| #include <linux/clocksource.h> | 
 | #include <linux/clockchips.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/sysdev.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/hpet.h> | 
 | #include <linux/init.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/pm.h> | 
 | #include <linux/io.h> | 
 |  | 
 | #include <asm/fixmap.h> | 
 | #include <asm/i8253.h> | 
 | #include <asm/hpet.h> | 
 |  | 
 | #define HPET_MASK			CLOCKSOURCE_MASK(32) | 
 |  | 
 | /* FSEC = 10^-15 | 
 |    NSEC = 10^-9 */ | 
 | #define FSEC_PER_NSEC			1000000L | 
 |  | 
 | #define HPET_DEV_USED_BIT		2 | 
 | #define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT) | 
 | #define HPET_DEV_VALID			0x8 | 
 | #define HPET_DEV_FSB_CAP		0x1000 | 
 | #define HPET_DEV_PERI_CAP		0x2000 | 
 |  | 
 | #define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt) | 
 |  | 
 | /* | 
 |  * HPET address is set in acpi/boot.c, when an ACPI entry exists | 
 |  */ | 
 | unsigned long				hpet_address; | 
 | u8					hpet_blockid; /* OS timer block num */ | 
 | u8					hpet_msi_disable; | 
 |  | 
 | #ifdef CONFIG_PCI_MSI | 
 | static unsigned long			hpet_num_timers; | 
 | #endif | 
 | static void __iomem			*hpet_virt_address; | 
 |  | 
 | struct hpet_dev { | 
 | 	struct clock_event_device	evt; | 
 | 	unsigned int			num; | 
 | 	int				cpu; | 
 | 	unsigned int			irq; | 
 | 	unsigned int			flags; | 
 | 	char				name[10]; | 
 | }; | 
 |  | 
 | inline unsigned int hpet_readl(unsigned int a) | 
 | { | 
 | 	return readl(hpet_virt_address + a); | 
 | } | 
 |  | 
 | static inline void hpet_writel(unsigned int d, unsigned int a) | 
 | { | 
 | 	writel(d, hpet_virt_address + a); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | #include <asm/pgtable.h> | 
 | #endif | 
 |  | 
 | static inline void hpet_set_mapping(void) | 
 | { | 
 | 	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); | 
 | #ifdef CONFIG_X86_64 | 
 | 	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void hpet_clear_mapping(void) | 
 | { | 
 | 	iounmap(hpet_virt_address); | 
 | 	hpet_virt_address = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * HPET command line enable / disable | 
 |  */ | 
 | static int boot_hpet_disable; | 
 | int hpet_force_user; | 
 | static int hpet_verbose; | 
 |  | 
 | static int __init hpet_setup(char *str) | 
 | { | 
 | 	if (str) { | 
 | 		if (!strncmp("disable", str, 7)) | 
 | 			boot_hpet_disable = 1; | 
 | 		if (!strncmp("force", str, 5)) | 
 | 			hpet_force_user = 1; | 
 | 		if (!strncmp("verbose", str, 7)) | 
 | 			hpet_verbose = 1; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | __setup("hpet=", hpet_setup); | 
 |  | 
 | static int __init disable_hpet(char *str) | 
 | { | 
 | 	boot_hpet_disable = 1; | 
 | 	return 1; | 
 | } | 
 | __setup("nohpet", disable_hpet); | 
 |  | 
 | static inline int is_hpet_capable(void) | 
 | { | 
 | 	return !boot_hpet_disable && hpet_address; | 
 | } | 
 |  | 
 | /* | 
 |  * HPET timer interrupt enable / disable | 
 |  */ | 
 | static int hpet_legacy_int_enabled; | 
 |  | 
 | /** | 
 |  * is_hpet_enabled - check whether the hpet timer interrupt is enabled | 
 |  */ | 
 | int is_hpet_enabled(void) | 
 | { | 
 | 	return is_hpet_capable() && hpet_legacy_int_enabled; | 
 | } | 
 | EXPORT_SYMBOL_GPL(is_hpet_enabled); | 
 |  | 
 | static void _hpet_print_config(const char *function, int line) | 
 | { | 
 | 	u32 i, timers, l, h; | 
 | 	printk(KERN_INFO "hpet: %s(%d):\n", function, line); | 
 | 	l = hpet_readl(HPET_ID); | 
 | 	h = hpet_readl(HPET_PERIOD); | 
 | 	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; | 
 | 	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h); | 
 | 	l = hpet_readl(HPET_CFG); | 
 | 	h = hpet_readl(HPET_STATUS); | 
 | 	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h); | 
 | 	l = hpet_readl(HPET_COUNTER); | 
 | 	h = hpet_readl(HPET_COUNTER+4); | 
 | 	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h); | 
 |  | 
 | 	for (i = 0; i < timers; i++) { | 
 | 		l = hpet_readl(HPET_Tn_CFG(i)); | 
 | 		h = hpet_readl(HPET_Tn_CFG(i)+4); | 
 | 		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", | 
 | 		       i, l, h); | 
 | 		l = hpet_readl(HPET_Tn_CMP(i)); | 
 | 		h = hpet_readl(HPET_Tn_CMP(i)+4); | 
 | 		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", | 
 | 		       i, l, h); | 
 | 		l = hpet_readl(HPET_Tn_ROUTE(i)); | 
 | 		h = hpet_readl(HPET_Tn_ROUTE(i)+4); | 
 | 		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", | 
 | 		       i, l, h); | 
 | 	} | 
 | } | 
 |  | 
 | #define hpet_print_config()					\ | 
