *ehp, struct linux_binprm *bprm) | 
|  | { | 
|  | if (memcmp(ehp->e_ident, ELFMAG, SELFMAG) != 0) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if((ehp->e_type != ET_EXEC && ehp->e_type != ET_DYN) || | 
|  | !bprm->file->f_op->mmap) { | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | /* XXX Don't support N32 or 64bit binaries yet because they can | 
|  | * XXX and do execute 64 bit instructions and expect all registers | 
|  | * XXX to be 64 bit as well.  We need to make the kernel save | 
|  | * XXX all registers as 64bits on cpu's capable of this at | 
|  | * XXX exception time plus frob the XTLB exception vector. | 
|  | */ | 
|  | if((ehp->e_flags & EF_MIPS_ABI2)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is where the detailed check is performed. Irix binaries | 
|  | * use interpreters with 'libc.so' in the name, so this function | 
|  | * can differentiate between Linux and Irix binaries. | 
|  | */ | 
|  | static inline int look_for_irix_interpreter(char **name, | 
|  | struct file **interpreter, | 
|  | struct elfhdr *interp_elf_ex, | 
|  | struct elf_phdr *epp, | 
|  | struct linux_binprm *bprm, int pnum) | 
|  | { | 
|  | int i; | 
|  | int retval = -EINVAL; | 
|  | struct file *file = NULL; | 
|  |  | 
|  | *name = NULL; | 
|  | for(i = 0; i < pnum; i++, epp++) { | 
|  | if (epp->p_type != PT_INTERP) | 
|  | continue; | 
|  |  | 
|  | /* It is illegal to have two interpreters for one executable. */ | 
|  | if (*name != NULL) | 
|  | goto out; | 
|  |  | 
|  | *name = kmalloc(epp->p_filesz + strlen(IRIX_EMUL), GFP_KERNEL); | 
|  | if (!*name) | 
|  | return -ENOMEM; | 
|  |  | 
|  | strcpy(*name, IRIX_EMUL); | 
|  | retval = kernel_read(bprm->file, epp->p_offset, (*name + 16), | 
|  | epp->p_filesz); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | file = open_exec(*name); | 
|  | if (IS_ERR(file)) { | 
|  | retval = PTR_ERR(file); | 
|  | goto out; | 
|  | } | 
|  | retval = kernel_read(file, 0, bprm->buf, 128); | 
|  | if (retval < 0) | 
|  | goto dput_and_out; | 
|  |  | 
|  | *interp_elf_ex = *(struct elfhdr *) bprm->buf; | 
|  | } | 
|  | *interpreter = file; | 
|  | return 0; | 
|  |  | 
|  | dput_and_out: | 
|  | fput(file); | 
|  | out: | 
|  | kfree(*name); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static inline int verify_irix_interpreter(struct elfhdr *ihp) | 
|  | { | 
|  | if (memcmp(ihp->e_ident, ELFMAG, SELFMAG) != 0) | 
|  | return -ELIBBAD; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define EXEC_MAP_FLAGS (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE) | 
|  |  | 
|  | static inline void map_executable(struct file *fp, struct elf_phdr *epp, int pnum, | 
|  | unsigned int *estack, unsigned int *laddr, | 
|  | unsigned int *scode, unsigned int *ebss, | 
|  | unsigned int *ecode, unsigned int *edata, | 
|  | unsigned int *ebrk) | 
|  | { | 
|  | unsigned int tmp; | 
|  | int i, prot; | 
|  |  | 
|  | for(i = 0; i < pnum; i++, epp++) { | 
|  | if(epp->p_type != PT_LOAD) | 
|  | continue; | 
|  |  | 
|  | /* Map it. */ | 
|  | prot  = (epp->p_flags & PF_R) ? PROT_READ : 0; | 
|  | prot |= (epp->p_flags & PF_W) ? PROT_WRITE : 0; | 
|  | prot |= (epp->p_flags & PF_X) ? PROT_EXEC : 0; | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | (void) do_mmap(fp, (epp->p_vaddr & 0xfffff000), | 
|  | (epp->p_filesz + (epp->p_vaddr & 0xfff)), | 
|  | prot, EXEC_MAP_FLAGS, | 
|  | (epp->p_offset & 0xfffff000)); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  |  | 
|  | /* Fixup location tracking vars. */ | 
|  | if((epp->p_vaddr & 0xfffff000) < *estack) | 
|  | *estack = (epp->p_vaddr & 0xfffff000); | 
|  | if(!*laddr) | 
|  | *laddr = epp->p_vaddr - epp->p_offset; | 
|  | if(epp->p_vaddr < *scode) | 
|  | *scode = epp->p_vaddr; | 
|  |  | 
|  | tmp = epp->p_vaddr + epp->p_filesz; | 
|  | if(tmp > *ebss) | 
|  | *ebss = tmp; | 
