| /* | 
 |  * | 
 |  * Alchemy Au1x00 ethernet driver | 
 |  * | 
 |  * Copyright 2001,2002,2003 MontaVista Software Inc. | 
 |  * Copyright 2002 TimeSys Corp. | 
 |  * Added ethtool/mii-tool support, | 
 |  * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> | 
 |  * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de  | 
 |  * or riemer@riemer-nt.de: fixed the link beat detection with  | 
 |  * ioctls (SIOCGMIIPHY) | 
 |  * Author: MontaVista Software, Inc. | 
 |  *         	ppopov@mvista.com or source@mvista.com | 
 |  * | 
 |  * ######################################################################## | 
 |  * | 
 |  *  This program is free software; you can distribute it and/or modify it | 
 |  *  under the terms of the GNU General Public License (Version 2) as | 
 |  *  published by the Free Software Foundation. | 
 |  * | 
 |  *  This program is distributed in the hope it will be useful, but WITHOUT | 
 |  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
 |  *  for more details. | 
 |  * | 
 |  *  You should have received a copy of the GNU General Public License along | 
 |  *  with this program; if not, write to the Free Software Foundation, Inc., | 
 |  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA. | 
 |  * | 
 |  * ######################################################################## | 
 |  * | 
 |  *  | 
 |  */ | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/string.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/in.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/init.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/delay.h> | 
 | #include <asm/mipsregs.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/io.h> | 
 | #include <asm/processor.h> | 
 |  | 
 | #include <asm/mach-au1x00/au1000.h> | 
 | #include <asm/cpu.h> | 
 | #include "au1000_eth.h" | 
 |  | 
 | #ifdef AU1000_ETH_DEBUG | 
 | static int au1000_debug = 5; | 
 | #else | 
 | static int au1000_debug = 3; | 
 | #endif | 
 |  | 
 | #define DRV_NAME	"au1000eth" | 
 | #define DRV_VERSION	"1.5" | 
 | #define DRV_AUTHOR	"Pete Popov <ppopov@embeddedalley.com>" | 
 | #define DRV_DESC	"Au1xxx on-chip Ethernet driver" | 
 |  | 
 | MODULE_AUTHOR(DRV_AUTHOR); | 
 | MODULE_DESCRIPTION(DRV_DESC); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | // prototypes | 
 | static void hard_stop(struct net_device *); | 
 | static void enable_rx_tx(struct net_device *dev); | 
 | static struct net_device * au1000_probe(u32 ioaddr, int irq, int port_num); | 
 | static int au1000_init(struct net_device *); | 
 | static int au1000_open(struct net_device *); | 
 | static int au1000_close(struct net_device *); | 
 | static int au1000_tx(struct sk_buff *, struct net_device *); | 
 | static int au1000_rx(struct net_device *); | 
 | static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *); | 
 | static void au1000_tx_timeout(struct net_device *); | 
 | static int au1000_set_config(struct net_device *dev, struct ifmap *map); | 
 | static void set_rx_mode(struct net_device *); | 
 | static struct net_device_stats *au1000_get_stats(struct net_device *); | 
 | static inline void update_tx_stats(struct net_device *, u32, u32); | 
 | static inline void update_rx_stats(struct net_device *, u32); | 
 | static void au1000_timer(unsigned long); | 
 | static int au1000_ioctl(struct net_device *, struct ifreq *, int); | 
 | static int mdio_read(struct net_device *, int, int); | 
 | static void mdio_write(struct net_device *, int, int, u16); | 
 | static void dump_mii(struct net_device *dev, int phy_id); | 
 |  | 
 | // externs | 
 | extern  void ack_rise_edge_irq(unsigned int); | 
 | extern int get_ethernet_addr(char *ethernet_addr); | 