 | do {								\ | 
 | 	if (hpet_verbose)					\ | 
 | 		_hpet_print_config(__FUNCTION__, __LINE__);	\ | 
 | } while (0) | 
 |  | 
 | /* | 
 |  * When the hpet driver (/dev/hpet) is enabled, we need to reserve | 
 |  * timer 0 and timer 1 in case of RTC emulation. | 
 |  */ | 
 | #ifdef CONFIG_HPET | 
 |  | 
 | static void hpet_reserve_msi_timers(struct hpet_data *hd); | 
 |  | 
 | static void hpet_reserve_platform_timers(unsigned int id) | 
 | { | 
 | 	struct hpet __iomem *hpet = hpet_virt_address; | 
 | 	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2]; | 
 | 	unsigned int nrtimers, i; | 
 | 	struct hpet_data hd; | 
 |  | 
 | 	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1; | 
 |  | 
 | 	memset(&hd, 0, sizeof(hd)); | 
 | 	hd.hd_phys_address	= hpet_address; | 
 | 	hd.hd_address		= hpet; | 
 | 	hd.hd_nirqs		= nrtimers; | 
 | 	hpet_reserve_timer(&hd, 0); | 
 |  | 
 | #ifdef CONFIG_HPET_EMULATE_RTC | 
 | 	hpet_reserve_timer(&hd, 1); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254 | 
 | 	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers | 
 | 	 * don't bother configuring *any* comparator interrupts. | 
 | 	 */ | 
 | 	hd.hd_irq[0] = HPET_LEGACY_8254; | 
 | 	hd.hd_irq[1] = HPET_LEGACY_RTC; | 
 |  | 
 | 	for (i = 2; i < nrtimers; timer++, i++) { | 
 | 		hd.hd_irq[i] = (readl(&timer->hpet_config) & | 
 | 			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT; | 
 | 	} | 
 |  | 
 | 	hpet_reserve_msi_timers(&hd); | 
 |  | 
 | 	hpet_alloc(&hd); | 
 |  | 
 | } | 
 | #else | 
 | static void hpet_reserve_platform_timers(unsigned int id) { } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Common hpet info | 
 |  */ | 
 | static unsigned long hpet_period; | 
 |  | 
 | static void hpet_legacy_set_mode(enum clock_event_mode mode, | 
 | 			  struct clock_event_device *evt); | 
 | static int hpet_legacy_next_event(unsigned long delta, | 
 | 			   struct clock_event_device *evt); | 
 |  | 
 | /* | 
 |  * The hpet clock event device | 
 |  */ | 
 | static struct clock_event_device hpet_clockevent = { | 
 | 	.name		= "hpet", | 
 | 	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, | 
 | 	.set_mode	= hpet_legacy_set_mode, | 
 | 	.set_next_event = hpet_legacy_next_event, | 
 | 	.shift		= 32, | 
 | 	.irq		= 0, | 
 | 	.rating		= 50, | 
 | }; | 
 |  | 
 | static void hpet_stop_counter(void) | 
 | { | 
 | 	unsigned long cfg = hpet_readl(HPET_CFG); | 
 | 	cfg &= ~HPET_CFG_ENABLE; | 
 | 	hpet_writel(cfg, HPET_CFG); | 
 | } | 
 |  | 
 | static void hpet_reset_counter(void) | 
 | { | 
 | 	hpet_writel(0, HPET_COUNTER); | 
 | 	hpet_writel(0, HPET_COUNTER + 4); | 
 | } | 
 |  | 
 | static void hpet_start_counter(void) | 
 | { | 
 | 	unsigned int cfg = hpet_readl(HPET_CFG); | 
 | 	cfg |= HPET_CFG_ENABLE; | 
 | 	hpet_writel(cfg, HPET_CFG); | 
 | } | 
 |  | 
 | static void hpet_restart_counter(void) | 
 | { | 
 | 	hpet_stop_counter(); | 
 | 	hpet_reset_counter(); | 
 | 	hpet_start_counter(); | 
 | } | 
 |  | 
 | static void hpet_resume_device(void) | 
 | { | 
 | 	force_hpet_resume(); | 
 | } | 
 |  | 
 | static void hpet_resume_counter(struct clocksource *cs) | 
 | { | 
 | 	hpet_resume_device(); | 
 | 	hpet_restart_counter(); | 
 | } | 
 |  | 
 | static void hpet_enable_legacy_int(void) | 
 | { | 
 | 	unsigned int cfg = hpet_readl(HPET_CFG); | 
 |  | 
 | 	cfg |= HPET_CFG_LEGACY; | 
 | 	hpet_writel(cfg, HPET_CFG); | 
 | 	hpet_legacy_int_enabled = 1; | 
 | } | 
 |  | 
 | static void hpet_legacy_clockevent_register(void) | 
 | { | 
 | 	/* Start HPET legacy interrupts */ | 
 | 	hpet_enable_legacy_int(); | 
 |  | 
 | 	/* | 
 | 	 * The mult factor is defined as (include/linux/clockchips.h) | 
 | 	 *  mult/2^shift = cyc/ns (in contrast to ns/cyc in clocksource.h) | 
 | 	 * hpet_period is in units of femtoseconds (per cycle), so | 
 | 	 *  mult/2^shift = cyc/ns = 10^6/hpet_period | 
 | 	 *  mult = (10^6 * 2^shift)/hpet_period | 
 | 	 *  mult = (FSEC_PER_NSEC << hpet_clockevent.shift)/hpet_period | 
 | 	 */ | 
 | 	hpet_clockevent.mult = div_sc((unsigned long) FSEC_PER_NSEC, | 
 | 				      hpet_period, hpet_clockevent.shift); | 
 | 	/* Calculate the min / max delta */ | 
 | 	hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, | 
 | 							   &hpet_clockevent); | 
 | 	/* 5 usec minimum reprogramming delta. */ | 
 | 	hpet_clockevent.min_delta_ns = 5000; | 
 |  | 
 | 	/* | 
 | 	 * Start hpet with the boot cpu mask and make it | 
 | 	 * global after the IO_APIC has been initialized. | 
 | 	 */ | 
 | 	hpet_clockevent.cpumask = cpumask_of(smp_processor_id()); | 
