blob: c1ee4e7bf9960a02b1ef14803c918321ad4dc219 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the Hisilicon SEC units found on Hip06 Hip07
*
* Copyright (c) 2016-2017 Hisilicon Limited.
*/
#include <linux/acpi.h>
#include <linux/atomic.h>
#include <linux/delay.h>
#include <linux/dma-direction.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/io.h>
#include <linux/iommu.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqreturn.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "sec_drv.h"
#define SEC_QUEUE_AR_FROCE_ALLOC 0
#define SEC_QUEUE_AR_FROCE_NOALLOC 1
#define SEC_QUEUE_AR_FROCE_DIS 2
#define SEC_QUEUE_AW_FROCE_ALLOC 0
#define SEC_QUEUE_AW_FROCE_NOALLOC 1
#define SEC_QUEUE_AW_FROCE_DIS 2
/* SEC_ALGSUB registers */
#define SEC_ALGSUB_CLK_EN_REG 0x03b8
#define SEC_ALGSUB_CLK_DIS_REG 0x03bc
#define SEC_ALGSUB_CLK_ST_REG 0x535c
#define SEC_ALGSUB_RST_REQ_REG 0x0aa8
#define SEC_ALGSUB_RST_DREQ_REG 0x0aac
#define SEC_ALGSUB_RST_ST_REG 0x5a54
#define SEC_ALGSUB_RST_ST_IS_RST BIT(0)
#define SEC_ALGSUB_BUILD_RST_REQ_REG 0x0ab8
#define SEC_ALGSUB_BUILD_RST_DREQ_REG 0x0abc
#define SEC_ALGSUB_BUILD_RST_ST_REG 0x5a5c
#define SEC_ALGSUB_BUILD_RST_ST_IS_RST BIT(0)
#define SEC_SAA_BASE 0x00001000UL
/* SEC_SAA registers */
#define SEC_SAA_CTRL_REG(x) ((x) * SEC_SAA_ADDR_SIZE)
#define SEC_SAA_CTRL_GET_QM_EN BIT(0)
#define SEC_ST_INTMSK1_REG 0x0200
#define SEC_ST_RINT1_REG 0x0400
#define SEC_ST_INTSTS1_REG 0x0600
#define SEC_BD_MNG_STAT_REG 0x0800
#define SEC_PARSING_STAT_REG 0x0804
#define SEC_LOAD_TIME_OUT_CNT_REG 0x0808
#define SEC_CORE_WORK_TIME_OUT_CNT_REG 0x080c
#define SEC_BACK_TIME_OUT_CNT_REG 0x0810
#define SEC_BD1_PARSING_RD_TIME_OUT_CNT_REG 0x0814
#define SEC_BD1_PARSING_WR_TIME_OUT_CNT_REG 0x0818
#define SEC_BD2_PARSING_RD_TIME_OUT_CNT_REG 0x081c
#define SEC_BD2_PARSING_WR_TIME_OUT_CNT_REG 0x0820
#define SEC_SAA_ACC_REG 0x083c
#define SEC_BD_NUM_CNT_IN_SEC_REG 0x0858
#define SEC_LOAD_WORK_TIME_CNT_REG 0x0860
#define SEC_CORE_WORK_WORK_TIME_CNT_REG 0x0864
#define SEC_BACK_WORK_TIME_CNT_REG 0x0868
#define SEC_SAA_IDLE_TIME_CNT_REG 0x086c
#define SEC_SAA_CLK_CNT_REG 0x0870
/* SEC_COMMON registers */
#define SEC_CLK_EN_REG 0x0000
#define SEC_CTRL_REG 0x0004
#define SEC_COMMON_CNT_CLR_CE_REG 0x0008
#define SEC_COMMON_CNT_CLR_CE_CLEAR BIT(0)
#define SEC_COMMON_CNT_CLR_CE_SNAP_EN BIT(1)
#define SEC_SECURE_CTRL_REG 0x000c
#define SEC_AXI_CACHE_CFG_REG 0x0010
#define SEC_AXI_QOS_CFG_REG 0x0014
#define SEC_IPV4_MASK_TABLE_REG 0x0020
#define SEC_IPV6_MASK_TABLE_X_REG(x) (0x0024 + (x) * 4)
#define SEC_FSM_MAX_CNT_REG 0x0064
#define SEC_CTRL2_REG 0x0068
#define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M GENMASK(3, 0)
#define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S 0
#define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M GENMASK(6, 4)
#define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S 4
#define SEC_CTRL2_CLK_GATE_EN BIT(7)
#define SEC_CTRL2_ENDIAN_BD BIT(8)
#define SEC_CTRL2_ENDIAN_BD_TYPE BIT(9)
#define SEC_CNT_PRECISION_CFG_REG 0x006c
#define SEC_DEBUG_BD_CFG_REG 0x0070
#define SEC_DEBUG_BD_CFG_WB_NORMAL BIT(0)
#define SEC_DEBUG_BD_CFG_WB_EN BIT(1)
#define SEC_Q_SIGHT_SEL 0x0074
#define SEC_Q_SIGHT_HIS_CLR 0x0078
#define SEC_Q_VMID_CFG_REG(q) (0x0100 + (q) * 4)
#define SEC_Q_WEIGHT_CFG_REG(q) (0x200 + (q) * 4)
#define SEC_STAT_CLR_REG 0x0a00
#define SEC_SAA_IDLE_CNT_CLR_REG 0x0a04
#define SEC_QM_CPL_Q_IDBUF_DFX_CFG_REG 0x0b00
#define SEC_QM_CPL_Q_IDBUF_DFX_RESULT_REG 0x0b04
#define SEC_QM_BD_DFX_CFG_REG 0x0b08
#define SEC_QM_BD_DFX_RESULT_REG 0x0b0c
#define SEC_QM_BDID_DFX_RESULT_REG 0x0b10
#define SEC_QM_BD_DFIFO_STATUS_REG 0x0b14
#define SEC_QM_BD_DFX_CFG2_REG 0x0b1c
#define SEC_QM_BD_DFX_RESULT2_REG 0x0b20
#define SEC_QM_BD_IDFIFO_STATUS_REG 0x0b18
#define SEC_QM_BD_DFIFO_STATUS2_REG 0x0b28
#define SEC_QM_BD_IDFIFO_STATUS2_REG 0x0b2c
#define SEC_HASH_IPV4_MASK 0xfff00000
#define SEC_MAX_SAA_NUM 0xa
#define SEC_SAA_ADDR_SIZE 0x1000
#define SEC_Q_INIT_REG 0x0
#define SEC_Q_INIT_WO_STAT_CLEAR 0x2