|  | if((epp->p_flags & PF_X) && *ecode < tmp) | 
|  | *ecode = tmp; | 
|  | if(*edata < tmp) | 
|  | *edata = tmp; | 
|  |  | 
|  | tmp = epp->p_vaddr + epp->p_memsz; | 
|  | if(tmp > *ebrk) | 
|  | *ebrk = tmp; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static inline int map_interpreter(struct elf_phdr *epp, struct elfhdr *ihp, | 
|  | struct file *interp, unsigned int *iladdr, | 
|  | int pnum, mm_segment_t old_fs, | 
|  | unsigned int *eentry) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | *eentry = 0xffffffff; | 
|  | for(i = 0; i < pnum; i++, epp++) { | 
|  | if(epp->p_type != PT_INTERP) | 
|  | continue; | 
|  |  | 
|  | /* We should have fielded this error elsewhere... */ | 
|  | if(*eentry != 0xffffffff) | 
|  | return -1; | 
|  |  | 
|  | set_fs(old_fs); | 
|  | *eentry = load_irix_interp(ihp, interp, iladdr); | 
|  | old_fs = get_fs(); | 
|  | set_fs(get_ds()); | 
|  |  | 
|  | fput(interp); | 
|  |  | 
|  | if (*eentry == 0xffffffff) | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IRIX maps a page at 0x200000 that holds information about the | 
|  | * process and the system, here we map the page and fill the | 
|  | * structure | 
|  | */ | 
|  | static void irix_map_prda_page(void) | 
|  | { | 
|  | unsigned long v; | 
|  | struct prda *pp; | 
|  |  | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | v =  do_brk (PRDA_ADDRESS, PAGE_SIZE); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  |  | 
|  | if (v < 0) | 
|  | return; | 
|  |  | 
|  | pp = (struct prda *) v; | 
|  | pp->prda_sys.t_pid  = current->pid; | 
|  | pp->prda_sys.t_prid = read_c0_prid(); | 
|  | pp->prda_sys.t_rpid = current->pid; | 
|  |  | 
|  | /* We leave the rest set to zero */ | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* These are the functions used to load ELF style executables and shared | 
|  | * libraries.  There is no binary dependent code anywhere else. | 
|  | */ | 
|  | static int load_irix_binary(struct linux_binprm * bprm, struct pt_regs * regs) | 
|  | { | 
|  | struct elfhdr elf_ex, interp_elf_ex; | 
|  | struct file *interpreter; | 
|  | struct elf_phdr *elf_phdata, *elf_ihdr, *elf_ephdr; | 
|  | unsigned int load_addr, elf_bss, elf_brk; | 
|  | unsigned int elf_entry, interp_load_addr = 0; | 
|  | unsigned int start_code, end_code, end_data, elf_stack; | 
|  | int retval, has_interp, has_ephdr, size, i; | 
|  | char *elf_interpreter; | 
|  | mm_segment_t old_fs; | 
|  |  | 
|  | load_addr = 0; | 
|  | has_interp = has_ephdr = 0; | 
|  | elf_ihdr = elf_ephdr = NULL; | 
|  | elf_ex = *((struct elfhdr *) bprm->buf); | 
|  | retval = -ENOEXEC; | 
|  |  | 
|  | if (verify_binary(&elf_ex, bprm)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Telling -o32 static binaries from Linux and Irix apart from each | 
|  | * other is difficult. There are 2 differences to be noted for static | 
|  | * binaries from the 2 operating systems: | 
|  | * | 
|  | *    1) Irix binaries have their .text section before their .init | 
|  | *       section. Linux binaries are just the opposite. | 
|  | * | 
|  | *    2) Irix binaries usually have <= 12 sections and Linux | 
|  | *       binaries have > 20. | 
|  | * | 
|  | * We will use Method #2 since Method #1 would require us to read in | 
|  | * the section headers which is way too much overhead. This appears | 
|  | * to work for everything we have ran into so far. If anyone has a | 
|  | * better method to tell the binaries apart, I'm listening. | 
|  | */ | 
|  | if (elf_ex.e_shnum > 20) | 
|  | goto out; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | print_elfhdr(&elf_ex); | 
|  | #endif | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  | size = elf_ex.e_phentsize * elf_ex.e_phnum; | 
|  | if (size > 65536) | 
|  | goto out; | 
|  | elf_phdata = kmalloc(size, GFP_KERNEL); | 
|  | if (elf_phdata == NULL) { | 