 | 	clockevents_register_device(&hpet_clockevent); | 
 | 	global_clock_event = &hpet_clockevent; | 
 | 	printk(KERN_DEBUG "hpet clockevent registered\n"); | 
 | } | 
 |  | 
 | static int hpet_setup_msi_irq(unsigned int irq); | 
 |  | 
 | static void hpet_set_mode(enum clock_event_mode mode, | 
 | 			  struct clock_event_device *evt, int timer) | 
 | { | 
 | 	unsigned int cfg, cmp, now; | 
 | 	uint64_t delta; | 
 |  | 
 | 	switch (mode) { | 
 | 	case CLOCK_EVT_MODE_PERIODIC: | 
 | 		hpet_stop_counter(); | 
 | 		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult; | 
 | 		delta >>= evt->shift; | 
 | 		now = hpet_readl(HPET_COUNTER); | 
 | 		cmp = now + (unsigned int) delta; | 
 | 		cfg = hpet_readl(HPET_Tn_CFG(timer)); | 
 | 		/* Make sure we use edge triggered interrupts */ | 
 | 		cfg &= ~HPET_TN_LEVEL; | 
 | 		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | | 
 | 		       HPET_TN_SETVAL | HPET_TN_32BIT; | 
 | 		hpet_writel(cfg, HPET_Tn_CFG(timer)); | 
 | 		hpet_writel(cmp, HPET_Tn_CMP(timer)); | 
 | 		udelay(1); | 
 | 		/* | 
 | 		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL | 
 | 		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL | 
 | 		 * bit is automatically cleared after the first write. | 
 | 		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet, | 
 | 		 * Publication # 24674) | 
 | 		 */ | 
 | 		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer)); | 
 | 		hpet_start_counter(); | 
 | 		hpet_print_config(); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_MODE_ONESHOT: | 
 | 		cfg = hpet_readl(HPET_Tn_CFG(timer)); | 
 | 		cfg &= ~HPET_TN_PERIODIC; | 
 | 		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | 
 | 		hpet_writel(cfg, HPET_Tn_CFG(timer)); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_MODE_UNUSED: | 
 | 	case CLOCK_EVT_MODE_SHUTDOWN: | 
 | 		cfg = hpet_readl(HPET_Tn_CFG(timer)); | 
 | 		cfg &= ~HPET_TN_ENABLE; | 
 | 		hpet_writel(cfg, HPET_Tn_CFG(timer)); | 
 | 		break; | 
 |  | 
 | 	case CLOCK_EVT_MODE_RESUME: | 
 | 		if (timer == 0) { | 
 | 			hpet_enable_legacy_int(); | 
 | 		} else { | 
 | 			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); | 
 | 			hpet_setup_msi_irq(hdev->irq); | 
 | 			disable_irq(hdev->irq); | 
 | 			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu)); | 
 | 			enable_irq(hdev->irq); | 
 | 		} | 
 | 		hpet_print_config(); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int hpet_next_event(unsigned long delta, | 
 | 			   struct clock_event_device *evt, int timer) | 
 | { | 
 | 	u32 cnt; | 
 | 	s32 res; | 
 |  | 
 | 	cnt = hpet_readl(HPET_COUNTER); | 
 | 	cnt += (u32) delta; | 
 | 	hpet_writel(cnt, HPET_Tn_CMP(timer)); | 
 |  | 
 | 	/* | 
 | 	 * HPETs are a complete disaster. The compare register is | 
 | 	 * based on a equal comparison and neither provides a less | 
 | 	 * than or equal functionality (which would require to take | 
 | 	 * the wraparound into account) nor a simple count down event | 
 | 	 * mode. Further the write to the comparator register is | 
 | 	 * delayed internally up to two HPET clock cycles in certain | 
 | 	 * chipsets (ATI, ICH9,10). We worked around that by reading | 
 | 	 * back the compare register, but that required another | 
 | 	 * workaround for ICH9,10 chips where the first readout after | 
 | 	 * write can return the old stale value. We already have a | 
 | 	 * minimum delta of 5us enforced, but a NMI or SMI hitting | 
 | 	 * between the counter readout and the comparator write can | 
 | 	 * move us behind that point easily. Now instead of reading | 
 | 	 * the compare register back several times, we make the ETIME | 
 | 	 * decision based on the following: Return ETIME if the | 
 | 	 * counter value after the write is less than 8 HPET cycles | 
 | 	 * away from the event or if the counter is already ahead of | 
 | 	 * the event. | 
 | 	 */ | 
 | 	res = (s32)(cnt - hpet_readl(HPET_COUNTER)); | 
 |  | 
 | 	return res < 8 ? -ETIME : 0; | 
 | } | 
 |  | 
 | static void hpet_legacy_set_mode(enum clock_event_mode mode, | 
 | 			struct clock_event_device *evt) | 
 | { | 
 | 	hpet_set_mode(mode, evt, 0); | 
 | } | 
 |  | 
 | static int hpet_legacy_next_event(unsigned long delta, | 
 | 			struct clock_event_device *evt) | 
 | { | 
 | 	return hpet_next_event(delta, evt, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * HPET MSI Support | 
 |  */ | 
 | #ifdef CONFIG_PCI_MSI | 
 |  | 
 | static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev); | 
 | static struct hpet_dev	*hpet_devs; | 
 |  | 
 | void hpet_msi_unmask(struct irq_data *data) | 