 | extern void str2eaddr(unsigned char *ea, unsigned char *str); | 
 | extern char * __init prom_getcmdline(void); | 
 |  | 
 | /* | 
 |  * Theory of operation | 
 |  * | 
 |  * The Au1000 MACs use a simple rx and tx descriptor ring scheme.  | 
 |  * There are four receive and four transmit descriptors.  These  | 
 |  * descriptors are not in memory; rather, they are just a set of  | 
 |  * hardware registers. | 
 |  * | 
 |  * Since the Au1000 has a coherent data cache, the receive and | 
 |  * transmit buffers are allocated from the KSEG0 segment. The  | 
 |  * hardware registers, however, are still mapped at KSEG1 to | 
 |  * make sure there's no out-of-order writes, and that all writes | 
 |  * complete immediately. | 
 |  */ | 
 |  | 
 | /* These addresses are only used if yamon doesn't tell us what | 
 |  * the mac address is, and the mac address is not passed on the | 
 |  * command line. | 
 |  */ | 
 | static unsigned char au1000_mac_addr[6] __devinitdata = {  | 
 | 	0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 | 
 | }; | 
 |  | 
 | #define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0)) | 
 | #define RUN_AT(x) (jiffies + (x)) | 
 |  | 
 | // For reading/writing 32-bit words from/to DMA memory | 
 | #define cpu_to_dma32 cpu_to_be32 | 
 | #define dma32_to_cpu be32_to_cpu | 
 |  | 
 | struct au1000_private *au_macs[NUM_ETH_INTERFACES]; | 
 |  | 
 | /* FIXME  | 
 |  * All of the PHY code really should be detached from the MAC  | 
 |  * code. | 
 |  */ | 
 |  | 
 | /* Default advertise */ | 
 | #define GENMII_DEFAULT_ADVERTISE \ | 
 | 	ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ | 
 | 	ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ | 
 | 	ADVERTISED_Autoneg | 
 |  | 
 | #define GENMII_DEFAULT_FEATURES \ | 
 | 	SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ | 
 | 	SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ | 
 | 	SUPPORTED_Autoneg | 
 |  | 
 | int bcm_5201_init(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 data; | 
 | 	 | 
 | 	/* Stop auto-negotiation */ | 
 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | 
 |  | 
 | 	/* Set advertisement to 10/100 and Half/Full duplex | 
 | 	 * (full capabilities) */ | 
 | 	data = mdio_read(dev, phy_addr, MII_ANADV); | 
 | 	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | 
 | 	mdio_write(dev, phy_addr, MII_ANADV, data); | 
 | 	 | 
 | 	/* Restart auto-negotiation */ | 
 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, data); | 
 |  | 
 | 	if (au1000_debug > 4)  | 
 | 		dump_mii(dev, phy_addr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int bcm_5201_reset(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 mii_control, timeout; | 
 | 	 | 
 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 	mdelay(1); | 
 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 			break; | 
 | 		mdelay(1); | 
 | 	} | 
 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int  | 
 | bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | { | 
 | 	u16 mii_data; | 
 | 	struct au1000_private *aup; | 
 |  | 
 | 	if (!dev) { | 
 | 		printk(KERN_ERR "bcm_5201_status error: NULL dev\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 	if (mii_data & MII_STAT_LINK) { | 
 | 		*link = 1; | 
 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); | 
 | 		if (mii_data & MII_AUX_100) { | 
 | 			if (mii_data & MII_AUX_FDX) { | 
 | 				*speed = IF_PORT_100BASEFX; | 
 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 			} | 
 | 			else { | 
 | 				*speed = IF_PORT_100BASETX; | 
 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 			} | 
 | 		} | 
 | 		else  { | 
 | 			*speed = IF_PORT_10BASET; | 
 | 			dev->if_port = IF_PORT_10BASET; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	else { | 