|  | retval = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | retval = kernel_read(bprm->file, elf_ex.e_phoff, (char *)elf_phdata, size); | 
|  | if (retval < 0) | 
|  | goto out_free_ph; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | dump_phdrs(elf_phdata, elf_ex.e_phnum); | 
|  | #endif | 
|  |  | 
|  | /* Set some things for later. */ | 
|  | for(i = 0; i < elf_ex.e_phnum; i++) { | 
|  | switch(elf_phdata[i].p_type) { | 
|  | case PT_INTERP: | 
|  | has_interp = 1; | 
|  | elf_ihdr = &elf_phdata[i]; | 
|  | break; | 
|  | case PT_PHDR: | 
|  | has_ephdr = 1; | 
|  | elf_ephdr = &elf_phdata[i]; | 
|  | break; | 
|  | }; | 
|  | } | 
|  |  | 
|  | pr_debug("\n"); | 
|  |  | 
|  | elf_bss = 0; | 
|  | elf_brk = 0; | 
|  |  | 
|  | elf_stack = 0xffffffff; | 
|  | elf_interpreter = NULL; | 
|  | start_code = 0xffffffff; | 
|  | end_code = 0; | 
|  | end_data = 0; | 
|  |  | 
|  | /* | 
|  | * If we get a return value, we change the value to be ENOEXEC | 
|  | * so that we can exit gracefully and the main binary format | 
|  | * search loop in 'fs/exec.c' will move onto the next handler | 
|  | * which should be the normal ELF binary handler. | 
|  | */ | 
|  | retval = look_for_irix_interpreter(&elf_interpreter, &interpreter, | 
|  | &interp_elf_ex, elf_phdata, bprm, | 
|  | elf_ex.e_phnum); | 
|  | if (retval) { | 
|  | retval = -ENOEXEC; | 
|  | goto out_free_file; | 
|  | } | 
|  |  | 
|  | if (elf_interpreter) { | 
|  | retval = verify_irix_interpreter(&interp_elf_ex); | 
|  | if(retval) | 
|  | goto out_free_interp; | 
|  | } | 
|  |  | 
|  | /* OK, we are done with that, now set up the arg stuff, | 
|  | * and then start this sucker up. | 
|  | */ | 
|  | retval = -E2BIG; | 
|  | if (!bprm->sh_bang && !bprm->p) | 
|  | goto out_free_interp; | 
|  |  | 
|  | /* Flush all traces of the currently running executable */ | 
|  | retval = flush_old_exec(bprm); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* OK, This is the point of no return */ | 
|  | current->mm->end_data = 0; | 
|  | current->mm->end_code = 0; | 
|  | current->mm->mmap = NULL; | 
|  | current->flags &= ~PF_FORKNOEXEC; | 
|  | elf_entry = (unsigned int) elf_ex.e_entry; | 
|  |  | 
|  | /* Do this so that we can load the interpreter, if need be.  We will | 
|  | * change some of these later. | 
|  | */ | 
|  | setup_arg_pages(bprm, STACK_TOP, EXSTACK_DEFAULT); | 
|  | current->mm->start_stack = bprm->p; | 
|  |  | 
|  | /* At this point, we assume that the image should be loaded at | 
|  | * fixed address, not at a variable address. | 
|  | */ | 
|  | old_fs = get_fs(); | 
|  | set_fs(get_ds()); | 
|  |  | 
|  | map_executable(bprm->file, elf_phdata, elf_ex.e_phnum, &elf_stack, | 
|  | &load_addr, &start_code, &elf_bss, &end_code, | 
|  | &end_data, &elf_brk); | 
|  |  | 
|  | if(elf_interpreter) { | 
|  | retval = map_interpreter(elf_phdata, &interp_elf_ex, | 
|  | interpreter, &interp_load_addr, | 
|  | elf_ex.e_phnum, old_fs, &elf_entry); | 
|  | kfree(elf_interpreter); | 
|  | if(retval) { | 
|  | set_fs(old_fs); | 
|  | printk("Unable to load IRIX ELF interpreter\n"); | 
|  | send_sig(SIGSEGV, current, 0); | 
|  | retval = 0; | 
|  | goto out_free_file; | 
|  | } | 
|  | } | 
|  |  | 
|  | set_fs(old_fs); | 
|  |  | 
|  | kfree(elf_phdata); | 
|  | set_personality(PER_IRIX32); | 
|  | set_binfmt(&irix_format); | 
|  | compute_creds(bprm); | 
|  | current->flags &= ~PF_FORKNOEXEC; | 
|  | bprm->p = (unsigned long) | 
|  | create_irix_tables((char *)bprm->p, bprm->argc, bprm->envc, | 
|  | (elf_interpreter ? &elf_ex : NULL), | 
|  | load_addr, interp_load_addr, regs, elf_ephdr); | 
|  | current->mm->start_brk = current->mm->brk = elf_brk; | 
|  | current->mm->end_code = end_code; | 
|  | current->mm->start_code = start_code; | 
|  | current->mm->end_data = end_data; | 
|  | current->mm->start_stack = bprm->p; | 
|  |  | 