 | { | 
 | 	struct hpet_dev *hdev = data->handler_data; | 
 | 	unsigned int cfg; | 
 |  | 
 | 	/* unmask it */ | 
 | 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); | 
 | 	cfg |= HPET_TN_FSB; | 
 | 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); | 
 | } | 
 |  | 
 | void hpet_msi_mask(struct irq_data *data) | 
 | { | 
 | 	struct hpet_dev *hdev = data->handler_data; | 
 | 	unsigned int cfg; | 
 |  | 
 | 	/* mask it */ | 
 | 	cfg = hpet_readl(HPET_Tn_CFG(hdev->num)); | 
 | 	cfg &= ~HPET_TN_FSB; | 
 | 	hpet_writel(cfg, HPET_Tn_CFG(hdev->num)); | 
 | } | 
 |  | 
 | void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg) | 
 | { | 
 | 	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num)); | 
 | 	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4); | 
 | } | 
 |  | 
 | void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg) | 
 | { | 
 | 	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num)); | 
 | 	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4); | 
 | 	msg->address_hi = 0; | 
 | } | 
 |  | 
 | static void hpet_msi_set_mode(enum clock_event_mode mode, | 
 | 				struct clock_event_device *evt) | 
 | { | 
 | 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); | 
 | 	hpet_set_mode(mode, evt, hdev->num); | 
 | } | 
 |  | 
 | static int hpet_msi_next_event(unsigned long delta, | 
 | 				struct clock_event_device *evt) | 
 | { | 
 | 	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt); | 
 | 	return hpet_next_event(delta, evt, hdev->num); | 
 | } | 
 |  | 
 | static int hpet_setup_msi_irq(unsigned int irq) | 
 | { | 
 | 	if (arch_setup_hpet_msi(irq, hpet_blockid)) { | 
 | 		destroy_irq(irq); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int hpet_assign_irq(struct hpet_dev *dev) | 
 | { | 
 | 	unsigned int irq; | 
 |  | 
 | 	irq = create_irq_nr(0, -1); | 
 | 	if (!irq) | 
 | 		return -EINVAL; | 
 |  | 
 | 	set_irq_data(irq, dev); | 
 |  | 
 | 	if (hpet_setup_msi_irq(irq)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	dev->irq = irq; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static irqreturn_t hpet_interrupt_handler(int irq, void *data) | 
 | { | 
 | 	struct hpet_dev *dev = (struct hpet_dev *)data; | 
 | 	struct clock_event_device *hevt = &dev->evt; | 
 |  | 
 | 	if (!hevt->event_handler) { | 
 | 		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n", | 
 | 				dev->num); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	hevt->event_handler(hevt); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int hpet_setup_irq(struct hpet_dev *dev) | 
 | { | 
 |  | 
 | 	if (request_irq(dev->irq, hpet_interrupt_handler, | 
 | 			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING, | 
 | 			dev->name, dev)) | 
 | 		return -1; | 
 |  | 
 | 	disable_irq(dev->irq); | 
 | 	irq_set_affinity(dev->irq, cpumask_of(dev->cpu)); | 
 | 	enable_irq(dev->irq); | 
 |  | 
 | 	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n", | 
 | 			 dev->name, dev->irq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* This should be called in specific @cpu */ | 
 | static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu) | 
 | { | 
 | 	struct clock_event_device *evt = &hdev->evt; | 
 | 	uint64_t hpet_freq; | 
 |  | 
 | 	WARN_ON(cpu != smp_processor_id()); | 
 | 	if (!(hdev->flags & HPET_DEV_VALID)) | 
 | 		return; | 
 |  | 
 | 	if (hpet_setup_msi_irq(hdev->irq)) | 
 | 		return; | 
 |  | 
 | 	hdev->cpu = cpu; | 
 | 	per_cpu(cpu_hpet_dev, cpu) = hdev; | 
 | 	evt->name = hdev->name; | 
 | 	hpet_setup_irq(hdev); | 
 | 	evt->irq = hdev->irq; | 
 |  | 
 | 	evt->rating = 110; | 
 | 	evt->features = CLOCK_EVT_FEAT_ONESHOT; | 
 | 	if (hdev->flags & HPET_DEV_PERI_CAP) | 
 | 		evt->features |= CLOCK_EVT_FEAT_PERIODIC; | 
 |  | 
 | 	evt->set_mode = hpet_msi_set_mode; | 
 | 	evt->set_next_event = hpet_msi_next_event; | 
 | 	evt->shift = 32; | 
 |  | 
 | 	/* | 
 | 	 * The period is a femto seconds value. We need to calculate the | 
 | 	 * scaled math multiplication factor for nanosecond to hpet tick | 
 | 	 * conversion. | 
 | 	 */ | 
 | 	hpet_freq = FSEC_PER_SEC; | 
 | 	do_div(hpet_freq, hpet_period); | 
 | 	evt->mult = div_sc((unsigned long) hpet_freq, | 
 | 				      NSEC_PER_SEC, evt->shift); | 
 | 	/* Calculate the max delta */ | 
 | 	evt->max_delta_ns = clockevent_delta2ns(0x7FFFFFFF, evt); | 
 | 	/* 5 usec minimum reprogramming delta. */ | 
 | 	evt->min_delta_ns = 5000; | 
 |  | 
 | 	evt->cpumask = cpumask_of(hdev->cpu); | 
 | 	clockevents_register_device(evt); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HPET | 