 | 		*link = 0; | 
 | 		*speed = 0; | 
 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int lsi_80227_init(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	if (au1000_debug > 4) | 
 | 		printk("lsi_80227_init\n"); | 
 |  | 
 | 	/* restart auto-negotiation */ | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, | 
 | 		   MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); // | MII_CNTL_FDX); | 
 | 	mdelay(1); | 
 |  | 
 | 	/* set up LEDs to correct display */ | 
 | #ifdef CONFIG_MIPS_MTX1 | 
 | 	mdio_write(dev, phy_addr, 17, 0xff80); | 
 | #else | 
 | 	mdio_write(dev, phy_addr, 17, 0xffc0); | 
 | #endif | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		dump_mii(dev, phy_addr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int lsi_80227_reset(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 mii_control, timeout; | 
 | 	 | 
 | 	if (au1000_debug > 4) { | 
 | 		printk("lsi_80227_reset\n"); | 
 | 		dump_mii(dev, phy_addr); | 
 | 	} | 
 |  | 
 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 	mdelay(1); | 
 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 			break; | 
 | 		mdelay(1); | 
 | 	} | 
 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | { | 
 | 	u16 mii_data; | 
 | 	struct au1000_private *aup; | 
 |  | 
 | 	if (!dev) { | 
 | 		printk(KERN_ERR "lsi_80227_status error: NULL dev\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 	if (mii_data & MII_STAT_LINK) { | 
 | 		*link = 1; | 
 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_PHY_STAT); | 
 | 		if (mii_data & MII_LSI_PHY_STAT_SPD) { | 
 | 			if (mii_data & MII_LSI_PHY_STAT_FDX) { | 
 | 				*speed = IF_PORT_100BASEFX; | 
 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 			} | 
 | 			else { | 
 | 				*speed = IF_PORT_100BASETX; | 
 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 			} | 
 | 		} | 
 | 		else  { | 
 | 			*speed = IF_PORT_10BASET; | 
 | 			dev->if_port = IF_PORT_10BASET; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	else { | 
 | 		*link = 0; | 
 | 		*speed = 0; | 
 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int am79c901_init(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	printk("am79c901_init\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int am79c901_reset(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	printk("am79c901_reset\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int  | 
 | am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | int am79c874_init(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 data; | 
 |  | 
 | 	/* 79c874 has quit resembled bit assignments to BCM5201 */ | 
 | 	if (au1000_debug > 4) | 
 | 		printk("am79c847_init\n"); | 
 |  | 
 | 	/* Stop auto-negotiation */ | 
 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | 
 |  | 
 | 	/* Set advertisement to 10/100 and Half/Full duplex | 
 | 	 * (full capabilities) */ | 
 | 	data = mdio_read(dev, phy_addr, MII_ANADV); | 
 | 	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | 
 | 	mdio_write(dev, phy_addr, MII_ANADV, data); | 
 | 	 | 
 | 	/* Restart auto-negotiation */ | 
 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | 
 |  | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, data); | 
 |  | 
 | 	if (au1000_debug > 4) dump_mii(dev, phy_addr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int am79c874_reset(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 mii_control, timeout; | 
 | 	 | 
 | 	if (au1000_debug > 4) | 
 | 		printk("am79c874_reset\n"); | 
 |  | 
 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 	mdelay(1); | 
 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 			break; | 
 | 		mdelay(1); | 
 | 	} | 
 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int  | 