|  | /* Calling set_brk effectively mmaps the pages that we need for the | 
|  | * bss and break sections. | 
|  | */ | 
|  | set_brk(elf_bss, elf_brk); | 
|  |  | 
|  | /* | 
|  | * IRIX maps a page at 0x200000 which holds some system | 
|  | * information.  Programs depend on this. | 
|  | */ | 
|  | irix_map_prda_page(); | 
|  |  | 
|  | padzero(elf_bss); | 
|  |  | 
|  | pr_debug("(start_brk) %lx\n" , (long) current->mm->start_brk); | 
|  | pr_debug("(end_code) %lx\n" , (long) current->mm->end_code); | 
|  | pr_debug("(start_code) %lx\n" , (long) current->mm->start_code); | 
|  | pr_debug("(end_data) %lx\n" , (long) current->mm->end_data); | 
|  | pr_debug("(start_stack) %lx\n" , (long) current->mm->start_stack); | 
|  | pr_debug("(brk) %lx\n" , (long) current->mm->brk); | 
|  |  | 
|  | #if 0 /* XXX No fucking way dude... */ | 
|  | /* Why this, you ask???  Well SVr4 maps page 0 as read-only, | 
|  | * and some applications "depend" upon this behavior. | 
|  | * Since we do not have the power to recompile these, we | 
|  | * emulate the SVr4 behavior.  Sigh. | 
|  | */ | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | (void) do_mmap(NULL, 0, 4096, PROT_READ | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE, 0); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | #endif | 
|  |  | 
|  | start_thread(regs, elf_entry, bprm->p); | 
|  | if (current->ptrace & PT_PTRACED) | 
|  | send_sig(SIGTRAP, current, 0); | 
|  | return 0; | 
|  | out: | 
|  | return retval; | 
|  |  | 
|  | out_free_dentry: | 
|  | allow_write_access(interpreter); | 
|  | fput(interpreter); | 
|  | out_free_interp: | 
|  | kfree(elf_interpreter); | 
|  | out_free_file: | 
|  | out_free_ph: | 
|  | kfree (elf_phdata); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* This is really simpleminded and specialized - we are loading an | 
|  | * a.out library that is given an ELF header. | 
|  | */ | 
|  | static int load_irix_library(struct file *file) | 
|  | { | 
|  | struct elfhdr elf_ex; | 
|  | struct elf_phdr *elf_phdata  =  NULL; | 
|  | unsigned int len = 0; | 
|  | int elf_bss = 0; | 
|  | int retval; | 
|  | unsigned int bss; | 
|  | int error; | 
|  | int i,j, k; | 
|  |  | 
|  | error = kernel_read(file, 0, (char *) &elf_ex, sizeof(elf_ex)); | 
|  | if (error != sizeof(elf_ex)) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | /* First of all, some simple consistency checks. */ | 
|  | if(elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || | 
|  | !file->f_op->mmap) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | /* Now read in all of the header information. */ | 
|  | if(sizeof(struct elf_phdr) * elf_ex.e_phnum > PAGE_SIZE) | 
|  | return -ENOEXEC; | 
|  |  | 
|  | elf_phdata = kmalloc(sizeof(struct elf_phdr) * elf_ex.e_phnum, GFP_KERNEL); | 
|  | if (elf_phdata == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | retval = kernel_read(file, elf_ex.e_phoff, (char *) elf_phdata, | 
|  | sizeof(struct elf_phdr) * elf_ex.e_phnum); | 
|  |  | 
|  | j = 0; | 
|  | for(i=0; i<elf_ex.e_phnum; i++) | 
|  | if((elf_phdata + i)->p_type == PT_LOAD) j++; | 
|  |  | 
|  | if(j != 1)  { | 
|  | kfree(elf_phdata); | 
|  | return -ENOEXEC; | 
|  | } | 
|  |  | 
|  | while(elf_phdata->p_type != PT_LOAD) elf_phdata++; | 
|  |  | 
|  | /* Now use mmap to map the library into memory. */ | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | error = do_mmap(file, | 
|  | elf_phdata->p_vaddr & 0xfffff000, | 
|  | elf_phdata->p_filesz + (elf_phdata->p_vaddr & 0xfff), | 
|  | PROT_READ | PROT_WRITE | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, | 
|  | elf_phdata->p_offset & 0xfffff000); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  |  | 
|  | k = elf_phdata->p_vaddr + elf_phdata->p_filesz; | 
|  | if (k > elf_bss) elf_bss = k; | 
|  |  | 
|  | if (error != (elf_phdata->p_vaddr & 0xfffff000)) { | 