#define SEC_Q_INIT_AND_STAT_CLEAR 0x3
#define SEC_Q_CFG_REG 0x8
#define SEC_Q_CFG_REORDER BIT(0)
#define SEC_Q_PROC_NUM_CFG_REG 0x10
#define SEC_QUEUE_ENB_REG 0x18
#define SEC_Q_DEPTH_CFG_REG 0x50
#define SEC_Q_DEPTH_CFG_DEPTH_M GENMASK(11, 0)
#define SEC_Q_DEPTH_CFG_DEPTH_S 0
#define SEC_Q_BASE_HADDR_REG 0x54
#define SEC_Q_BASE_LADDR_REG 0x58
#define SEC_Q_WR_PTR_REG 0x5c
#define SEC_Q_OUTORDER_BASE_HADDR_REG 0x60
#define SEC_Q_OUTORDER_BASE_LADDR_REG 0x64
#define SEC_Q_OUTORDER_RD_PTR_REG 0x68
#define SEC_Q_OT_TH_REG 0x6c
#define SEC_Q_ARUSER_CFG_REG 0x70
#define SEC_Q_ARUSER_CFG_FA BIT(0)
#define SEC_Q_ARUSER_CFG_FNA BIT(1)
#define SEC_Q_ARUSER_CFG_RINVLD BIT(2)
#define SEC_Q_ARUSER_CFG_PKG BIT(3)
#define SEC_Q_AWUSER_CFG_REG 0x74
#define SEC_Q_AWUSER_CFG_FA BIT(0)
#define SEC_Q_AWUSER_CFG_FNA BIT(1)
#define SEC_Q_AWUSER_CFG_PKG BIT(2)
#define SEC_Q_ERR_BASE_HADDR_REG 0x7c
#define SEC_Q_ERR_BASE_LADDR_REG 0x80
#define SEC_Q_CFG_VF_NUM_REG 0x84
#define SEC_Q_SOFT_PROC_PTR_REG 0x88
#define SEC_Q_FAIL_INT_MSK_REG 0x300
#define SEC_Q_FLOW_INT_MKS_REG 0x304
#define SEC_Q_FAIL_RINT_REG 0x400
#define SEC_Q_FLOW_RINT_REG 0x404
#define SEC_Q_FAIL_INT_STATUS_REG 0x500
#define SEC_Q_FLOW_INT_STATUS_REG 0x504
#define SEC_Q_STATUS_REG 0x600
#define SEC_Q_RD_PTR_REG 0x604
#define SEC_Q_PRO_PTR_REG 0x608
#define SEC_Q_OUTORDER_WR_PTR_REG 0x60c
#define SEC_Q_OT_CNT_STATUS_REG 0x610
#define SEC_Q_INORDER_BD_NUM_ST_REG 0x650
#define SEC_Q_INORDER_GET_FLAG_ST_REG 0x654
#define SEC_Q_INORDER_ADD_FLAG_ST_REG 0x658
#define SEC_Q_INORDER_TASK_INT_NUM_LEFT_ST_REG 0x65c
#define SEC_Q_RD_DONE_PTR_REG 0x660
#define SEC_Q_CPL_Q_BD_NUM_ST_REG 0x700
#define SEC_Q_CPL_Q_PTR_ST_REG 0x704
#define SEC_Q_CPL_Q_H_ADDR_ST_REG 0x708
#define SEC_Q_CPL_Q_L_ADDR_ST_REG 0x70c
#define SEC_Q_CPL_TASK_INT_NUM_LEFT_ST_REG 0x710
#define SEC_Q_WRR_ID_CHECK_REG 0x714
#define SEC_Q_CPLQ_FULL_CHECK_REG 0x718
#define SEC_Q_SUCCESS_BD_CNT_REG 0x800
#define SEC_Q_FAIL_BD_CNT_REG 0x804
#define SEC_Q_GET_BD_CNT_REG 0x808
#define SEC_Q_IVLD_CNT_REG 0x80c
#define SEC_Q_BD_PROC_GET_CNT_REG 0x810
#define SEC_Q_BD_PROC_DONE_CNT_REG 0x814
#define SEC_Q_LAT_CLR_REG 0x850
#define SEC_Q_PKT_LAT_MAX_REG 0x854
#define SEC_Q_PKT_LAT_AVG_REG 0x858
#define SEC_Q_PKT_LAT_MIN_REG 0x85c
#define SEC_Q_ID_CLR_CFG_REG 0x900
#define SEC_Q_1ST_BD_ERR_ID_REG 0x904
#define SEC_Q_1ST_AUTH_FAIL_ID_REG 0x908
#define SEC_Q_1ST_RD_ERR_ID_REG 0x90c
#define SEC_Q_1ST_ECC2_ERR_ID_REG 0x910
#define SEC_Q_1ST_IVLD_ID_REG 0x914
#define SEC_Q_1ST_BD_WR_ERR_ID_REG 0x918
#define SEC_Q_1ST_ERR_BD_WR_ERR_ID_REG 0x91c
#define SEC_Q_1ST_BD_MAC_WR_ERR_ID_REG 0x920
struct sec_debug_bd_info {
#define SEC_DEBUG_BD_INFO_SOFT_ERR_CHECK_M GENMASK(22, 0)
u32 soft_err_check;
#define SEC_DEBUG_BD_INFO_HARD_ERR_CHECK_M GENMASK(9, 0)
u32 hard_err_check;
u32 icv_mac1st_word;
#define SEC_DEBUG_BD_INFO_GET_ID_M GENMASK(19, 0)
u32 sec_get_id;
/* W4---W15 */
u32 reserv_left[12];
};
struct sec_out_bd_info {
#define SEC_OUT_BD_INFO_Q_ID_M GENMASK(11, 0)
#define SEC_OUT_BD_INFO_ECC_2BIT_ERR BIT(14)
u16 data;
};
#define SEC_MAX_DEVICES 8
static struct sec_dev_info *sec_devices[SEC_MAX_DEVICES];
static DEFINE_MUTEX(sec_id_lock);
static int sec_queue_map_io(struct sec_queue *queue)
{
struct device *dev = queue->dev_info->dev;
struct resource *res;
res = platform_get_resource(to_platform_device(dev),
IORESOURCE_MEM,
2 + queue->queue_id);
if (!res) {
dev_err(dev, "Failed to get queue %d memory resource\n",
queue->queue_id);
return -ENOMEM;
}
queue->regs = ioremap(res->start, resource_size(res));
if (!queue->regs)
return -ENOMEM;
return 0;
}
static void sec_queue_unmap_io(struct sec_queue *queue)
{
iounmap(queue->regs);
}
static int sec_queue_ar_pkgattr(struct sec_queue *queue, u32 ar_pkg)
{
void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG;
u32 regval;
regval = readl_relaxed(addr);
if (ar_pkg)
regval |= SEC_Q_ARUSER_CFG_PKG;
else
regval &= ~SEC_Q_ARUSER_CFG_PKG;
writel_relaxed(regval, addr);
return 0;
}
static int sec_queue_aw_pkgattr(struct sec_queue *queue, u32 aw_pkg)
