| /* | 
 |  * Key Wrapping: RFC3394 / NIST SP800-38F | 
 |  * | 
 |  * Copyright (C) 2015, Stephan Mueller <smueller@chronox.de> | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, and the entire permission notice in its entirety, | 
 |  *    including the disclaimer of warranties. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * 3. The name of the author may not be used to endorse or promote | 
 |  *    products derived from this software without specific prior | 
 |  *    written permission. | 
 |  * | 
 |  * ALTERNATIVELY, this product may be distributed under the terms of | 
 |  * the GNU General Public License, in which case the provisions of the GPL2 | 
 |  * are required INSTEAD OF the above restrictions.  (This clause is | 
 |  * necessary due to a potential bad interaction between the GPL and | 
 |  * the restrictions contained in a BSD-style copyright.) | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
 |  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
 |  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF | 
 |  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE | 
 |  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 |  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | 
 |  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
 |  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
 |  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | 
 |  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH | 
 |  * DAMAGE. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Note for using key wrapping: | 
 |  * | 
 |  *	* The result of the encryption operation is the ciphertext starting | 
 |  *	  with the 2nd semiblock. The first semiblock is provided as the IV. | 
 |  *	  The IV used to start the encryption operation is the default IV. | 
 |  * | 
 |  *	* The input for the decryption is the first semiblock handed in as an | 
 |  *	  IV. The ciphertext is the data starting with the 2nd semiblock. The | 
 |  *	  return code of the decryption operation will be EBADMSG in case an | 
 |  *	  integrity error occurs. | 
 |  * | 
 |  * To obtain the full result of an encryption as expected by SP800-38F, the | 
 |  * caller must allocate a buffer of plaintext + 8 bytes: | 
 |  * | 
 |  *	unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm); | 
 |  *	u8 data[datalen]; | 
 |  *	u8 *iv = data; | 
 |  *	u8 *pt = data + crypto_skcipher_ivsize(tfm); | 
 |  *		<ensure that pt contains the plaintext of size ptlen> | 
 |  *	sg_init_one(&sg, ptdata, ptlen); | 
 |  *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); | 
 |  * | 
 |  *	==> After encryption, data now contains full KW result as per SP800-38F. | 
 |  * | 
 |  * In case of decryption, ciphertext now already has the expected length | 
 |  * and must be segmented appropriately: | 
 |  * | 
 |  *	unsigned int datalen = CTLEN; | 
 |  *	u8 data[datalen]; | 
 |  *		<ensure that data contains full ciphertext> | 
 |  *	u8 *iv = data; | 
 |  *	u8 *ct = data + crypto_skcipher_ivsize(tfm); | 
 |  *	unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm); | 
 |  *	sg_init_one(&sg, ctdata, ctlen); | 
 |  *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); | 
 |  * | 
 |  *	==> After decryption (which hopefully does not return EBADMSG), the ct | 
 |  *	pointer now points to the plaintext of size ctlen. | 
 |  * | 
 |  * Note 2: KWP is not implemented as this would defy in-place operation. | 
 |  *	   If somebody wants to wrap non-aligned data, he should simply pad | 
 |  *	   the input with zeros to fill it up to the 8 byte boundary. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <crypto/scatterwalk.h> | 
