| /* | 
 |  * Generic pidhash and scalable, time-bounded PID allocator | 
 |  * | 
 |  * (C) 2002-2003 Nadia Yvette Chambers, IBM | 
 |  * (C) 2004 Nadia Yvette Chambers, Oracle | 
 |  * (C) 2002-2004 Ingo Molnar, Red Hat | 
 |  * | 
 |  * pid-structures are backing objects for tasks sharing a given ID to chain | 
 |  * against. There is very little to them aside from hashing them and | 
 |  * parking tasks using given ID's on a list. | 
 |  * | 
 |  * The hash is always changed with the tasklist_lock write-acquired, | 
 |  * and the hash is only accessed with the tasklist_lock at least | 
 |  * read-acquired, so there's no additional SMP locking needed here. | 
 |  * | 
 |  * We have a list of bitmap pages, which bitmaps represent the PID space. | 
 |  * Allocating and freeing PIDs is completely lockless. The worst-case | 
 |  * allocation scenario when all but one out of 1 million PIDs possible are | 
 |  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE | 
 |  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). | 
 |  * | 
 |  * Pid namespaces: | 
 |  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. | 
 |  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM | 
 |  *     Many thanks to Oleg Nesterov for comments and help | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/export.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/rculist.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/pid_namespace.h> | 
 | #include <linux/init_task.h> | 
 | #include <linux/syscalls.h> | 
 | #include <linux/proc_ns.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/sched/task.h> | 
 | #include <linux/idr.h> | 
 |  | 
 | struct pid init_struct_pid = INIT_STRUCT_PID; | 
 |  | 
 | int pid_max = PID_MAX_DEFAULT; | 
 |  | 
 | #define RESERVED_PIDS		300 | 
 |  | 
 | int pid_max_min = RESERVED_PIDS + 1; | 
 | int pid_max_max = PID_MAX_LIMIT; | 
 |  | 
 | /* | 
 |  * PID-map pages start out as NULL, they get allocated upon | 
 |  * first use and are never deallocated. This way a low pid_max | 
 |  * value does not cause lots of bitmaps to be allocated, but | 
 |  * the scheme scales to up to 4 million PIDs, runtime. | 
 |  */ | 
 | struct pid_namespace init_pid_ns = { | 
 | 	.kref = KREF_INIT(2), | 
 | 	.idr = IDR_INIT, | 
 | 	.pid_allocated = PIDNS_ADDING, | 
 | 	.level = 0, | 
 | 	.child_reaper = &init_task, | 
 | 	.user_ns = &init_user_ns, | 
 | 	.ns.inum = PROC_PID_INIT_INO, | 
 | #ifdef CONFIG_PID_NS | 
 | 	.ns.ops = &pidns_operations, | 
 | #endif | 
 | }; | 
 | EXPORT_SYMBOL_GPL(init_pid_ns); | 
 |  | 
 | /* | 
 |  * Note: disable interrupts while the pidmap_lock is held as an | 
 |  * interrupt might come in and do read_lock(&tasklist_lock). | 
 |  * | 
 |  * If we don't disable interrupts there is a nasty deadlock between | 
 |  * detach_pid()->free_pid() and another cpu that does | 
 |  * spin_lock(&pidmap_lock) followed by an interrupt routine that does | 
 |  * read_lock(&tasklist_lock); | 
 |  * | 
 |  * After we clean up the tasklist_lock and know there are no | 
 |  * irq handlers that take it we can leave the interrupts enabled. | 
 |  * For now it is easier to be safe than to prove it can't happen. | 
 |  */ | 
 |  | 
 | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); | 
 |  | 
 | void put_pid(struct pid *pid) | 
 | { | 
 | 	struct pid_namespace *ns; | 
 |  | 
 | 	if (!pid) | 
 | 		return; | 