 | /* Reserve at least one timer for userspace (/dev/hpet) */ | 
 | #define RESERVE_TIMERS 1 | 
 | #else | 
 | #define RESERVE_TIMERS 0 | 
 | #endif | 
 |  | 
 | static void hpet_msi_capability_lookup(unsigned int start_timer) | 
 | { | 
 | 	unsigned int id; | 
 | 	unsigned int num_timers; | 
 | 	unsigned int num_timers_used = 0; | 
 | 	int i; | 
 |  | 
 | 	if (hpet_msi_disable) | 
 | 		return; | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_ARAT)) | 
 | 		return; | 
 | 	id = hpet_readl(HPET_ID); | 
 |  | 
 | 	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT); | 
 | 	num_timers++; /* Value read out starts from 0 */ | 
 | 	hpet_print_config(); | 
 |  | 
 | 	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL); | 
 | 	if (!hpet_devs) | 
 | 		return; | 
 |  | 
 | 	hpet_num_timers = num_timers; | 
 |  | 
 | 	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) { | 
 | 		struct hpet_dev *hdev = &hpet_devs[num_timers_used]; | 
 | 		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i)); | 
 |  | 
 | 		/* Only consider HPET timer with MSI support */ | 
 | 		if (!(cfg & HPET_TN_FSB_CAP)) | 
 | 			continue; | 
 |  | 
 | 		hdev->flags = 0; | 
 | 		if (cfg & HPET_TN_PERIODIC_CAP) | 
 | 			hdev->flags |= HPET_DEV_PERI_CAP; | 
 | 		hdev->num = i; | 
 |  | 
 | 		sprintf(hdev->name, "hpet%d", i); | 
 | 		if (hpet_assign_irq(hdev)) | 
 | 			continue; | 
 |  | 
 | 		hdev->flags |= HPET_DEV_FSB_CAP; | 
 | 		hdev->flags |= HPET_DEV_VALID; | 
 | 		num_timers_used++; | 
 | 		if (num_timers_used == num_possible_cpus()) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n", | 
 | 		num_timers, num_timers_used); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HPET | 
 | static void hpet_reserve_msi_timers(struct hpet_data *hd) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!hpet_devs) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < hpet_num_timers; i++) { | 
 | 		struct hpet_dev *hdev = &hpet_devs[i]; | 
 |  | 
 | 		if (!(hdev->flags & HPET_DEV_VALID)) | 
 | 			continue; | 
 |  | 
 | 		hd->hd_irq[hdev->num] = hdev->irq; | 
 | 		hpet_reserve_timer(hd, hdev->num); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static struct hpet_dev *hpet_get_unused_timer(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!hpet_devs) | 
 | 		return NULL; | 
 |  | 
 | 	for (i = 0; i < hpet_num_timers; i++) { | 
 | 		struct hpet_dev *hdev = &hpet_devs[i]; | 
 |  | 
 | 		if (!(hdev->flags & HPET_DEV_VALID)) | 
 | 			continue; | 
 | 		if (test_and_set_bit(HPET_DEV_USED_BIT, | 
 | 			(unsigned long *)&hdev->flags)) | 
 | 			continue; | 
 | 		return hdev; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct hpet_work_struct { | 
 | 	struct delayed_work work; | 
 | 	struct completion complete; | 
 | }; | 
 |  | 
 | static void hpet_work(struct work_struct *w) | 
 | { | 
 | 	struct hpet_dev *hdev; | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct hpet_work_struct *hpet_work; | 
 |  | 
 | 	hpet_work = container_of(w, struct hpet_work_struct, work.work); | 
 |  | 
 | 	hdev = hpet_get_unused_timer(); | 
 | 	if (hdev) | 
 | 		init_one_hpet_msi_clockevent(hdev, cpu); | 
 |  | 
 | 	complete(&hpet_work->complete); | 
 | } | 
 |  | 
 | static int hpet_cpuhp_notify(struct notifier_block *n, | 
 | 		unsigned long action, void *hcpu) | 
 | { | 
 | 	unsigned long cpu = (unsigned long)hcpu; | 
 | 	struct hpet_work_struct work; | 
 | 	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu); | 
 |  | 
 | 	switch (action & 0xf) { | 
 | 	case CPU_ONLINE: | 
 | 		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work); | 
 | 		init_completion(&work.complete); | 
 | 		/* FIXME: add schedule_work_on() */ | 
 | 		schedule_delayed_work_on(cpu, &work.work, 0); | 
 | 		wait_for_completion(&work.complete); | 
 | 		destroy_timer_on_stack(&work.work.timer); | 
 | 		break; | 
 | 	case CPU_DEAD: | 
 | 		if (hdev) { | 
 | 			free_irq(hdev->irq, hdev); | 
 | 			hdev->flags &= ~HPET_DEV_USED; | 
 | 			per_cpu(cpu_hpet_dev, cpu) = NULL; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 | #else | 
 |  | 
 | static int hpet_setup_msi_irq(unsigned int irq) | 
 | { | 
 | 	return 0; | 
 | } | 
 | static void hpet_msi_capability_lookup(unsigned int start_timer) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HPET | 
 | static void hpet_reserve_msi_timers(struct hpet_data *hd) | 
 | { | 
 | 	return; | 
 | } | 
 | #endif | 
 |  | 
 | static int hpet_cpuhp_notify(struct notifier_block *n, | 
 | 		unsigned long action, void *hcpu) | 
 | { | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | /* | 