{
void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG;
u32 regval;
regval = readl_relaxed(addr);
regval |= SEC_Q_AWUSER_CFG_PKG;
writel_relaxed(regval, addr);
return 0;
}
static int sec_clk_en(struct sec_dev_info *info)
{
void __iomem *base = info->regs[SEC_COMMON];
u32 i = 0;
writel_relaxed(0x7, base + SEC_ALGSUB_CLK_EN_REG);
do {
usleep_range(1000, 10000);
if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0x7)
return 0;
i++;
} while (i < 10);
dev_err(info->dev, "sec clock enable fail!\n");
return -EIO;
}
static int sec_clk_dis(struct sec_dev_info *info)
{
void __iomem *base = info->regs[SEC_COMMON];
u32 i = 0;
writel_relaxed(0x7, base + SEC_ALGSUB_CLK_DIS_REG);
do {
usleep_range(1000, 10000);
if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0)
return 0;
i++;
} while (i < 10);
dev_err(info->dev, "sec clock disable fail!\n");
return -EIO;
}
static int sec_reset_whole_module(struct sec_dev_info *info)
{
void __iomem *base = info->regs[SEC_COMMON];
bool is_reset, b_is_reset;
u32 i = 0;
writel_relaxed(1, base + SEC_ALGSUB_RST_REQ_REG);
writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_REQ_REG);
while (1) {
usleep_range(1000, 10000);
is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) &
SEC_ALGSUB_RST_ST_IS_RST;
b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) &
SEC_ALGSUB_BUILD_RST_ST_IS_RST;
if (is_reset && b_is_reset)
break;
i++;
if (i > 10) {
dev_err(info->dev, "Reset req failed\n");
return -EIO;
}
}
i = 0;
writel_relaxed(1, base + SEC_ALGSUB_RST_DREQ_REG);
writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_DREQ_REG);
while (1) {
usleep_range(1000, 10000);
is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) &
SEC_ALGSUB_RST_ST_IS_RST;
b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) &
SEC_ALGSUB_BUILD_RST_ST_IS_RST;
if (!is_reset && !b_is_reset)
break;
i++;
if (i > 10) {
dev_err(info->dev, "Reset dreq failed\n");
return -EIO;
}
}
return 0;
}
static void sec_bd_endian_little(struct sec_dev_info *info)
{
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
u32 regval;
regval = readl_relaxed(addr);
regval &= ~(SEC_CTRL2_ENDIAN_BD | SEC_CTRL2_ENDIAN_BD_TYPE);
writel_relaxed(regval, addr);
}
/*
* sec_cache_config - configure optimum cache placement
*/
static void sec_cache_config(struct sec_dev_info *info)
{
struct iommu_domain *domain;
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL_REG;
domain = iommu_get_domain_for_dev(info->dev);
/* Check that translation is occurring */
if (domain && (domain->type & __IOMMU_DOMAIN_PAGING))
writel_relaxed(0x44cf9e, addr);
else
writel_relaxed(0x4cfd9, addr);
}
static void sec_data_axiwr_otsd_cfg(struct sec_dev_info *info, u32 cfg)
{
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
u32 regval;
regval = readl_relaxed(addr);
regval &= ~SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M;
regval |= (cfg << SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S) &
SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M;
writel_relaxed(regval, addr);
}
static void sec_data_axird_otsd_cfg(struct sec_dev_info *info, u32 cfg)
{
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
u32 regval;
regval = readl_relaxed(addr);
regval &= ~SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M;
regval |= (cfg << SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S) &
SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M;
writel_relaxed(regval, addr);
}
static void sec_clk_gate_en(struct sec_dev_info *info, bool clkgate)
{
void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
u32 regval;
regval = readl_relaxed(addr);
if (clkgate)
regval |= SEC_CTRL2_CLK_GATE_EN;
else
regval &= ~SEC_CTRL2_CLK_GATE_EN;
writel_relaxed(regval, addr);
}
static void sec_comm_cnt_cfg(struct sec_dev_info *info, bool clr_ce)
{
void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG;
u32 regval;
regval = readl_relaxed(addr);
if (clr_ce)
regval |= SEC_COMMON_CNT_CLR_CE_CLEAR;
else
regval &= ~SEC_COMMON_CNT_CLR_CE_CLEAR;
writel_relaxed(regval, addr);