|  | kfree(elf_phdata); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | padzero(elf_bss); | 
|  |  | 
|  | len = (elf_phdata->p_filesz + elf_phdata->p_vaddr+ 0xfff) & 0xfffff000; | 
|  | bss = elf_phdata->p_memsz + elf_phdata->p_vaddr; | 
|  | if (bss > len) { | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | do_brk(len, bss-len); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  | kfree(elf_phdata); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Called through irix_syssgi() to map an elf image given an FD, | 
|  | * a phdr ptr USER_PHDRP in userspace, and a count CNT telling how many | 
|  | * phdrs there are in the USER_PHDRP array.  We return the vaddr the | 
|  | * first phdr was successfully mapped to. | 
|  | */ | 
|  | unsigned long irix_mapelf(int fd, struct elf_phdr __user *user_phdrp, int cnt) | 
|  | { | 
|  | unsigned long type, vaddr, filesz, offset, flags; | 
|  | struct elf_phdr __user *hp; | 
|  | struct file *filp; | 
|  | int i, retval; | 
|  |  | 
|  | pr_debug("irix_mapelf: fd[%d] user_phdrp[%p] cnt[%d]\n", | 
|  | fd, user_phdrp, cnt); | 
|  |  | 
|  | /* First get the verification out of the way. */ | 
|  | hp = user_phdrp; | 
|  | if (!access_ok(VERIFY_READ, hp, (sizeof(struct elf_phdr) * cnt))) { | 
|  | pr_debug("irix_mapelf: bad pointer to ELF PHDR!\n"); | 
|  |  | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | dump_phdrs(user_phdrp, cnt); | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < cnt; i++, hp++) { | 
|  | if (__get_user(type, &hp->p_type)) | 
|  | return -EFAULT; | 
|  | if (type != PT_LOAD) { | 
|  | printk("irix_mapelf: One section is not PT_LOAD!\n"); | 
|  | return -ENOEXEC; | 
|  | } | 
|  | } | 
|  |  | 
|  | filp = fget(fd); | 
|  | if (!filp) | 
|  | return -EACCES; | 
|  | if(!filp->f_op) { | 
|  | printk("irix_mapelf: Bogon filp!\n"); | 
|  | fput(filp); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | hp = user_phdrp; | 
|  | for(i = 0; i < cnt; i++, hp++) { | 
|  | int prot; | 
|  |  | 
|  | retval = __get_user(vaddr, &hp->p_vaddr); | 
|  | retval |= __get_user(filesz, &hp->p_filesz); | 
|  | retval |= __get_user(offset, &hp->p_offset); | 
|  | retval |= __get_user(flags, &hp->p_flags); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | prot  = (flags & PF_R) ? PROT_READ : 0; | 
|  | prot |= (flags & PF_W) ? PROT_WRITE : 0; | 
|  | prot |= (flags & PF_X) ? PROT_EXEC : 0; | 
|  |  | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | retval = do_mmap(filp, (vaddr & 0xfffff000), | 
|  | (filesz + (vaddr & 0xfff)), | 
|  | prot, (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), | 
|  | (offset & 0xfffff000)); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  |  | 
|  | if (retval != (vaddr & 0xfffff000)) { | 
|  | printk("irix_mapelf: do_mmap fails with %d!\n", retval); | 
|  | fput(filp); | 
|  | return retval; | 
|  | } | 
|  | } | 
|  |  | 
|  | pr_debug("irix_mapelf: Success, returning %08lx\n", | 
|  | (unsigned long) user_phdrp->p_vaddr); | 
|  |  | 
|  | fput(filp); | 
|  |  | 
|  | if (__get_user(vaddr, &user_phdrp->p_vaddr)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return vaddr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ELF core dumper | 
|  | * | 
|  | * Modelled on fs/exec.c:aout_core_dump() | 
|  | * Jeremy Fitzhardinge <jeremy@sw.oz.au> | 
|  | */ | 
|  |  | 
|  | /* These are the only things you should do on a core-file: use only these | 
|  | * functions to write out all the necessary info. | 
|  | */ | 
|  | static int dump_write(struct file *file, const void __user *addr, int nr) | 
|  | { | 
|  | return file->f_op->write(file, (const char __user *) addr, nr, &file->f_pos) == nr; | 
|  | } | 
|  |  | 
|  | static int dump_seek(struct file *file, off_t off) | 
|  | { | 
|  | if (file->f_op->llseek) { | 
|  | if (file->f_op->llseek(file, off, 0) != off) | 
|  | return 0; | 
|  | } else | 