 |  * Clock source related code | 
 |  */ | 
 | static cycle_t read_hpet(struct clocksource *cs) | 
 | { | 
 | 	return (cycle_t)hpet_readl(HPET_COUNTER); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static cycle_t __vsyscall_fn vread_hpet(void) | 
 | { | 
 | 	return readl((const void __iomem *)fix_to_virt(VSYSCALL_HPET) + 0xf0); | 
 | } | 
 | #endif | 
 |  | 
 | static struct clocksource clocksource_hpet = { | 
 | 	.name		= "hpet", | 
 | 	.rating		= 250, | 
 | 	.read		= read_hpet, | 
 | 	.mask		= HPET_MASK, | 
 | 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS, | 
 | 	.resume		= hpet_resume_counter, | 
 | #ifdef CONFIG_X86_64 | 
 | 	.vread		= vread_hpet, | 
 | #endif | 
 | }; | 
 |  | 
 | static int hpet_clocksource_register(void) | 
 | { | 
 | 	u64 start, now; | 
 | 	u64 hpet_freq; | 
 | 	cycle_t t1; | 
 |  | 
 | 	/* Start the counter */ | 
 | 	hpet_restart_counter(); | 
 |  | 
 | 	/* Verify whether hpet counter works */ | 
 | 	t1 = hpet_readl(HPET_COUNTER); | 
 | 	rdtscll(start); | 
 |  | 
 | 	/* | 
 | 	 * We don't know the TSC frequency yet, but waiting for | 
 | 	 * 200000 TSC cycles is safe: | 
 | 	 * 4 GHz == 50us | 
 | 	 * 1 GHz == 200us | 
 | 	 */ | 
 | 	do { | 
 | 		rep_nop(); | 
 | 		rdtscll(now); | 
 | 	} while ((now - start) < 200000UL); | 
 |  | 
 | 	if (t1 == hpet_readl(HPET_COUNTER)) { | 
 | 		printk(KERN_WARNING | 
 | 		       "HPET counter not counting. HPET disabled\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The definition of mult is (include/linux/clocksource.h) | 
 | 	 * mult/2^shift = ns/cyc and hpet_period is in units of fsec/cyc | 
 | 	 * so we first need to convert hpet_period to ns/cyc units: | 
 | 	 *  mult/2^shift = ns/cyc = hpet_period/10^6 | 
 | 	 *  mult = (hpet_period * 2^shift)/10^6 | 
 | 	 *  mult = (hpet_period << shift)/FSEC_PER_NSEC | 
 | 	 */ | 
 |  | 
 | 	/* Need to convert hpet_period (fsec/cyc) to cyc/sec: | 
 | 	 * | 
 | 	 * cyc/sec = FSEC_PER_SEC/hpet_period(fsec/cyc) | 
 | 	 * cyc/sec = (FSEC_PER_NSEC * NSEC_PER_SEC)/hpet_period | 
 | 	 */ | 
 | 	hpet_freq = FSEC_PER_SEC; | 
 | 	do_div(hpet_freq, hpet_period); | 
 | 	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * hpet_enable - Try to setup the HPET timer. Returns 1 on success. | 
 |  */ | 
 | int __init hpet_enable(void) | 
 | { | 
 | 	unsigned int id; | 
 | 	int i; | 
 |  | 
 | 	if (!is_hpet_capable()) | 
 | 		return 0; | 
 |  | 
 | 	hpet_set_mapping(); | 
 |  | 
 | 	/* | 
 | 	 * Read the period and check for a sane value: | 
 | 	 */ | 
 | 	hpet_period = hpet_readl(HPET_PERIOD); | 
 |  | 
 | 	/* | 
 | 	 * AMD SB700 based systems with spread spectrum enabled use a | 
 | 	 * SMM based HPET emulation to provide proper frequency | 
 | 	 * setting. The SMM code is initialized with the first HPET | 
 | 	 * register access and takes some time to complete. During | 
 | 	 * this time the config register reads 0xffffffff. We check | 
 | 	 * for max. 1000 loops whether the config register reads a non | 
 | 	 * 0xffffffff value to make sure that HPET is up and running | 
 | 	 * before we go further. A counting loop is safe, as the HPET | 
 | 	 * access takes thousands of CPU cycles. On non SB700 based | 
 | 	 * machines this check is only done once and has no side | 
 | 	 * effects. | 
 | 	 */ | 
 | 	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) { | 
 | 		if (i == 1000) { | 
 | 			printk(KERN_WARNING | 
 | 			       "HPET config register value = 0xFFFFFFFF. " | 
 | 			       "Disabling HPET\n"); | 
 | 			goto out_nohpet; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD) | 
 | 		goto out_nohpet; | 
 |  | 
 | 	/* | 
 | 	 * Read the HPET ID register to retrieve the IRQ routing | 
 | 	 * information and the number of channels | 
 | 	 */ | 
 | 	id = hpet_readl(HPET_ID); | 
 | 	hpet_print_config(); | 
 |  | 
 | #ifdef CONFIG_HPET_EMULATE_RTC | 
 | 	/* | 
 | 	 * The legacy routing mode needs at least two channels, tick timer | 
 | 	 * and the rtc emulation channel. | 
 | 	 */ | 
 | 	if (!(id & HPET_ID_NUMBER)) | 
 | 		goto out_nohpet; | 
 | #endif | 
 |  | 
 | 	if (hpet_clocksource_register()) | 
 | 		goto out_nohpet; | 
 |  | 
 | 	if (id & HPET_ID_LEGSUP) { | 
 | 		hpet_legacy_clockevent_register(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | out_nohpet: | 
 | 	hpet_clear_mapping(); | 
 | 	hpet_address = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Needs to be late, as the reserve_timer code calls kalloc ! | 
 |  * | 
 |  * Not a problem on i386 as hpet_enable is called from late_time_init, | 