 | #include <crypto/internal/skcipher.h> | 
 |  | 
 | struct crypto_kw_ctx { | 
 | 	struct crypto_cipher *child; | 
 | }; | 
 |  | 
 | struct crypto_kw_block { | 
 | #define SEMIBSIZE 8 | 
 | 	u8 A[SEMIBSIZE]; | 
 | 	u8 R[SEMIBSIZE]; | 
 | }; | 
 |  | 
 | /* convert 64 bit integer into its string representation */ | 
 | static inline void crypto_kw_cpu_to_be64(u64 val, u8 *buf) | 
 | { | 
 | 	__be64 *a = (__be64 *)buf; | 
 |  | 
 | 	*a = cpu_to_be64(val); | 
 | } | 
 |  | 
 | /* | 
 |  * Fast forward the SGL to the "end" length minus SEMIBSIZE. | 
 |  * The start in the SGL defined by the fast-forward is returned with | 
 |  * the walk variable | 
 |  */ | 
 | static void crypto_kw_scatterlist_ff(struct scatter_walk *walk, | 
 | 				     struct scatterlist *sg, | 
 | 				     unsigned int end) | 
 | { | 
 | 	unsigned int skip = 0; | 
 |  | 
 | 	/* The caller should only operate on full SEMIBLOCKs. */ | 
 | 	BUG_ON(end < SEMIBSIZE); | 
 |  | 
 | 	skip = end - SEMIBSIZE; | 
 | 	while (sg) { | 
 | 		if (sg->length > skip) { | 
 | 			scatterwalk_start(walk, sg); | 
 | 			scatterwalk_advance(walk, skip); | 
 | 			break; | 
 | 		} else | 
 | 			skip -= sg->length; | 
 |  | 
 | 		sg = sg_next(sg); | 
 | 	} | 
 | } | 
 |  | 
 | static int crypto_kw_decrypt(struct blkcipher_desc *desc, | 
 | 			     struct scatterlist *dst, struct scatterlist *src, | 
 | 			     unsigned int nbytes) | 
 | { | 
 | 	struct crypto_blkcipher *tfm = desc->tfm; | 
 | 	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); | 
 | 	struct crypto_cipher *child = ctx->child; | 
 |  | 
 | 	unsigned long alignmask = max_t(unsigned long, SEMIBSIZE, | 
 | 					crypto_cipher_alignmask(child)); | 
 | 	unsigned int i; | 
 |  | 
 | 	u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask]; | 
 | 	struct crypto_kw_block *block = (struct crypto_kw_block *) | 
 | 					PTR_ALIGN(blockbuf + 0, alignmask + 1); | 
 |  | 
 | 	u64 t = 6 * ((nbytes) >> 3); | 
 | 	struct scatterlist *lsrc, *ldst; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Require at least 2 semiblocks (note, the 3rd semiblock that is | 
 | 	 * required by SP800-38F is the IV. | 
 | 	 */ | 
 | 	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Place the IV into block A */ | 
 | 	memcpy(block->A, desc->info, SEMIBSIZE); | 
 |  | 
 | 	/* | 
 | 	 * src scatterlist is read-only. dst scatterlist is r/w. During the | 
 | 	 * first loop, lsrc points to src and ldst to dst. For any | 
 | 	 * subsequent round, the code operates on dst only. | 
 | 	 */ | 
 | 	lsrc = src; | 
 | 	ldst = dst; | 
 |  | 
 | 	for (i = 0; i < 6; i++) { | 
 | 		u8 tbe_buffer[SEMIBSIZE + alignmask]; | 
 | 		/* alignment for the crypto_xor and the _to_be64 operation */ | 
 | 		u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1); | 
 | 		unsigned int tmp_nbytes = nbytes; | 
 | 		struct scatter_walk src_walk, dst_walk; | 
 |  | 
 | 		while (tmp_nbytes) { | 
 | 			/* move pointer by tmp_nbytes in the SGL */ | 
 | 			crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes); | 
 | 			/* get the source block */ | 
 | 			scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE, | 
 | 					       false); | 
 |  | 
 | 			/* perform KW operation: get counter as byte string */ | 
 | 			crypto_kw_cpu_to_be64(t, tbe); | 
 | 			/* perform KW operation: modify IV with counter */ | 
 | 			crypto_xor(block->A, tbe, SEMIBSIZE); | 
 | 			t--; | 
 | 			/* perform KW operation: decrypt block */ | 
 | 			crypto_cipher_decrypt_one(child, (u8*)block, | 
 | 						  (u8*)block); | 
 |  | 
 | 			/* move pointer by tmp_nbytes in the SGL */ | 