 |  | 
 | 	ns = pid->numbers[pid->level].ns; | 
 | 	if ((atomic_read(&pid->count) == 1) || | 
 | 	     atomic_dec_and_test(&pid->count)) { | 
 | 		kmem_cache_free(ns->pid_cachep, pid); | 
 | 		put_pid_ns(ns); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(put_pid); | 
 |  | 
 | static void delayed_put_pid(struct rcu_head *rhp) | 
 | { | 
 | 	struct pid *pid = container_of(rhp, struct pid, rcu); | 
 | 	put_pid(pid); | 
 | } | 
 |  | 
 | void free_pid(struct pid *pid) | 
 | { | 
 | 	/* We can be called with write_lock_irq(&tasklist_lock) held */ | 
 | 	int i; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&pidmap_lock, flags); | 
 | 	for (i = 0; i <= pid->level; i++) { | 
 | 		struct upid *upid = pid->numbers + i; | 
 | 		struct pid_namespace *ns = upid->ns; | 
 | 		switch (--ns->pid_allocated) { | 
 | 		case 2: | 
 | 		case 1: | 
 | 			/* When all that is left in the pid namespace | 
 | 			 * is the reaper wake up the reaper.  The reaper | 
 | 			 * may be sleeping in zap_pid_ns_processes(). | 
 | 			 */ | 
 | 			wake_up_process(ns->child_reaper); | 
 | 			break; | 
 | 		case PIDNS_ADDING: | 
 | 			/* Handle a fork failure of the first process */ | 
 | 			WARN_ON(ns->child_reaper); | 
 | 			ns->pid_allocated = 0; | 
 | 			/* fall through */ | 
 | 		case 0: | 
 | 			schedule_work(&ns->proc_work); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		idr_remove(&ns->idr, upid->nr); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&pidmap_lock, flags); | 
 |  | 
 | 	call_rcu(&pid->rcu, delayed_put_pid); | 
 | } | 
 |  | 
 | struct pid *alloc_pid(struct pid_namespace *ns) | 
 | { | 
 | 	struct pid *pid; | 
 | 	enum pid_type type; | 
 | 	int i, nr; | 
 | 	struct pid_namespace *tmp; | 
 | 	struct upid *upid; | 
 | 	int retval = -ENOMEM; | 
 |  | 
 | 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); | 
 | 	if (!pid) | 
 | 		return ERR_PTR(retval); | 
 |  | 
 | 	tmp = ns; | 
 | 	pid->level = ns->level; | 
 |  | 
 | 	for (i = ns->level; i >= 0; i--) { | 
 | 		int pid_min = 1; | 
 |  | 
 | 		idr_preload(GFP_KERNEL); | 
 | 		spin_lock_irq(&pidmap_lock); | 
 |  | 
 | 		/* | 
 | 		 * init really needs pid 1, but after reaching the maximum | 
 | 		 * wrap back to RESERVED_PIDS | 
 | 		 */ | 
 | 		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) | 
 | 			pid_min = RESERVED_PIDS; | 
 |  | 
 | 		/* | 
 | 		 * Store a null pointer so find_pid_ns does not find | 
 | 		 * a partially initialized PID (see below). | 
 | 		 */ | 
 | 		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, | 
 | 				      pid_max, GFP_ATOMIC); | 
 | 		spin_unlock_irq(&pidmap_lock); | 
 | 		idr_preload_end(); | 
 |  | 
 | 		if (nr < 0) { | 
 | 			retval = nr; | 
 | 			goto out_free; | 
 | 		} | 
 |  | 
 | 		pid->numbers[i].nr = nr; | 
 | 		pid->numbers[i].ns = tmp; | 
 | 		tmp = tmp->parent; | 
 | 	} | 
 |  | 
 | 	if (unlikely(is_child_reaper(pid))) { | 
 | 		if (pid_ns_prepare_proc(ns)) { | 
 | 			disable_pid_allocation(ns); | 
 | 			goto out_free; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	get_pid_ns(ns); | 
 | 	atomic_set(&pid->count, 1); | 
 | 	for (type = 0; type < PIDTYPE_MAX; ++type) | 
 | 		INIT_HLIST_HEAD(&pid->tasks[type]); | 
 |  | 
 | 	upid = pid->numbers + ns->level; | 
 | 	spin_lock_irq(&pidmap_lock); | 
 | 	if (!(ns->pid_allocated & PIDNS_ADDING)) | 
 | 		goto out_unlock; | 
 | 	for ( ; upid >= pid->numbers; --upid) { | 