}
static void sec_commsnap_en(struct sec_dev_info *info, bool snap_en)
{
void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG;
u32 regval;
regval = readl_relaxed(addr);
if (snap_en)
regval |= SEC_COMMON_CNT_CLR_CE_SNAP_EN;
else
regval &= ~SEC_COMMON_CNT_CLR_CE_SNAP_EN;
writel_relaxed(regval, addr);
}
static void sec_ipv6_hashmask(struct sec_dev_info *info, u32 hash_mask[])
{
void __iomem *base = info->regs[SEC_SAA];
int i;
for (i = 0; i < 10; i++)
writel_relaxed(hash_mask[0],
base + SEC_IPV6_MASK_TABLE_X_REG(i));
}
static int sec_ipv4_hashmask(struct sec_dev_info *info, u32 hash_mask)
{
if (hash_mask & SEC_HASH_IPV4_MASK) {
dev_err(info->dev, "Sec Ipv4 Hash Mask Input Error!\n ");
return -EINVAL;
}
writel_relaxed(hash_mask,
info->regs[SEC_SAA] + SEC_IPV4_MASK_TABLE_REG);
return 0;
}
static void sec_set_dbg_bd_cfg(struct sec_dev_info *info, u32 cfg)
{
void __iomem *addr = info->regs[SEC_SAA] + SEC_DEBUG_BD_CFG_REG;
u32 regval;
regval = readl_relaxed(addr);
/* Always disable write back of normal bd */
regval &= ~SEC_DEBUG_BD_CFG_WB_NORMAL;
if (cfg)
regval &= ~SEC_DEBUG_BD_CFG_WB_EN;
else
regval |= SEC_DEBUG_BD_CFG_WB_EN;
writel_relaxed(regval, addr);
}
static void sec_saa_getqm_en(struct sec_dev_info *info, u32 saa_indx, u32 en)
{
void __iomem *addr = info->regs[SEC_SAA] + SEC_SAA_BASE +
SEC_SAA_CTRL_REG(saa_indx);
u32 regval;
regval = readl_relaxed(addr);
if (en)
regval |= SEC_SAA_CTRL_GET_QM_EN;
else
regval &= ~SEC_SAA_CTRL_GET_QM_EN;
writel_relaxed(regval, addr);
}
static void sec_saa_int_mask(struct sec_dev_info *info, u32 saa_indx,
u32 saa_int_mask)
{
writel_relaxed(saa_int_mask,
info->regs[SEC_SAA] + SEC_SAA_BASE + SEC_ST_INTMSK1_REG +
saa_indx * SEC_SAA_ADDR_SIZE);
}
static void sec_streamid(struct sec_dev_info *info, int i)
{
#define SEC_SID 0x600
#define SEC_VMID 0
writel_relaxed((SEC_VMID | ((SEC_SID & 0xffff) << 8)),
info->regs[SEC_SAA] + SEC_Q_VMID_CFG_REG(i));
}
static void sec_queue_ar_alloc(struct sec_queue *queue, u32 alloc)
{
void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG;
u32 regval;
regval = readl_relaxed(addr);
if (alloc == SEC_QUEUE_AR_FROCE_ALLOC) {
regval |= SEC_Q_ARUSER_CFG_FA;
regval &= ~SEC_Q_ARUSER_CFG_FNA;
} else {
regval &= ~SEC_Q_ARUSER_CFG_FA;
regval |= SEC_Q_ARUSER_CFG_FNA;
}
writel_relaxed(regval, addr);
}
static void sec_queue_aw_alloc(struct sec_queue *queue, u32 alloc)
{
void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG;
u32 regval;
regval = readl_relaxed(addr);
if (alloc == SEC_QUEUE_AW_FROCE_ALLOC) {
regval |= SEC_Q_AWUSER_CFG_FA;
regval &= ~SEC_Q_AWUSER_CFG_FNA;
} else {
regval &= ~SEC_Q_AWUSER_CFG_FA;
regval |= SEC_Q_AWUSER_CFG_FNA;
}
writel_relaxed(regval, addr);
}
static void sec_queue_reorder(struct sec_queue *queue, bool reorder)
{
void __iomem *base = queue->regs;
u32 regval;
regval = readl_relaxed(base + SEC_Q_CFG_REG);
if (reorder)
regval |= SEC_Q_CFG_REORDER;
else
regval &= ~SEC_Q_CFG_REORDER;
writel_relaxed(regval, base + SEC_Q_CFG_REG);
}
static void sec_queue_depth(struct sec_queue *queue, u32 depth)
{
void __iomem *addr = queue->regs + SEC_Q_DEPTH_CFG_REG;
u32 regval;
regval = readl_relaxed(addr);
regval &= ~SEC_Q_DEPTH_CFG_DEPTH_M;
regval |= (depth << SEC_Q_DEPTH_CFG_DEPTH_S) & SEC_Q_DEPTH_CFG_DEPTH_M;
writel_relaxed(regval, addr);
}
static void sec_queue_cmdbase_addr(struct sec_queue *queue, u64 addr)
{
writel_relaxed(upper_32_bits(addr), queue->regs + SEC_Q_BASE_HADDR_REG);
writel_relaxed(lower_32_bits(addr), queue->regs + SEC_Q_BASE_LADDR_REG);
}
static void sec_queue_outorder_addr(struct sec_queue *queue, u64 addr)
{
writel_relaxed(upper_32_bits(addr),
queue->regs + SEC_Q_OUTORDER_BASE_HADDR_REG);
writel_relaxed(lower_32_bits(addr),
queue->regs + SEC_Q_OUTORDER_BASE_LADDR_REG);
}
static void sec_queue_errbase_addr(struct sec_queue *queue, u64 addr)
{
writel_relaxed(upper_32_bits(addr),
queue->regs + SEC_Q_ERR_BASE_HADDR_REG);
writel_relaxed(lower_32_bits(addr),
queue->regs + SEC_Q_ERR_BASE_LADDR_REG);
}
static void sec_queue_irq_disable(struct sec_queue *queue)