 | 			crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes); | 
 | 			/* Copy block->R into place */ | 
 | 			scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE, | 
 | 					       true); | 
 |  | 
 | 			tmp_nbytes -= SEMIBSIZE; | 
 | 		} | 
 |  | 
 | 		/* we now start to operate on the dst SGL only */ | 
 | 		lsrc = dst; | 
 | 		ldst = dst; | 
 | 	} | 
 |  | 
 | 	/* Perform authentication check */ | 
 | 	if (crypto_memneq("\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", block->A, | 
 | 			  SEMIBSIZE)) | 
 | 		ret = -EBADMSG; | 
 |  | 
 | 	memzero_explicit(block, sizeof(struct crypto_kw_block)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int crypto_kw_encrypt(struct blkcipher_desc *desc, | 
 | 			     struct scatterlist *dst, struct scatterlist *src, | 
 | 			     unsigned int nbytes) | 
 | { | 
 | 	struct crypto_blkcipher *tfm = desc->tfm; | 
 | 	struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); | 
 | 	struct crypto_cipher *child = ctx->child; | 
 |  | 
 | 	unsigned long alignmask = max_t(unsigned long, SEMIBSIZE, | 
 | 					crypto_cipher_alignmask(child)); | 
 | 	unsigned int i; | 
 |  | 
 | 	u8 blockbuf[sizeof(struct crypto_kw_block) + alignmask]; | 
 | 	struct crypto_kw_block *block = (struct crypto_kw_block *) | 
 | 					PTR_ALIGN(blockbuf + 0, alignmask + 1); | 
 |  | 
 | 	u64 t = 1; | 
 | 	struct scatterlist *lsrc, *ldst; | 
 |  | 
 | 	/* | 
 | 	 * Require at least 2 semiblocks (note, the 3rd semiblock that is | 
 | 	 * required by SP800-38F is the IV that occupies the first semiblock. | 
 | 	 * This means that the dst memory must be one semiblock larger than src. | 
 | 	 * Also ensure that the given data is aligned to semiblock. | 
 | 	 */ | 
 | 	if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * Place the predefined IV into block A -- for encrypt, the caller | 
 | 	 * does not need to provide an IV, but he needs to fetch the final IV. | 
 | 	 */ | 
 | 	memcpy(block->A, "\xA6\xA6\xA6\xA6\xA6\xA6\xA6\xA6", SEMIBSIZE); | 
 |  | 
 | 	/* | 
 | 	 * src scatterlist is read-only. dst scatterlist is r/w. During the | 
 | 	 * first loop, lsrc points to src and ldst to dst. For any | 
 | 	 * subsequent round, the code operates on dst only. | 
 | 	 */ | 
 | 	lsrc = src; | 
 | 	ldst = dst; | 
 |  | 
 | 	for (i = 0; i < 6; i++) { | 
 | 		u8 tbe_buffer[SEMIBSIZE + alignmask]; | 
 | 		u8 *tbe = PTR_ALIGN(tbe_buffer + 0, alignmask + 1); | 
 | 		unsigned int tmp_nbytes = nbytes; | 
 | 		struct scatter_walk src_walk, dst_walk; | 
 |  | 
 | 		scatterwalk_start(&src_walk, lsrc); | 
 | 		scatterwalk_start(&dst_walk, ldst); | 
 |  | 
 | 		while (tmp_nbytes) { | 
 | 			/* get the source block */ | 
 | 			scatterwalk_copychunks(block->R, &src_walk, SEMIBSIZE, | 
 | 					       false); | 
 |  | 
 | 			/* perform KW operation: encrypt block */ | 
 | 			crypto_cipher_encrypt_one(child, (u8 *)block, | 
 | 						  (u8 *)block); | 
 | 			/* perform KW operation: get counter as byte string */ | 
 | 			crypto_kw_cpu_to_be64(t, tbe); | 
 | 			/* perform KW operation: modify IV with counter */ | 
 | 			crypto_xor(block->A, tbe, SEMIBSIZE); | 
 | 			t++; | 
 |  | 
 | 			/* Copy block->R into place */ | 
 | 			scatterwalk_copychunks(block->R, &dst_walk, SEMIBSIZE, | 
 | 					       true); | 
 |  | 
 | 			tmp_nbytes -= SEMIBSIZE; | 
 | 		} | 
 |  | 
 | 		/* we now start to operate on the dst SGL only */ | 
 | 		lsrc = dst; | 
 | 		ldst = dst; | 
 | 	} | 
 |  | 
 | 	/* establish the IV for the caller to pick up */ | 
 | 	memcpy(desc->info, block->A, SEMIBSIZE); | 
 |  | 
 | 	memzero_explicit(block, sizeof(struct crypto_kw_block)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key, | 