 | am79c874_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | { | 
 | 	u16 mii_data; | 
 | 	struct au1000_private *aup; | 
 |  | 
 | 	// printk("am79c874_status\n"); | 
 | 	if (!dev) { | 
 | 		printk(KERN_ERR "am79c874_status error: NULL dev\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	aup = (struct au1000_private *) dev->priv; | 
 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 |  | 
 | 	if (mii_data & MII_STAT_LINK) { | 
 | 		*link = 1; | 
 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_AMD_PHY_STAT); | 
 | 		if (mii_data & MII_AMD_PHY_STAT_SPD) { | 
 | 			if (mii_data & MII_AMD_PHY_STAT_FDX) { | 
 | 				*speed = IF_PORT_100BASEFX; | 
 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 			} | 
 | 			else { | 
 | 				*speed = IF_PORT_100BASETX; | 
 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			*speed = IF_PORT_10BASET; | 
 | 			dev->if_port = IF_PORT_10BASET; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	else { | 
 | 		*link = 0; | 
 | 		*speed = 0; | 
 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int lxt971a_init(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	if (au1000_debug > 4) | 
 | 		printk("lxt971a_init\n"); | 
 |  | 
 | 	/* restart auto-negotiation */ | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, | 
 | 		   MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO | MII_CNTL_FDX); | 
 |  | 
 | 	/* set up LEDs to correct display */ | 
 | 	mdio_write(dev, phy_addr, 20, 0x0422); | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		dump_mii(dev, phy_addr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int lxt971a_reset(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 mii_control, timeout; | 
 | 	 | 
 | 	if (au1000_debug > 4) { | 
 | 		printk("lxt971a_reset\n"); | 
 | 		dump_mii(dev, phy_addr); | 
 | 	} | 
 |  | 
 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 	mdelay(1); | 
 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 			break; | 
 | 		mdelay(1); | 
 | 	} | 
 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | lxt971a_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | { | 
 | 	u16 mii_data; | 
 | 	struct au1000_private *aup; | 
 |  | 
 | 	if (!dev) { | 
 | 		printk(KERN_ERR "lxt971a_status error: NULL dev\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 	if (mii_data & MII_STAT_LINK) { | 
 | 		*link = 1; | 
 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_INTEL_PHY_STAT); | 
 | 		if (mii_data & MII_INTEL_PHY_STAT_SPD) { | 
 | 			if (mii_data & MII_INTEL_PHY_STAT_FDX) { | 
 | 				*speed = IF_PORT_100BASEFX; | 
 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 			} | 
 | 			else { | 
 | 				*speed = IF_PORT_100BASETX; | 
 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 			} | 
 | 		} | 
 | 		else  { | 
 | 			*speed = IF_PORT_10BASET; | 
 | 			dev->if_port = IF_PORT_10BASET; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	else { | 
 | 		*link = 0; | 
 | 		*speed = 0; | 
 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ks8995m_init(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 data; | 
 | 	 | 
 | //	printk("ks8995m_init\n"); | 
 | 	/* Stop auto-negotiation */ | 
 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | 
 |  | 
 | 	/* Set advertisement to 10/100 and Half/Full duplex | 
 | 	 * (full capabilities) */ | 
 | 	data = mdio_read(dev, phy_addr, MII_ANADV); | 
 | 	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | 
 | 	mdio_write(dev, phy_addr, MII_ANADV, data); | 
 | 	 | 
 | 	/* Restart auto-negotiation */ | 
 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, data); | 
 |  | 
 | 	if (au1000_debug > 4) dump_mii(dev, phy_addr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ks8995m_reset(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 mii_control, timeout; | 