 | 		/* Make the PID visible to find_pid_ns. */ | 
 | 		idr_replace(&upid->ns->idr, pid, upid->nr); | 
 | 		upid->ns->pid_allocated++; | 
 | 	} | 
 | 	spin_unlock_irq(&pidmap_lock); | 
 |  | 
 | 	return pid; | 
 |  | 
 | out_unlock: | 
 | 	spin_unlock_irq(&pidmap_lock); | 
 | 	put_pid_ns(ns); | 
 |  | 
 | out_free: | 
 | 	spin_lock_irq(&pidmap_lock); | 
 | 	while (++i <= ns->level) | 
 | 		idr_remove(&ns->idr, (pid->numbers + i)->nr); | 
 |  | 
 | 	spin_unlock_irq(&pidmap_lock); | 
 |  | 
 | 	kmem_cache_free(ns->pid_cachep, pid); | 
 | 	return ERR_PTR(retval); | 
 | } | 
 |  | 
 | void disable_pid_allocation(struct pid_namespace *ns) | 
 | { | 
 | 	spin_lock_irq(&pidmap_lock); | 
 | 	ns->pid_allocated &= ~PIDNS_ADDING; | 
 | 	spin_unlock_irq(&pidmap_lock); | 
 | } | 
 |  | 
 | struct pid *find_pid_ns(int nr, struct pid_namespace *ns) | 
 | { | 
 | 	return idr_find(&ns->idr, nr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(find_pid_ns); | 
 |  | 
 | struct pid *find_vpid(int nr) | 
 | { | 
 | 	return find_pid_ns(nr, task_active_pid_ns(current)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(find_vpid); | 
 |  | 
 | /* | 
 |  * attach_pid() must be called with the tasklist_lock write-held. | 
 |  */ | 
 | void attach_pid(struct task_struct *task, enum pid_type type) | 
 | { | 
 | 	struct pid_link *link = &task->pids[type]; | 
 | 	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]); | 
 | } | 
 |  | 
 | static void __change_pid(struct task_struct *task, enum pid_type type, | 
 | 			struct pid *new) | 
 | { | 
 | 	struct pid_link *link; | 
 | 	struct pid *pid; | 
 | 	int tmp; | 
 |  | 
 | 	link = &task->pids[type]; | 
 | 	pid = link->pid; | 
 |  | 
 | 	hlist_del_rcu(&link->node); | 
 | 	link->pid = new; | 
 |  | 
 | 	for (tmp = PIDTYPE_MAX; --tmp >= 0; ) | 
 | 		if (!hlist_empty(&pid->tasks[tmp])) | 
 | 			return; | 
 |  | 
 | 	free_pid(pid); | 
 | } | 
 |  | 
 | void detach_pid(struct task_struct *task, enum pid_type type) | 
 | { | 
 | 	__change_pid(task, type, NULL); | 
 | } | 
 |  | 
 | void change_pid(struct task_struct *task, enum pid_type type, | 
 | 		struct pid *pid) | 
 | { | 
 | 	__change_pid(task, type, pid); | 
 | 	attach_pid(task, type); | 
 | } | 
 |  | 
 | /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ | 
 | void transfer_pid(struct task_struct *old, struct task_struct *new, | 
 | 			   enum pid_type type) | 
 | { | 
 | 	new->pids[type].pid = old->pids[type].pid; | 
 | 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); | 
 | } | 
 |  | 
 | struct task_struct *pid_task(struct pid *pid, enum pid_type type) | 
 | { | 
 | 	struct task_struct *result = NULL; | 
 | 	if (pid) { | 
 | 		struct hlist_node *first; | 
 | 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), | 
 | 					      lockdep_tasklist_lock_is_held()); | 
 | 		if (first) | 
 | 			result = hlist_entry(first, struct task_struct, pids[(type)].node); | 
 | 	} | 
 | 	return result; | 
 | } | 
 | EXPORT_SYMBOL(pid_task); | 
 |  | 
 | /* | 
 |  * Must be called under rcu_read_lock(). | 
 |  */ | 
 | struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) | 
 | { | 
 | 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), | 
 | 			 "find_task_by_pid_ns() needs rcu_read_lock() protection"); | 
 | 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); | 
 | } | 
 |  | 
 | struct task_struct *find_task_by_vpid(pid_t vnr) | 