{
writel_relaxed((u32)~0, queue->regs + SEC_Q_FLOW_INT_MKS_REG);
}
static void sec_queue_irq_enable(struct sec_queue *queue)
{
writel_relaxed(0, queue->regs + SEC_Q_FLOW_INT_MKS_REG);
}
static void sec_queue_abn_irq_disable(struct sec_queue *queue)
{
writel_relaxed((u32)~0, queue->regs + SEC_Q_FAIL_INT_MSK_REG);
}
static void sec_queue_stop(struct sec_queue *queue)
{
disable_irq(queue->task_irq);
sec_queue_irq_disable(queue);
writel_relaxed(0x0, queue->regs + SEC_QUEUE_ENB_REG);
}
static void sec_queue_start(struct sec_queue *queue)
{
sec_queue_irq_enable(queue);
enable_irq(queue->task_irq);
queue->expected = 0;
writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG);
writel_relaxed(0x1, queue->regs + SEC_QUEUE_ENB_REG);
}
static struct sec_queue *sec_alloc_queue(struct sec_dev_info *info)
{
int i;
mutex_lock(&info->dev_lock);
/* Get the first idle queue in SEC device */
for (i = 0; i < SEC_Q_NUM; i++)
if (!info->queues[i].in_use) {
info->queues[i].in_use = true;
info->queues_in_use++;
mutex_unlock(&info->dev_lock);
return &info->queues[i];
}
mutex_unlock(&info->dev_lock);
return ERR_PTR(-ENODEV);
}
static int sec_queue_free(struct sec_queue *queue)
{
struct sec_dev_info *info = queue->dev_info;
if (queue->queue_id >= SEC_Q_NUM) {
dev_err(info->dev, "No queue %d\n", queue->queue_id);
return -ENODEV;
}
if (!queue->in_use) {
dev_err(info->dev, "Queue %d is idle\n", queue->queue_id);
return -ENODEV;
}
mutex_lock(&info->dev_lock);
queue->in_use = false;
info->queues_in_use--;
mutex_unlock(&info->dev_lock);
return 0;
}
static irqreturn_t sec_isr_handle_th(int irq, void *q)
{
sec_queue_irq_disable(q);
return IRQ_WAKE_THREAD;
}
static irqreturn_t sec_isr_handle(int irq, void *q)
{
struct sec_queue *queue = q;
struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
struct sec_queue_ring_cq *cq_ring = &queue->ring_cq;
struct sec_out_bd_info *outorder_msg;
struct sec_bd_info *msg;
u32 ooo_read, ooo_write;
void __iomem *base = queue->regs;
int q_id;
ooo_read = readl(base + SEC_Q_OUTORDER_RD_PTR_REG);
ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG);
outorder_msg = cq_ring->vaddr + ooo_read;
q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M;
msg = msg_ring->vaddr + q_id;
while ((ooo_write != ooo_read) && msg->w0 & SEC_BD_W0_DONE) {
/*
* Must be before callback otherwise blocks adding other chained
* elements
*/
set_bit(q_id, queue->unprocessed);
if (q_id == queue->expected)
while (test_bit(queue->expected, queue->unprocessed)) {
clear_bit(queue->expected, queue->unprocessed);
msg = msg_ring->vaddr + queue->expected;
msg->w0 &= ~SEC_BD_W0_DONE;
msg_ring->callback(msg,
queue->shadow[queue->expected]);
queue->shadow[queue->expected] = NULL;
queue->expected = (queue->expected + 1) %
SEC_QUEUE_LEN;
atomic_dec(&msg_ring->used);
}
ooo_read = (ooo_read + 1) % SEC_QUEUE_LEN;
writel(ooo_read, base + SEC_Q_OUTORDER_RD_PTR_REG);
ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG);
outorder_msg = cq_ring->vaddr + ooo_read;
q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M;
msg = msg_ring->vaddr + q_id;
}
sec_queue_irq_enable(queue);
return IRQ_HANDLED;
}
static int sec_queue_irq_init(struct sec_queue *queue)
{
struct sec_dev_info *info = queue->dev_info;
int irq = queue->task_irq;
int ret;
ret = request_threaded_irq(irq, sec_isr_handle_th, sec_isr_handle,
IRQF_TRIGGER_RISING, queue->name, queue);
if (ret) {
dev_err(info->dev, "request irq(%d) failed %d\n", irq, ret);
return ret;
}
disable_irq(irq);
return 0;
}
static int sec_queue_irq_uninit(struct sec_queue *queue)
{
free_irq(queue->task_irq, queue);
return 0;
}
static struct sec_dev_info *sec_device_get(void)
{
struct sec_dev_info *sec_dev = NULL;
struct sec_dev_info *this_sec_dev;
int least_busy_n = SEC_Q_NUM + 1;
int i;
/* Find which one is least busy and use that first */
for (i = 0; i < SEC_MAX_DEVICES; i++) {
this_sec_dev = sec_devices[i];
if (this_sec_dev &&
this_sec_dev->queues_in_use < least_busy_n) {
least_busy_n = this_sec_dev->queues_in_use;
sec_dev = this_sec_dev;
}
}