 |  * but on x86_64 it is necessary ! | 
 |  */ | 
 | static __init int hpet_late_init(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	if (boot_hpet_disable) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!hpet_address) { | 
 | 		if (!force_hpet_address) | 
 | 			return -ENODEV; | 
 |  | 
 | 		hpet_address = force_hpet_address; | 
 | 		hpet_enable(); | 
 | 	} | 
 |  | 
 | 	if (!hpet_virt_address) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP) | 
 | 		hpet_msi_capability_lookup(2); | 
 | 	else | 
 | 		hpet_msi_capability_lookup(0); | 
 |  | 
 | 	hpet_reserve_platform_timers(hpet_readl(HPET_ID)); | 
 | 	hpet_print_config(); | 
 |  | 
 | 	if (hpet_msi_disable) | 
 | 		return 0; | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_ARAT)) | 
 | 		return 0; | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu); | 
 | 	} | 
 |  | 
 | 	/* This notifier should be called after workqueue is ready */ | 
 | 	hotcpu_notifier(hpet_cpuhp_notify, -20); | 
 |  | 
 | 	return 0; | 
 | } | 
 | fs_initcall(hpet_late_init); | 
 |  | 
 | void hpet_disable(void) | 
 | { | 
 | 	if (is_hpet_capable() && hpet_virt_address) { | 
 | 		unsigned int cfg = hpet_readl(HPET_CFG); | 
 |  | 
 | 		if (hpet_legacy_int_enabled) { | 
 | 			cfg &= ~HPET_CFG_LEGACY; | 
 | 			hpet_legacy_int_enabled = 0; | 
 | 		} | 
 | 		cfg &= ~HPET_CFG_ENABLE; | 
 | 		hpet_writel(cfg, HPET_CFG); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_HPET_EMULATE_RTC | 
 |  | 
 | /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET | 
 |  * is enabled, we support RTC interrupt functionality in software. | 
 |  * RTC has 3 kinds of interrupts: | 
 |  * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock | 
 |  *    is updated | 
 |  * 2) Alarm Interrupt - generate an interrupt at a specific time of day | 
 |  * 3) Periodic Interrupt - generate periodic interrupt, with frequencies | 
 |  *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) | 
 |  * (1) and (2) above are implemented using polling at a frequency of | 
 |  * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt | 
 |  * overhead. (DEFAULT_RTC_INT_FREQ) | 
 |  * For (3), we use interrupts at 64Hz or user specified periodic | 
 |  * frequency, whichever is higher. | 
 |  */ | 
 | #include <linux/mc146818rtc.h> | 
 | #include <linux/rtc.h> | 
 | #include <asm/rtc.h> | 
 |  | 
 | #define DEFAULT_RTC_INT_FREQ	64 | 
 | #define DEFAULT_RTC_SHIFT	6 | 
 | #define RTC_NUM_INTS		1 | 
 |  | 
 | static unsigned long hpet_rtc_flags; | 
 | static int hpet_prev_update_sec; | 
 | static struct rtc_time hpet_alarm_time; | 
 | static unsigned long hpet_pie_count; | 
 | static u32 hpet_t1_cmp; | 
 | static u32 hpet_default_delta; | 
 | static u32 hpet_pie_delta; | 
 | static unsigned long hpet_pie_limit; | 
 |  | 
 | static rtc_irq_handler irq_handler; | 
 |  | 
 | /* | 
 |  * Check that the hpet counter c1 is ahead of the c2 | 
 |  */ | 
 | static inline int hpet_cnt_ahead(u32 c1, u32 c2) | 
 | { | 
 | 	return (s32)(c2 - c1) < 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Registers a IRQ handler. | 
 |  */ | 
 | int hpet_register_irq_handler(rtc_irq_handler handler) | 
 | { | 
 | 	if (!is_hpet_enabled()) | 
 | 		return -ENODEV; | 
 | 	if (irq_handler) | 
 | 		return -EBUSY; | 
 |  | 
 | 	irq_handler = handler; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_register_irq_handler); | 
 |  | 
 | /* | 
 |  * Deregisters the IRQ handler registered with hpet_register_irq_handler() | 
 |  * and does cleanup. | 
 |  */ | 
 | void hpet_unregister_irq_handler(rtc_irq_handler handler) | 
 | { | 
 | 	if (!is_hpet_enabled()) | 
 | 		return; | 
 |  | 
 | 	irq_handler = NULL; | 
 | 	hpet_rtc_flags = 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler); | 
 |  | 
 | /* | 
 |  * Timer 1 for RTC emulation. We use one shot mode, as periodic mode | 
 |  * is not supported by all HPET implementations for timer 1. | 
 |  * | 
 |  * hpet_rtc_timer_init() is called when the rtc is initialized. | 
 |  */ | 
 | int hpet_rtc_timer_init(void) | 
 | { | 
 | 	unsigned int cfg, cnt, delta; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!is_hpet_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	if (!hpet_default_delta) { | 
 | 		uint64_t clc; | 
 |  | 
 | 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | 
 | 		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT; | 
 | 		hpet_default_delta = clc; | 
 | 	} | 
 |  | 
 | 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | 
 | 		delta = hpet_default_delta; | 
 | 	else | 
 | 		delta = hpet_pie_delta; | 