 | 	 | 
 | //	printk("ks8995m_reset\n"); | 
 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 	mdelay(1); | 
 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 			break; | 
 | 		mdelay(1); | 
 | 	} | 
 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ks8995m_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | { | 
 | 	u16 mii_data; | 
 | 	struct au1000_private *aup; | 
 |  | 
 | 	if (!dev) { | 
 | 		printk(KERN_ERR "ks8995m_status error: NULL dev\n"); | 
 | 		return -1; | 
 | 	} | 
 | 	aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 | 	if (mii_data & MII_STAT_LINK) { | 
 | 		*link = 1; | 
 | 		mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); | 
 | 		if (mii_data & MII_AUX_100) { | 
 | 			if (mii_data & MII_AUX_FDX) { | 
 | 				*speed = IF_PORT_100BASEFX; | 
 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 			} | 
 | 			else { | 
 | 				*speed = IF_PORT_100BASETX; | 
 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 			} | 
 | 		} | 
 | 		else  {											 | 
 | 			*speed = IF_PORT_10BASET; | 
 | 			dev->if_port = IF_PORT_10BASET; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	else { | 
 | 		*link = 0; | 
 | 		*speed = 0; | 
 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | smsc_83C185_init (struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 data; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("smsc_83C185_init\n"); | 
 |  | 
 | 	/* Stop auto-negotiation */ | 
 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | 
 |  | 
 | 	/* Set advertisement to 10/100 and Half/Full duplex | 
 | 	 * (full capabilities) */ | 
 | 	data = mdio_read(dev, phy_addr, MII_ANADV); | 
 | 	data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | 
 | 	mdio_write(dev, phy_addr, MII_ANADV, data); | 
 | 	 | 
 | 	/* Restart auto-negotiation */ | 
 | 	data = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | 
 |  | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, data); | 
 |  | 
 | 	if (au1000_debug > 4) dump_mii(dev, phy_addr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | smsc_83C185_reset (struct net_device *dev, int phy_addr) | 
 | { | 
 | 	s16 mii_control, timeout; | 
 | 	 | 
 | 	if (au1000_debug > 4) | 
 | 		printk("smsc_83C185_reset\n"); | 
 |  | 
 | 	mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 	mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | 
 | 	mdelay(1); | 
 | 	for (timeout = 100; timeout > 0; --timeout) { | 
 | 		mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | 
 | 		if ((mii_control & MII_CNTL_RESET) == 0) | 
 | 			break; | 
 | 		mdelay(1); | 
 | 	} | 
 | 	if (mii_control & MII_CNTL_RESET) { | 
 | 		printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | 
 | 		return -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int  | 
 | smsc_83C185_status (struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | { | 
 | 	u16 mii_data; | 
 | 	struct au1000_private *aup; | 
 |  | 
 | 	if (!dev) { | 
 | 		printk(KERN_ERR "smsc_83C185_status error: NULL dev\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	aup = (struct au1000_private *) dev->priv; | 
 | 	mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | 
 |  | 
 | 	if (mii_data & MII_STAT_LINK) { | 
 | 		*link = 1; | 
 | 		mii_data = mdio_read(dev, aup->phy_addr, 0x1f); | 
 | 		if (mii_data & (1<<3)) { | 
 | 			if (mii_data & (1<<4)) { | 
 | 				*speed = IF_PORT_100BASEFX; | 
 | 				dev->if_port = IF_PORT_100BASEFX; | 
 | 			} | 
 | 			else { | 
 | 				*speed = IF_PORT_100BASETX; | 
 | 				dev->if_port = IF_PORT_100BASETX; | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			*speed = IF_PORT_10BASET; | 