|  | file->f_pos = off; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Decide whether a segment is worth dumping; default is yes to be | 
|  | * sure (missing info is worse than too much; etc). | 
|  | * Personally I'd include everything, and use the coredump limit... | 
|  | * | 
|  | * I think we should skip something. But I am not sure how. H.J. | 
|  | */ | 
|  | static inline int maydump(struct vm_area_struct *vma) | 
|  | { | 
|  | if (!(vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC))) | 
|  | return 0; | 
|  | #if 1 | 
|  | if (vma->vm_flags & (VM_WRITE|VM_GROWSUP|VM_GROWSDOWN)) | 
|  | return 1; | 
|  | if (vma->vm_flags & (VM_READ|VM_EXEC|VM_EXECUTABLE|VM_SHARED)) | 
|  | return 0; | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #define roundup(x, y)  ((((x)+((y)-1))/(y))*(y)) | 
|  |  | 
|  | /* An ELF note in memory. */ | 
|  | struct memelfnote | 
|  | { | 
|  | const char *name; | 
|  | int type; | 
|  | unsigned int datasz; | 
|  | void *data; | 
|  | }; | 
|  |  | 
|  | static int notesize(struct memelfnote *en) | 
|  | { | 
|  | int sz; | 
|  |  | 
|  | sz = sizeof(struct elf_note); | 
|  | sz += roundup(strlen(en->name), 4); | 
|  | sz += roundup(en->datasz, 4); | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | /* #define DEBUG */ | 
|  |  | 
|  | #define DUMP_WRITE(addr, nr)	\ | 
|  | if (!dump_write(file, (addr), (nr))) \ | 
|  | goto end_coredump; | 
|  | #define DUMP_SEEK(off)	\ | 
|  | if (!dump_seek(file, (off))) \ | 
|  | goto end_coredump; | 
|  |  | 
|  | static int writenote(struct memelfnote *men, struct file *file) | 
|  | { | 
|  | struct elf_note en; | 
|  |  | 
|  | en.n_namesz = strlen(men->name); | 
|  | en.n_descsz = men->datasz; | 
|  | en.n_type = men->type; | 
|  |  | 
|  | DUMP_WRITE(&en, sizeof(en)); | 
|  | DUMP_WRITE(men->name, en.n_namesz); | 
|  | /* XXX - cast from long long to long to avoid need for libgcc.a */ | 
|  | DUMP_SEEK(roundup((unsigned long)file->f_pos, 4));	/* XXX */ | 
|  | DUMP_WRITE(men->data, men->datasz); | 
|  | DUMP_SEEK(roundup((unsigned long)file->f_pos, 4));	/* XXX */ | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | end_coredump: | 
|  | return 0; | 
|  | } | 
|  | #undef DUMP_WRITE | 
|  | #undef DUMP_SEEK | 
|  |  | 
|  | #define DUMP_WRITE(addr, nr)	\ | 
|  | if (!dump_write(file, (addr), (nr))) \ | 
|  | goto end_coredump; | 
|  | #define DUMP_SEEK(off)	\ | 
|  | if (!dump_seek(file, (off))) \ | 
|  | goto end_coredump; | 
|  |  | 
|  | /* Actual dumper. | 
|  | * | 
|  | * This is a two-pass process; first we find the offsets of the bits, | 
|  | * and then they are actually written out.  If we run out of core limit | 
|  | * we just truncate. | 
|  | */ | 
|  | static int irix_core_dump(long signr, struct pt_regs * regs, struct file *file) | 
|  | { | 
|  | int has_dumped = 0; | 
|  | mm_segment_t fs; | 
|  | int segs; | 
|  | int i; | 
|  | size_t size; | 
|  | struct vm_area_struct *vma; | 
|  | struct elfhdr elf; | 
|  | off_t offset = 0, dataoff; | 
|  | int limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; | 
|  | int numnote = 3; | 
|  | struct memelfnote notes[3]; | 
|  | struct elf_prstatus prstatus;	/* NT_PRSTATUS */ | 
|  | elf_fpregset_t fpu;		/* NT_PRFPREG */ | 
|  | struct elf_prpsinfo psinfo;	/* NT_PRPSINFO */ | 
|  |  | 
|  | /* Count what's needed to dump, up to the limit of coredump size. */ | 
|  | segs = 0; | 
|  | size = 0; | 
|  | for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) { | 
|  | if (maydump(vma)) | 
|  | { | 
|  | int sz = vma->vm_end-vma->vm_start; | 
|  |  | 
|  | if (size+sz >= limit) | 
|  | break; | 
|  | else | 
|  | size += sz; | 
|  | } | 
|  |  | 
|  | segs++; | 
|  | } | 
|  | #ifdef DEBUG | 
|  | printk("irix_core_dump: %d segs taking %d bytes\n", segs, size); | 
|  | #endif | 
|  |  | 
|  | /* Set up header. */ | 
|  | memcpy(elf.e_ident, ELFMAG, SELFMAG); | 