 | 			    unsigned int keylen) | 
 | { | 
 | 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent); | 
 | 	struct crypto_cipher *child = ctx->child; | 
 | 	int err; | 
 |  | 
 | 	crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); | 
 | 	crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) & | 
 | 				       CRYPTO_TFM_REQ_MASK); | 
 | 	err = crypto_cipher_setkey(child, key, keylen); | 
 | 	crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) & | 
 | 				     CRYPTO_TFM_RES_MASK); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int crypto_kw_init_tfm(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); | 
 | 	struct crypto_spawn *spawn = crypto_instance_ctx(inst); | 
 | 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct crypto_cipher *cipher; | 
 |  | 
 | 	cipher = crypto_spawn_cipher(spawn); | 
 | 	if (IS_ERR(cipher)) | 
 | 		return PTR_ERR(cipher); | 
 |  | 
 | 	ctx->child = cipher; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void crypto_kw_exit_tfm(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); | 
 |  | 
 | 	crypto_free_cipher(ctx->child); | 
 | } | 
 |  | 
 | static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb) | 
 | { | 
 | 	struct crypto_instance *inst = NULL; | 
 | 	struct crypto_alg *alg = NULL; | 
 | 	int err; | 
 |  | 
 | 	err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER); | 
 | 	if (err) | 
 | 		return ERR_PTR(err); | 
 |  | 
 | 	alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | 
 | 				  CRYPTO_ALG_TYPE_MASK); | 
 | 	if (IS_ERR(alg)) | 
 | 		return ERR_CAST(alg); | 
 |  | 
 | 	inst = ERR_PTR(-EINVAL); | 
 | 	/* Section 5.1 requirement for KW */ | 
 | 	if (alg->cra_blocksize != sizeof(struct crypto_kw_block)) | 
 | 		goto err; | 
 |  | 
 | 	inst = crypto_alloc_instance("kw", alg); | 
 | 	if (IS_ERR(inst)) | 
 | 		goto err; | 
 |  | 
 | 	inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER; | 
 | 	inst->alg.cra_priority = alg->cra_priority; | 
 | 	inst->alg.cra_blocksize = SEMIBSIZE; | 
 | 	inst->alg.cra_alignmask = 0; | 
 | 	inst->alg.cra_type = &crypto_blkcipher_type; | 
 | 	inst->alg.cra_blkcipher.ivsize = SEMIBSIZE; | 
 | 	inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize; | 
 | 	inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize; | 
 |  | 
 | 	inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx); | 
 |  | 
 | 	inst->alg.cra_init = crypto_kw_init_tfm; | 
 | 	inst->alg.cra_exit = crypto_kw_exit_tfm; | 
 |  | 
 | 	inst->alg.cra_blkcipher.setkey = crypto_kw_setkey; | 
 | 	inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt; | 
 | 	inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt; | 
 |  | 
 | err: | 
 | 	crypto_mod_put(alg); | 
 | 	return inst; | 
 | } | 
 |  | 
 | static void crypto_kw_free(struct crypto_instance *inst) | 
 | { | 
 | 	crypto_drop_spawn(crypto_instance_ctx(inst)); | 
 | 	kfree(inst); | 
 | } | 
 |  | 
 | static struct crypto_template crypto_kw_tmpl = { | 
 | 	.name = "kw", | 
 | 	.alloc = crypto_kw_alloc, | 
 | 	.free = crypto_kw_free, | 
 | 	.module = THIS_MODULE, | 
 | }; | 
 |  | 
 | static int __init crypto_kw_init(void) | 
 | { | 
 | 	return crypto_register_template(&crypto_kw_tmpl); | 
 | } | 
 |  | 
 | static void __exit crypto_kw_exit(void) | 
 | { | 
 | 	crypto_unregister_template(&crypto_kw_tmpl); | 
 | } | 
 |  | 
 | module_init(crypto_kw_init); | 
 | module_exit(crypto_kw_exit); | 
 |  | 
 | MODULE_LICENSE("Dual BSD/GPL"); | 
 | MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); | 
 | MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)"); | 
 | MODULE_ALIAS_CRYPTO("kw"); |