 | 			dev->if_port = IF_PORT_10BASET; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		*link = 0; | 
 | 		*speed = 0; | 
 | 		dev->if_port = IF_PORT_UNKNOWN; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | int stub_init(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	//printk("PHY stub_init\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int stub_reset(struct net_device *dev, int phy_addr) | 
 | { | 
 | 	//printk("PHY stub_reset\n"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int  | 
 | stub_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | 
 | { | 
 | 	//printk("PHY stub_status\n"); | 
 | 	*link = 1; | 
 | 	/* hmmm, revisit */ | 
 | 	*speed = IF_PORT_100BASEFX; | 
 | 	dev->if_port = IF_PORT_100BASEFX; | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | struct phy_ops bcm_5201_ops = { | 
 | 	bcm_5201_init, | 
 | 	bcm_5201_reset, | 
 | 	bcm_5201_status, | 
 | }; | 
 |  | 
 | struct phy_ops am79c874_ops = { | 
 | 	am79c874_init, | 
 | 	am79c874_reset, | 
 | 	am79c874_status, | 
 | }; | 
 |  | 
 | struct phy_ops am79c901_ops = { | 
 | 	am79c901_init, | 
 | 	am79c901_reset, | 
 | 	am79c901_status, | 
 | }; | 
 |  | 
 | struct phy_ops lsi_80227_ops = {  | 
 | 	lsi_80227_init, | 
 | 	lsi_80227_reset, | 
 | 	lsi_80227_status, | 
 | }; | 
 |  | 
 | struct phy_ops lxt971a_ops = {  | 
 | 	lxt971a_init, | 
 | 	lxt971a_reset, | 
 | 	lxt971a_status, | 
 | }; | 
 |  | 
 | struct phy_ops ks8995m_ops = { | 
 | 	ks8995m_init, | 
 | 	ks8995m_reset, | 
 | 	ks8995m_status, | 
 | }; | 
 |  | 
 | struct phy_ops smsc_83C185_ops = { | 
 | 	smsc_83C185_init, | 
 | 	smsc_83C185_reset, | 
 | 	smsc_83C185_status, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | struct phy_ops stub_ops = { | 
 | 	stub_init, | 
 | 	stub_reset, | 
 | 	stub_status, | 
 | }; | 
 | #endif | 
 |  | 
 | static struct mii_chip_info { | 
 | 	const char * name; | 
 | 	u16 phy_id0; | 
 | 	u16 phy_id1; | 
 | 	struct phy_ops *phy_ops;	 | 
 | 	int dual_phy; | 
 | } mii_chip_table[] = { | 
 | 	{"Broadcom BCM5201 10/100 BaseT PHY",0x0040,0x6212, &bcm_5201_ops,0}, | 
 | 	{"Broadcom BCM5221 10/100 BaseT PHY",0x0040,0x61e4, &bcm_5201_ops,0}, | 
 | 	{"Broadcom BCM5222 10/100 BaseT PHY",0x0040,0x6322, &bcm_5201_ops,1}, | 
 | 	{"NS DP83847 PHY", 0x2000, 0x5c30, &bcm_5201_ops ,0}, | 
 | 	{"AMD 79C901 HomePNA PHY",0x0000,0x35c8, &am79c901_ops,0}, | 
 | 	{"AMD 79C874 10/100 BaseT PHY",0x0022,0x561b, &am79c874_ops,0}, | 
 | 	{"LSI 80227 10/100 BaseT PHY",0x0016,0xf840, &lsi_80227_ops,0}, | 
 | 	{"Intel LXT971A Dual Speed PHY",0x0013,0x78e2, &lxt971a_ops,0}, | 
 | 	{"Kendin KS8995M 10/100 BaseT PHY",0x0022,0x1450, &ks8995m_ops,0}, | 
 | 	{"SMSC LAN83C185 10/100 BaseT PHY",0x0007,0xc0a3, &smsc_83C185_ops,0}, | 
 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 	{"Stub", 0x1234, 0x5678, &stub_ops }, | 
 | #endif | 
 | 	{0,}, | 
 | }; | 
 |  | 
 | static int mdio_read(struct net_device *dev, int phy_id, int reg) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	volatile u32 *mii_control_reg; | 
 | 	volatile u32 *mii_data_reg; | 
 | 	u32 timedout = 20; | 
 | 	u32 mii_control; | 
 |  | 
 | 	#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 	/* First time we probe, it's for the mac0 phy. | 
 | 	 * Since we haven't determined yet that we have a dual phy, | 
 | 	 * aup->mii->mii_control_reg won't be setup and we'll | 
 | 	 * default to the else statement. | 
 | 	 * By the time we probe for the mac1 phy, the mii_control_reg | 
 | 	 * will be setup to be the address of the mac0 phy control since | 
 | 	 * both phys are controlled through mac0. | 
 | 	 */ | 
 | 	if (aup->mii && aup->mii->mii_control_reg) { | 
 | 		mii_control_reg = aup->mii->mii_control_reg; | 
 | 		mii_data_reg = aup->mii->mii_data_reg; | 