|  | elf.e_ident[EI_CLASS] = ELFCLASS32; | 
|  | elf.e_ident[EI_DATA] = ELFDATA2LSB; | 
|  | elf.e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf.e_ident[EI_OSABI] = ELF_OSABI; | 
|  | memset(elf.e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); | 
|  |  | 
|  | elf.e_type = ET_CORE; | 
|  | elf.e_machine = ELF_ARCH; | 
|  | elf.e_version = EV_CURRENT; | 
|  | elf.e_entry = 0; | 
|  | elf.e_phoff = sizeof(elf); | 
|  | elf.e_shoff = 0; | 
|  | elf.e_flags = 0; | 
|  | elf.e_ehsize = sizeof(elf); | 
|  | elf.e_phentsize = sizeof(struct elf_phdr); | 
|  | elf.e_phnum = segs+1;		/* Include notes. */ | 
|  | elf.e_shentsize = 0; | 
|  | elf.e_shnum = 0; | 
|  | elf.e_shstrndx = 0; | 
|  |  | 
|  | fs = get_fs(); | 
|  | set_fs(KERNEL_DS); | 
|  |  | 
|  | has_dumped = 1; | 
|  | current->flags |= PF_DUMPCORE; | 
|  |  | 
|  | DUMP_WRITE(&elf, sizeof(elf)); | 
|  | offset += sizeof(elf);				/* Elf header. */ | 
|  | offset += (segs+1) * sizeof(struct elf_phdr);	/* Program headers. */ | 
|  |  | 
|  | /* Set up the notes in similar form to SVR4 core dumps made | 
|  | * with info from their /proc. | 
|  | */ | 
|  | memset(&psinfo, 0, sizeof(psinfo)); | 
|  | memset(&prstatus, 0, sizeof(prstatus)); | 
|  |  | 
|  | notes[0].name = "CORE"; | 
|  | notes[0].type = NT_PRSTATUS; | 
|  | notes[0].datasz = sizeof(prstatus); | 
|  | notes[0].data = &prstatus; | 
|  | prstatus.pr_info.si_signo = prstatus.pr_cursig = signr; | 
|  | prstatus.pr_sigpend = current->pending.signal.sig[0]; | 
|  | prstatus.pr_sighold = current->blocked.sig[0]; | 
|  | psinfo.pr_pid = prstatus.pr_pid = current->pid; | 
|  | psinfo.pr_ppid = prstatus.pr_ppid = current->parent->pid; | 
|  | psinfo.pr_pgrp = prstatus.pr_pgrp = process_group(current); | 
|  | psinfo.pr_sid = prstatus.pr_sid = current->signal->session; | 
|  | if (current->pid == current->tgid) { | 
|  | /* | 
|  | * This is the record for the group leader.  Add in the | 
|  | * cumulative times of previous dead threads.  This total | 
|  | * won't include the time of each live thread whose state | 
|  | * is included in the core dump.  The final total reported | 
|  | * to our parent process when it calls wait4 will include | 
|  | * those sums as well as the little bit more time it takes | 
|  | * this and each other thread to finish dying after the | 
|  | * core dump synchronization phase. | 
|  | */ | 
|  | jiffies_to_timeval(current->utime + current->signal->utime, | 
|  | &prstatus.pr_utime); | 
|  | jiffies_to_timeval(current->stime + current->signal->stime, | 
|  | &prstatus.pr_stime); | 
|  | } else { | 
|  | jiffies_to_timeval(current->utime, &prstatus.pr_utime); | 
|  | jiffies_to_timeval(current->stime, &prstatus.pr_stime); | 
|  | } | 
|  | jiffies_to_timeval(current->signal->cutime, &prstatus.pr_cutime); | 
|  | jiffies_to_timeval(current->signal->cstime, &prstatus.pr_cstime); | 
|  |  | 
|  | if (sizeof(elf_gregset_t) != sizeof(struct pt_regs)) { | 
|  | printk("sizeof(elf_gregset_t) (%d) != sizeof(struct pt_regs) " | 
|  | "(%d)\n", sizeof(elf_gregset_t), sizeof(struct pt_regs)); | 
|  | } else { | 
|  | *(struct pt_regs *)&prstatus.pr_reg = *regs; | 
|  | } | 
|  |  | 
|  | notes[1].name = "CORE"; | 
|  | notes[1].type = NT_PRPSINFO; | 
|  | notes[1].datasz = sizeof(psinfo); | 
|  | notes[1].data = &psinfo; | 
|  | i = current->state ? ffz(~current->state) + 1 : 0; | 
|  | psinfo.pr_state = i; | 
|  | psinfo.pr_sname = (i < 0 || i > 5) ? '.' : "RSDZTD"[i]; | 
|  | psinfo.pr_zomb = psinfo.pr_sname == 'Z'; | 
|  | psinfo.pr_nice = task_nice(current); | 
|  | psinfo.pr_flag = current->flags; | 
|  | psinfo.pr_uid = current->uid; | 
|  | psinfo.pr_gid = current->gid; | 
|  | { | 
|  | int i, len; | 
|  |  | 
|  | set_fs(fs); | 
|  |  | 
|  | len = current->mm->arg_end - current->mm->arg_start; | 
|  | len = len >= ELF_PRARGSZ ? ELF_PRARGSZ : len; | 