return sec_dev;
}
static struct sec_queue *sec_queue_alloc_start(struct sec_dev_info *info)
{
struct sec_queue *queue;
queue = sec_alloc_queue(info);
if (IS_ERR(queue)) {
dev_err(info->dev, "alloc sec queue failed! %ld\n",
PTR_ERR(queue));
return queue;
}
sec_queue_start(queue);
return queue;
}
/**
* sec_queue_alloc_start_safe - get a hw queue from appropriate instance
*
* This function does extremely simplistic load balancing. It does not take into
* account NUMA locality of the accelerator, or which cpu has requested the
* queue. Future work may focus on optimizing this in order to improve full
* machine throughput.
*/
struct sec_queue *sec_queue_alloc_start_safe(void)
{
struct sec_dev_info *info;
struct sec_queue *queue = ERR_PTR(-ENODEV);
mutex_lock(&sec_id_lock);
info = sec_device_get();
if (!info)
goto unlock;
queue = sec_queue_alloc_start(info);
unlock:
mutex_unlock(&sec_id_lock);
return queue;
}
/**
* sec_queue_stop_release() - free up a hw queue for reuse
* @queue: The queue we are done with.
*
* This will stop the current queue, terminanting any transactions
* that are inflight an return it to the pool of available hw queuess
*/
int sec_queue_stop_release(struct sec_queue *queue)
{
struct device *dev = queue->dev_info->dev;
int ret;
sec_queue_stop(queue);
ret = sec_queue_free(queue);
if (ret)
dev_err(dev, "Releasing queue failed %d\n", ret);
return ret;
}
/**
* sec_queue_empty() - Is this hardware queue currently empty.
*
* We need to know if we have an empty queue for some of the chaining modes
* as if it is not empty we may need to hold the message in a software queue
* until the hw queue is drained.
*/
bool sec_queue_empty(struct sec_queue *queue)
{
struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
return !atomic_read(&msg_ring->used);
}
/**
* sec_queue_send() - queue up a single operation in the hw queue
* @queue: The queue in which to put the message
* @msg: The message
* @ctx: Context to be put in the shadow array and passed back to cb on result.
*
* This function will return -EAGAIN if the queue is currently full.
*/
int sec_queue_send(struct sec_queue *queue, struct sec_bd_info *msg, void *ctx)
{
struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
void __iomem *base = queue->regs;
u32 write, read;
mutex_lock(&msg_ring->lock);
read = readl(base + SEC_Q_RD_PTR_REG);
write = readl(base + SEC_Q_WR_PTR_REG);
if (write == read && atomic_read(&msg_ring->used) == SEC_QUEUE_LEN) {
mutex_unlock(&msg_ring->lock);
return -EAGAIN;
}
memcpy(msg_ring->vaddr + write, msg, sizeof(*msg));
queue->shadow[write] = ctx;
write = (write + 1) % SEC_QUEUE_LEN;
/* Ensure content updated before queue advance */
wmb();
writel(write, base + SEC_Q_WR_PTR_REG);
atomic_inc(&msg_ring->used);
mutex_unlock(&msg_ring->lock);
return 0;
}
bool sec_queue_can_enqueue(struct sec_queue *queue, int num)
{
struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
return SEC_QUEUE_LEN - atomic_read(&msg_ring->used) >= num;
}
static void sec_queue_hw_init(struct sec_queue *queue)
{
sec_queue_ar_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC);
sec_queue_aw_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC);
sec_queue_ar_pkgattr(queue, 1);
sec_queue_aw_pkgattr(queue, 1);
/* Enable out of order queue */
sec_queue_reorder(queue, true);
/* Interrupt after a single complete element */
writel_relaxed(1, queue->regs + SEC_Q_PROC_NUM_CFG_REG);
sec_queue_depth(queue, SEC_QUEUE_LEN - 1);
sec_queue_cmdbase_addr(queue, queue->ring_cmd.paddr);
sec_queue_outorder_addr(queue, queue->ring_cq.paddr);
sec_queue_errbase_addr(queue, queue->ring_db.paddr);
writel_relaxed(0x100, queue->regs + SEC_Q_OT_TH_REG);
sec_queue_abn_irq_disable(queue);
sec_queue_irq_disable(queue);
writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG);
}
static int sec_hw_init(struct sec_dev_info *info)
{
struct iommu_domain *domain;
u32 sec_ipv4_mask = 0;
u32 sec_ipv6_mask[10] = {};
u32 i, ret;
domain = iommu_get_domain_for_dev(info->dev);
/*
* Enable all available processing unit clocks.