 | 	} | 
 | 	else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | 
 | 		/* assume both phys are controlled through mac0 */ | 
 | 		mii_control_reg = au_macs[0]->mii->mii_control_reg; | 
 | 		mii_data_reg = au_macs[0]->mii->mii_data_reg; | 
 | 	} | 
 | 	else  | 
 | 	#endif | 
 | 	{ | 
 | 		/* default control and data reg addresses */ | 
 | 		mii_control_reg = &aup->mac->mii_control; | 
 | 		mii_data_reg = &aup->mac->mii_data; | 
 | 	} | 
 |  | 
 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 		mdelay(1); | 
 | 		if (--timedout == 0) { | 
 | 			printk(KERN_ERR "%s: read_MII busy timeout!!\n",  | 
 | 					dev->name); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mii_control = MAC_SET_MII_SELECT_REG(reg) |  | 
 | 		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ; | 
 |  | 
 | 	*mii_control_reg = mii_control; | 
 |  | 
 | 	timedout = 20; | 
 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 		mdelay(1); | 
 | 		if (--timedout == 0) { | 
 | 			printk(KERN_ERR "%s: mdio_read busy timeout!!\n",  | 
 | 					dev->name); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | 	return (int)*mii_data_reg; | 
 | } | 
 |  | 
 | static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	volatile u32 *mii_control_reg; | 
 | 	volatile u32 *mii_data_reg; | 
 | 	u32 timedout = 20; | 
 | 	u32 mii_control; | 
 |  | 
 | 	#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 	if (aup->mii && aup->mii->mii_control_reg) { | 
 | 		mii_control_reg = aup->mii->mii_control_reg; | 
 | 		mii_data_reg = aup->mii->mii_data_reg; | 
 | 	} | 
 | 	else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | 
 | 		/* assume both phys are controlled through mac0 */ | 
 | 		mii_control_reg = au_macs[0]->mii->mii_control_reg; | 
 | 		mii_data_reg = au_macs[0]->mii->mii_data_reg; | 
 | 	} | 
 | 	else  | 
 | 	#endif | 
 | 	{ | 
 | 		/* default control and data reg addresses */ | 
 | 		mii_control_reg = &aup->mac->mii_control; | 
 | 		mii_data_reg = &aup->mac->mii_data; | 
 | 	} | 
 |  | 
 | 	while (*mii_control_reg & MAC_MII_BUSY) { | 
 | 		mdelay(1); | 
 | 		if (--timedout == 0) { | 
 | 			printk(KERN_ERR "%s: mdio_write busy timeout!!\n",  | 
 | 					dev->name); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	mii_control = MAC_SET_MII_SELECT_REG(reg) |  | 
 | 		MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE; | 
 |  | 
 | 	*mii_data_reg = value; | 
 | 	*mii_control_reg = mii_control; | 
 | } | 
 |  | 
 |  | 
 | static void dump_mii(struct net_device *dev, int phy_id) | 
 | { | 
 | 	int i, val; | 
 |  | 
 | 	for (i = 0; i < 7; i++) { | 
 | 		if ((val = mdio_read(dev, phy_id, i)) >= 0) | 
 | 			printk("%s: MII Reg %d=%x\n", dev->name, i, val); | 
 | 	} | 
 | 	for (i = 16; i < 25; i++) { | 
 | 		if ((val = mdio_read(dev, phy_id, i)) >= 0) | 
 | 			printk("%s: MII Reg %d=%x\n", dev->name, i, val); | 
 | 	} | 
 | } | 
 |  | 
 | static int mii_probe (struct net_device * dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	int phy_addr; | 
 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 	int phy_found=0; | 
 | #endif | 
 |  | 
 | 	/* search for total of 32 possible mii phy addresses */ | 
 | 	for (phy_addr = 0; phy_addr < 32; phy_addr++) { | 
 | 		u16 mii_status; | 
 | 		u16 phy_id0, phy_id1; | 
 | 		int i; | 
 |  | 
 | 		#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 		/* Mask the already found phy, try next one */ | 
 | 		if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | 
 | 			if (au_macs[0]->phy_addr == phy_addr) | 
 | 				continue; | 
 | 		} | 
 | 		#endif | 
 |  | 
 | 		mii_status = mdio_read(dev, phy_addr, MII_STATUS); | 
 | 		if (mii_status == 0xffff || mii_status == 0x0000) | 
 | 			/* the mii is not accessable, try next one */ | 