 | { | 
 | 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); | 
 | } | 
 |  | 
 | struct pid *get_task_pid(struct task_struct *task, enum pid_type type) | 
 | { | 
 | 	struct pid *pid; | 
 | 	rcu_read_lock(); | 
 | 	if (type != PIDTYPE_PID) | 
 | 		task = task->group_leader; | 
 | 	pid = get_pid(rcu_dereference(task->pids[type].pid)); | 
 | 	rcu_read_unlock(); | 
 | 	return pid; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_task_pid); | 
 |  | 
 | struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) | 
 | { | 
 | 	struct task_struct *result; | 
 | 	rcu_read_lock(); | 
 | 	result = pid_task(pid, type); | 
 | 	if (result) | 
 | 		get_task_struct(result); | 
 | 	rcu_read_unlock(); | 
 | 	return result; | 
 | } | 
 | EXPORT_SYMBOL_GPL(get_pid_task); | 
 |  | 
 | struct pid *find_get_pid(pid_t nr) | 
 | { | 
 | 	struct pid *pid; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	pid = get_pid(find_vpid(nr)); | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return pid; | 
 | } | 
 | EXPORT_SYMBOL_GPL(find_get_pid); | 
 |  | 
 | pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) | 
 | { | 
 | 	struct upid *upid; | 
 | 	pid_t nr = 0; | 
 |  | 
 | 	if (pid && ns->level <= pid->level) { | 
 | 		upid = &pid->numbers[ns->level]; | 
 | 		if (upid->ns == ns) | 
 | 			nr = upid->nr; | 
 | 	} | 
 | 	return nr; | 
 | } | 
 | EXPORT_SYMBOL_GPL(pid_nr_ns); | 
 |  | 
 | pid_t pid_vnr(struct pid *pid) | 
 | { | 
 | 	return pid_nr_ns(pid, task_active_pid_ns(current)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(pid_vnr); | 
 |  | 
 | pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, | 
 | 			struct pid_namespace *ns) | 
 | { | 
 | 	pid_t nr = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	if (!ns) | 
 | 		ns = task_active_pid_ns(current); | 
 | 	if (likely(pid_alive(task))) { | 
 | 		if (type != PIDTYPE_PID) { | 
 | 			if (type == __PIDTYPE_TGID) | 
 | 				type = PIDTYPE_PID; | 
 |  | 
 | 			task = task->group_leader; | 
 | 		} | 
 | 		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns); | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	return nr; | 
 | } | 
 | EXPORT_SYMBOL(__task_pid_nr_ns); | 
 |  | 
 | struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) | 
 | { | 
 | 	return ns_of_pid(task_pid(tsk)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(task_active_pid_ns); | 
 |  | 
 | /* | 
 |  * Used by proc to find the first pid that is greater than or equal to nr. | 
 |  * | 
 |  * If there is a pid at nr this function is exactly the same as find_pid_ns. | 
 |  */ | 
 | struct pid *find_ge_pid(int nr, struct pid_namespace *ns) | 
 | { | 
 | 	return idr_get_next(&ns->idr, &nr); | 
 | } | 
 |  | 
 | void __init pid_idr_init(void) | 
 | { | 
 | 	/* Verify no one has done anything silly: */ | 
 | 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); | 
 |  | 
 | 	/* bump default and minimum pid_max based on number of cpus */ | 
 | 	pid_max = min(pid_max_max, max_t(int, pid_max, | 
 | 				PIDS_PER_CPU_DEFAULT * num_possible_cpus())); | 
 | 	pid_max_min = max_t(int, pid_max_min, | 
 | 				PIDS_PER_CPU_MIN * num_possible_cpus()); | 
 | 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); | 
 |  | 
 | 	idr_init(&init_pid_ns.idr); | 
 |  | 
 | 	init_pid_ns.pid_cachep = KMEM_CACHE(pid, | 
 | 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); | 
 | } |