 |  | 
 | 	local_irq_save(flags); | 
 |  | 
 | 	cnt = delta + hpet_readl(HPET_COUNTER); | 
 | 	hpet_writel(cnt, HPET_T1_CMP); | 
 | 	hpet_t1_cmp = cnt; | 
 |  | 
 | 	cfg = hpet_readl(HPET_T1_CFG); | 
 | 	cfg &= ~HPET_TN_PERIODIC; | 
 | 	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT; | 
 | 	hpet_writel(cfg, HPET_T1_CFG); | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_rtc_timer_init); | 
 |  | 
 | /* | 
 |  * The functions below are called from rtc driver. | 
 |  * Return 0 if HPET is not being used. | 
 |  * Otherwise do the necessary changes and return 1. | 
 |  */ | 
 | int hpet_mask_rtc_irq_bit(unsigned long bit_mask) | 
 | { | 
 | 	if (!is_hpet_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	hpet_rtc_flags &= ~bit_mask; | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit); | 
 |  | 
 | int hpet_set_rtc_irq_bit(unsigned long bit_mask) | 
 | { | 
 | 	unsigned long oldbits = hpet_rtc_flags; | 
 |  | 
 | 	if (!is_hpet_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	hpet_rtc_flags |= bit_mask; | 
 |  | 
 | 	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE)) | 
 | 		hpet_prev_update_sec = -1; | 
 |  | 
 | 	if (!oldbits) | 
 | 		hpet_rtc_timer_init(); | 
 |  | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit); | 
 |  | 
 | int hpet_set_alarm_time(unsigned char hrs, unsigned char min, | 
 | 			unsigned char sec) | 
 | { | 
 | 	if (!is_hpet_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	hpet_alarm_time.tm_hour = hrs; | 
 | 	hpet_alarm_time.tm_min = min; | 
 | 	hpet_alarm_time.tm_sec = sec; | 
 |  | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_set_alarm_time); | 
 |  | 
 | int hpet_set_periodic_freq(unsigned long freq) | 
 | { | 
 | 	uint64_t clc; | 
 |  | 
 | 	if (!is_hpet_enabled()) | 
 | 		return 0; | 
 |  | 
 | 	if (freq <= DEFAULT_RTC_INT_FREQ) | 
 | 		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq; | 
 | 	else { | 
 | 		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC; | 
 | 		do_div(clc, freq); | 
 | 		clc >>= hpet_clockevent.shift; | 
 | 		hpet_pie_delta = clc; | 
 | 		hpet_pie_limit = 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_set_periodic_freq); | 
 |  | 
 | int hpet_rtc_dropped_irq(void) | 
 | { | 
 | 	return is_hpet_enabled(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq); | 
 |  | 
 | static void hpet_rtc_timer_reinit(void) | 
 | { | 
 | 	unsigned int cfg, delta; | 
 | 	int lost_ints = -1; | 
 |  | 
 | 	if (unlikely(!hpet_rtc_flags)) { | 
 | 		cfg = hpet_readl(HPET_T1_CFG); | 
 | 		cfg &= ~HPET_TN_ENABLE; | 
 | 		hpet_writel(cfg, HPET_T1_CFG); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit) | 
 | 		delta = hpet_default_delta; | 
 | 	else | 
 | 		delta = hpet_pie_delta; | 
 |  | 
 | 	/* | 
 | 	 * Increment the comparator value until we are ahead of the | 
 | 	 * current count. | 
 | 	 */ | 
 | 	do { | 
 | 		hpet_t1_cmp += delta; | 
 | 		hpet_writel(hpet_t1_cmp, HPET_T1_CMP); | 
 | 		lost_ints++; | 
 | 	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER))); | 
 |  | 
 | 	if (lost_ints) { | 
 | 		if (hpet_rtc_flags & RTC_PIE) | 
 | 			hpet_pie_count += lost_ints; | 
 | 		if (printk_ratelimit()) | 
 | 			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n", | 
 | 				lost_ints); | 
 | 	} | 
 | } | 
 |  | 
 | irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id) | 
 | { | 
 | 	struct rtc_time curr_time; | 
 | 	unsigned long rtc_int_flag = 0; | 
 |  | 
 | 	hpet_rtc_timer_reinit(); | 
 | 	memset(&curr_time, 0, sizeof(struct rtc_time)); | 
 |  | 
 | 	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) | 
 | 		get_rtc_time(&curr_time); | 
 |  | 
 | 	if (hpet_rtc_flags & RTC_UIE && | 
 | 	    curr_time.tm_sec != hpet_prev_update_sec) { | 
 | 		if (hpet_prev_update_sec >= 0) | 
 | 			rtc_int_flag = RTC_UF; | 
 | 		hpet_prev_update_sec = curr_time.tm_sec; | 
 | 	} | 
 |  | 
 | 	if (hpet_rtc_flags & RTC_PIE && | 
 | 	    ++hpet_pie_count >= hpet_pie_limit) { | 
 | 		rtc_int_flag |= RTC_PF; | 
 | 		hpet_pie_count = 0; | 
 | 	} | 
 |  | 
 | 	if (hpet_rtc_flags & RTC_AIE && | 
 | 	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) && | 
 | 	    (curr_time.tm_min == hpet_alarm_time.tm_min) && | 
 | 	    (curr_time.tm_hour == hpet_alarm_time.tm_hour)) | 
 | 			rtc_int_flag |= RTC_AF; | 
 |  | 
 | 	if (rtc_int_flag) { | 
 | 		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); | 
 | 		if (irq_handler) | 
 | 			irq_handler(rtc_int_flag, dev_id); | 
 | 	} | 
 | 	return IRQ_HANDLED; | 
 | } | 
 | EXPORT_SYMBOL_GPL(hpet_rtc_interrupt); | 
 | #endif |