* Only the first cluster is usable with translations.
*/
if (domain && (domain->type & __IOMMU_DOMAIN_PAGING))
info->num_saas = 5;
else
info->num_saas = 10;
writel_relaxed(GENMASK(info->num_saas - 1, 0),
info->regs[SEC_SAA] + SEC_CLK_EN_REG);
/* 32 bit little endian */
sec_bd_endian_little(info);
sec_cache_config(info);
/* Data axi port write and read outstanding config as per datasheet */
sec_data_axiwr_otsd_cfg(info, 0x7);
sec_data_axird_otsd_cfg(info, 0x7);
/* Enable clock gating */
sec_clk_gate_en(info, true);
/* Set CNT_CYC register not read clear */
sec_comm_cnt_cfg(info, false);
/* Enable CNT_CYC */
sec_commsnap_en(info, false);
writel_relaxed((u32)~0, info->regs[SEC_SAA] + SEC_FSM_MAX_CNT_REG);
ret = sec_ipv4_hashmask(info, sec_ipv4_mask);
if (ret) {
dev_err(info->dev, "Failed to set ipv4 hashmask %d\n", ret);
return -EIO;
}
sec_ipv6_hashmask(info, sec_ipv6_mask);
/* do not use debug bd */
sec_set_dbg_bd_cfg(info, 0);
if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) {
for (i = 0; i < SEC_Q_NUM; i++) {
sec_streamid(info, i);
/* Same QoS for all queues */
writel_relaxed(0x3f,
info->regs[SEC_SAA] +
SEC_Q_WEIGHT_CFG_REG(i));
}
}
for (i = 0; i < info->num_saas; i++) {
sec_saa_getqm_en(info, i, 1);
sec_saa_int_mask(info, i, 0);
}
return 0;
}
static void sec_hw_exit(struct sec_dev_info *info)
{
int i;
for (i = 0; i < SEC_MAX_SAA_NUM; i++) {
sec_saa_int_mask(info, i, (u32)~0);
sec_saa_getqm_en(info, i, 0);
}
}
static void sec_queue_base_init(struct sec_dev_info *info,
struct sec_queue *queue, int queue_id)
{
queue->dev_info = info;
queue->queue_id = queue_id;
snprintf(queue->name, sizeof(queue->name),
"%s_%d", dev_name(info->dev), queue->queue_id);
}
static int sec_map_io(struct sec_dev_info *info, struct platform_device *pdev)
{
struct resource *res;
int i;
for (i = 0; i < SEC_NUM_ADDR_REGIONS; i++) {
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (!res) {
dev_err(info->dev, "Memory resource %d not found\n", i);
return -EINVAL;
}
info->regs[i] = devm_ioremap(info->dev, res->start,
resource_size(res));
if (!info->regs[i]) {
dev_err(info->dev,
"Memory resource %d could not be remapped\n",
i);
return -EINVAL;
}
}
return 0;
}
static int sec_base_init(struct sec_dev_info *info,
struct platform_device *pdev)
{
int ret;
ret = sec_map_io(info, pdev);
if (ret)
return ret;
ret = sec_clk_en(info);
if (ret)
return ret;
ret = sec_reset_whole_module(info);
if (ret)
goto sec_clk_disable;
ret = sec_hw_init(info);
if (ret)
goto sec_clk_disable;
return 0;
sec_clk_disable:
sec_clk_dis(info);
return ret;
}
static void sec_base_exit(struct sec_dev_info *info)
{
sec_hw_exit(info);
sec_clk_dis(info);
}
#define SEC_Q_CMD_SIZE \
round_up(SEC_QUEUE_LEN * sizeof(struct sec_bd_info), PAGE_SIZE)
#define SEC_Q_CQ_SIZE \
round_up(SEC_QUEUE_LEN * sizeof(struct sec_out_bd_info), PAGE_SIZE)
#define SEC_Q_DB_SIZE \
round_up(SEC_QUEUE_LEN * sizeof(struct sec_debug_bd_info), PAGE_SIZE)
static int sec_queue_res_cfg(struct sec_queue *queue)
{
struct device *dev = queue->dev_info->dev;
struct sec_queue_ring_cmd *ring_cmd = &queue->ring_cmd;
struct sec_queue_ring_cq *ring_cq = &queue->ring_cq;
struct sec_queue_ring_db *ring_db = &queue->ring_db;
int ret;
ring_cmd->vaddr = dma_zalloc_coherent(dev, SEC_Q_CMD_SIZE,
&ring_cmd->paddr,
GFP_KERNEL);
if (!ring_cmd->vaddr)
return -ENOMEM;
atomic_set(&ring_cmd->used, 0);
mutex_init(&ring_cmd->lock);
ring_cmd->callback = sec_alg_callback;
ring_cq->vaddr = dma_zalloc_coherent(dev, SEC_Q_CQ_SIZE,
&ring_cq->paddr,
GFP_KERNEL);
if (!ring_cq->vaddr) {
ret = -ENOMEM;
goto err_free_ring_cmd;
}
ring_db->vaddr = dma_zalloc_coherent(dev, SEC_Q_DB_SIZE,
&ring_db->paddr,
GFP_KERNEL);
if (!ring_db->vaddr) {
ret = -ENOMEM;
goto err_free_ring_cq;
}
queue->task_irq = platform_get_irq(to_platform_device(dev),
queue->queue_id * 2 + 1);
if (queue->task_irq <= 0) {
ret = -EINVAL;
goto err_free_ring_db;
}
return 0;
err_free_ring_db:
dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr,
queue->ring_db.paddr);
err_free_ring_cq:
dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr,