|  | (void *) copy_from_user(&psinfo.pr_psargs, | 
|  | (const char __user *)current->mm->arg_start, len); | 
|  | for (i = 0; i < len; i++) | 
|  | if (psinfo.pr_psargs[i] == 0) | 
|  | psinfo.pr_psargs[i] = ' '; | 
|  | psinfo.pr_psargs[len] = 0; | 
|  |  | 
|  | set_fs(KERNEL_DS); | 
|  | } | 
|  | strlcpy(psinfo.pr_fname, current->comm, sizeof(psinfo.pr_fname)); | 
|  |  | 
|  | /* Try to dump the FPU. */ | 
|  | prstatus.pr_fpvalid = dump_fpu (regs, &fpu); | 
|  | if (!prstatus.pr_fpvalid) { | 
|  | numnote--; | 
|  | } else { | 
|  | notes[2].name = "CORE"; | 
|  | notes[2].type = NT_PRFPREG; | 
|  | notes[2].datasz = sizeof(fpu); | 
|  | notes[2].data = &fpu; | 
|  | } | 
|  |  | 
|  | /* Write notes phdr entry. */ | 
|  | { | 
|  | struct elf_phdr phdr; | 
|  | int sz = 0; | 
|  |  | 
|  | for(i = 0; i < numnote; i++) | 
|  | sz += notesize(¬es[i]); | 
|  |  | 
|  | phdr.p_type = PT_NOTE; | 
|  | phdr.p_offset = offset; | 
|  | phdr.p_vaddr = 0; | 
|  | phdr.p_paddr = 0; | 
|  | phdr.p_filesz = sz; | 
|  | phdr.p_memsz = 0; | 
|  | phdr.p_flags = 0; | 
|  | phdr.p_align = 0; | 
|  |  | 
|  | offset += phdr.p_filesz; | 
|  | DUMP_WRITE(&phdr, sizeof(phdr)); | 
|  | } | 
|  |  | 
|  | /* Page-align dumped data. */ | 
|  | dataoff = offset = roundup(offset, PAGE_SIZE); | 
|  |  | 
|  | /* Write program headers for segments dump. */ | 
|  | for(vma = current->mm->mmap, i = 0; | 
|  | i < segs && vma != NULL; vma = vma->vm_next) { | 
|  | struct elf_phdr phdr; | 
|  | size_t sz; | 
|  |  | 
|  | i++; | 
|  |  | 
|  | sz = vma->vm_end - vma->vm_start; | 
|  |  | 
|  | phdr.p_type = PT_LOAD; | 
|  | phdr.p_offset = offset; | 
|  | phdr.p_vaddr = vma->vm_start; | 
|  | phdr.p_paddr = 0; | 
|  | phdr.p_filesz = maydump(vma) ? sz : 0; | 
|  | phdr.p_memsz = sz; | 
|  | offset += phdr.p_filesz; | 
|  | phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | phdr.p_flags |= PF_W; | 
|  | if (vma->vm_flags & VM_EXEC) | 
|  | phdr.p_flags |= PF_X; | 
|  | phdr.p_align = PAGE_SIZE; | 
|  |  | 
|  | DUMP_WRITE(&phdr, sizeof(phdr)); | 
|  | } | 
|  |  | 
|  | for(i = 0; i < numnote; i++) | 
|  | if (!writenote(¬es[i], file)) | 
|  | goto end_coredump; | 
|  |  | 
|  | set_fs(fs); | 
|  |  | 
|  | DUMP_SEEK(dataoff); | 
|  |  | 
|  | for(i = 0, vma = current->mm->mmap; | 
|  | i < segs && vma != NULL; | 
|  | vma = vma->vm_next) { | 
|  | unsigned long addr = vma->vm_start; | 
|  | unsigned long len = vma->vm_end - vma->vm_start; | 
|  |  | 
|  | if (!maydump(vma)) | 
|  | continue; | 
|  | i++; | 
|  | #ifdef DEBUG | 
|  | printk("elf_core_dump: writing %08lx %lx\n", addr, len); | 
|  | #endif | 
|  | DUMP_WRITE((void __user *)addr, len); | 
|  | } | 
|  |  | 
|  | if ((off_t) file->f_pos != offset) { | 
|  | /* Sanity check. */ | 
|  | printk("elf_core_dump: file->f_pos (%ld) != offset (%ld)\n", | 
|  | (off_t) file->f_pos, offset); | 
|  | } | 
|  |  | 
|  | end_coredump: | 
|  | set_fs(fs); | 
|  | return has_dumped; | 
|  | } | 
|  |  | 
|  | static int __init init_irix_binfmt(void) | 
|  | { | 
|  | extern int init_inventory(void); | 
|  | extern asmlinkage unsigned long sys_call_table; | 
|  | extern asmlinkage unsigned long sys_call_table_irix5; | 
|  |  | 
|  | init_inventory(); | 
|  |  | 
|  | /* | 
|  | * Copy the IRIX5 syscall table (8000 bytes) into the main syscall | 
|  | * table. The IRIX5 calls are located by an offset of 8000 bytes | 
|  | * from the beginning of the main table. | 
|  | */ | 
|  | memcpy((void *) ((unsigned long) &sys_call_table + 8000), | 
|  | &sys_call_table_irix5, 8000); | 
|  |  | 
|  | return register_binfmt(&irix_format); | 
|  | } | 
|  |  | 
|  | static void __exit exit_irix_binfmt(void) | 
|  | { | 
|  | /* | 
|  | * Remove the Irix ELF loader. | 
|  | */ | 
|  | unregister_binfmt(&irix_format); | 
|  | } | 
|  |  | 
|  | module_init(init_irix_binfmt) | 
|  | module_exit(exit_irix_binfmt) |