queue->ring_cq.paddr);
err_free_ring_cmd:
dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr,
queue->ring_cmd.paddr);
return ret;
}
static void sec_queue_free_ring_pages(struct sec_queue *queue)
{
struct device *dev = queue->dev_info->dev;
dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr,
queue->ring_db.paddr);
dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr,
queue->ring_cq.paddr);
dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr,
queue->ring_cmd.paddr);
}
static int sec_queue_config(struct sec_dev_info *info, struct sec_queue *queue,
int queue_id)
{
int ret;
sec_queue_base_init(info, queue, queue_id);
ret = sec_queue_res_cfg(queue);
if (ret)
return ret;
ret = sec_queue_map_io(queue);
if (ret) {
dev_err(info->dev, "Queue map failed %d\n", ret);
sec_queue_free_ring_pages(queue);
return ret;
}
sec_queue_hw_init(queue);
return 0;
}
static void sec_queue_unconfig(struct sec_dev_info *info,
struct sec_queue *queue)
{
sec_queue_unmap_io(queue);
sec_queue_free_ring_pages(queue);
}
static int sec_id_alloc(struct sec_dev_info *info)
{
int ret = 0;
int i;
mutex_lock(&sec_id_lock);
for (i = 0; i < SEC_MAX_DEVICES; i++)
if (!sec_devices[i])
break;
if (i == SEC_MAX_DEVICES) {
ret = -ENOMEM;
goto unlock;
}
info->sec_id = i;
sec_devices[info->sec_id] = info;
unlock:
mutex_unlock(&sec_id_lock);
return ret;
}
static void sec_id_free(struct sec_dev_info *info)
{
mutex_lock(&sec_id_lock);
sec_devices[info->sec_id] = NULL;
mutex_unlock(&sec_id_lock);
}
static int sec_probe(struct platform_device *pdev)
{
struct sec_dev_info *info;
struct device *dev = &pdev->dev;
int i, j;
int ret;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret) {
dev_err(dev, "Failed to set 64 bit dma mask %d", ret);
return -ENODEV;
}
info = devm_kzalloc(dev, (sizeof(*info)), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->dev = dev;
mutex_init(&info->dev_lock);
info->hw_sgl_pool = dmam_pool_create("sgl", dev,
sizeof(struct sec_hw_sgl), 64, 0);
if (!info->hw_sgl_pool) {
dev_err(dev, "Failed to create sec sgl dma pool\n");
return -ENOMEM;
}
ret = sec_base_init(info, pdev);
if (ret) {
dev_err(dev, "Base initialization fail! %d\n", ret);
return ret;
}
for (i = 0; i < SEC_Q_NUM; i++) {
ret = sec_queue_config(info, &info->queues[i], i);
if (ret)
goto queues_unconfig;
ret = sec_queue_irq_init(&info->queues[i]);
if (ret) {
sec_queue_unconfig(info, &info->queues[i]);
goto queues_unconfig;
}
}
ret = sec_algs_register();
if (ret) {
dev_err(dev, "Failed to register algorithms with crypto %d\n",
ret);
goto queues_unconfig;
}
platform_set_drvdata(pdev, info);
ret = sec_id_alloc(info);
if (ret)
goto algs_unregister;
return 0;
algs_unregister:
sec_algs_unregister();
queues_unconfig:
for (j = i - 1; j >= 0; j--) {
sec_queue_irq_uninit(&info->queues[j]);
sec_queue_unconfig(info, &info->queues[j]);
}
sec_base_exit(info);
return ret;
}
static int sec_remove(struct platform_device *pdev)
{
struct sec_dev_info *info = platform_get_drvdata(pdev);
int i;
/* Unexpose as soon as possible, reuse during remove is fine */
sec_id_free(info);
sec_algs_unregister();
for (i = 0; i < SEC_Q_NUM; i++) {
sec_queue_irq_uninit(&info->queues[i]);
sec_queue_unconfig(info, &info->queues[i]);
}
sec_base_exit(info);
return 0;
}
static const __maybe_unused struct of_device_id sec_match[] = {
{ .compatible = "hisilicon,hip06-sec" },
{ .compatible = "hisilicon,hip07-sec" },
{}
};
MODULE_DEVICE_TABLE(of, sec_match);
static const __maybe_unused struct acpi_device_id sec_acpi_match[] = {
{ "HISI02C1", 0 },
{ }
};
MODULE_DEVICE_TABLE(acpi, sec_acpi_match);
static struct platform_driver sec_driver = {
.probe = sec_probe,
.remove = sec_remove,
.driver = {
.name = "hisi_sec_platform_driver",
.of_match_table = sec_match,
.acpi_match_table = ACPI_PTR(sec_acpi_match),
},
};
module_platform_driver(sec_driver);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Hisilicon Security Accelerators");
MODULE_AUTHOR("Zaibo Xu <xuzaibo@huawei.com");
MODULE_AUTHOR("Jonathan Cameron <jonathan.cameron@huawei.com>");