 | 			continue; | 
 |  | 
 | 		phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0); | 
 | 		phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1); | 
 |  | 
 | 		/* search our mii table for the current mii */  | 
 | 		for (i = 0; mii_chip_table[i].phy_id1; i++) { | 
 | 			if (phy_id0 == mii_chip_table[i].phy_id0 && | 
 | 			    phy_id1 == mii_chip_table[i].phy_id1) { | 
 | 				struct mii_phy * mii_phy = aup->mii; | 
 |  | 
 | 				printk(KERN_INFO "%s: %s at phy address %d\n", | 
 | 				       dev->name, mii_chip_table[i].name,  | 
 | 				       phy_addr); | 
 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 				phy_found = 1; | 
 | #endif | 
 | 				mii_phy->chip_info = mii_chip_table+i; | 
 | 				aup->phy_addr = phy_addr; | 
 | 				aup->want_autoneg = 1; | 
 | 				aup->phy_ops = mii_chip_table[i].phy_ops; | 
 | 				aup->phy_ops->phy_init(dev,phy_addr); | 
 |  | 
 | 				// Check for dual-phy and then store required  | 
 | 				// values and set indicators. We need to do  | 
 | 				// this now since mdio_{read,write} need the  | 
 | 				// control and data register addresses. | 
 | 				#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 				if ( mii_chip_table[i].dual_phy) { | 
 |  | 
 | 					/* assume both phys are controlled  | 
 | 					 * through MAC0. Board specific? */ | 
 | 					 | 
 | 					/* sanity check */ | 
 | 					if (!au_macs[0] || !au_macs[0]->mii) | 
 | 						return -1; | 
 | 					aup->mii->mii_control_reg = (u32 *) | 
 | 						&au_macs[0]->mac->mii_control; | 
 | 					aup->mii->mii_data_reg = (u32 *) | 
 | 						&au_macs[0]->mac->mii_data; | 
 | 				} | 
 | 				#endif | 
 | 				goto found; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | found: | 
 |  | 
 | #ifdef CONFIG_MIPS_BOSPORUS | 
 | 	/* This is a workaround for the Micrel/Kendin 5 port switch | 
 | 	   The second MAC doesn't see a PHY connected... so we need to | 
 | 	   trick it into thinking we have one. | 
 | 		 | 
 | 	   If this kernel is run on another Au1500 development board | 
 | 	   the stub will be found as well as the actual PHY. However, | 
 | 	   the last found PHY will be used... usually at Addr 31 (Db1500).	 | 
 | 	*/ | 
 | 	if ( (!phy_found) ) | 
 | 	{ | 
 | 		u16 phy_id0, phy_id1; | 
 | 		int i; | 
 |  | 
 | 		phy_id0 = 0x1234; | 
 | 		phy_id1 = 0x5678; | 
 |  | 
 | 		/* search our mii table for the current mii */  | 
 | 		for (i = 0; mii_chip_table[i].phy_id1; i++) { | 
 | 			if (phy_id0 == mii_chip_table[i].phy_id0 && | 
 | 			    phy_id1 == mii_chip_table[i].phy_id1) { | 
 | 				struct mii_phy * mii_phy; | 
 |  | 
 | 				printk(KERN_INFO "%s: %s at phy address %d\n", | 
 | 				       dev->name, mii_chip_table[i].name,  | 
 | 				       phy_addr); | 
 | 				mii_phy = kmalloc(sizeof(struct mii_phy),  | 
 | 						GFP_KERNEL); | 
 | 				if (mii_phy) { | 
 | 					mii_phy->chip_info = mii_chip_table+i; | 
 | 					aup->phy_addr = phy_addr; | 
 | 					mii_phy->next = aup->mii; | 
 | 					aup->phy_ops =  | 
 | 						mii_chip_table[i].phy_ops; | 
 | 					aup->mii = mii_phy; | 
 | 					aup->phy_ops->phy_init(dev,phy_addr); | 
 | 				} else { | 
 | 					printk(KERN_ERR "%s: out of memory\n",  | 
 | 							dev->name); | 
 | 					return -1; | 
 | 				} | 
 | 				mii_phy->chip_info = mii_chip_table+i; | 
 | 				aup->phy_addr = phy_addr; | 
 | 				aup->phy_ops = mii_chip_table[i].phy_ops; | 
 | 				aup->phy_ops->phy_init(dev,phy_addr); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (aup->mac_id == 0) { | 
 | 		/* the Bosporus phy responds to addresses 0-5 but  | 
 | 		 * 5 is the correct one. | 
 | 		 */ | 
 | 		aup->phy_addr = 5; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (aup->mii->chip_info == NULL) { | 
 | 		printk(KERN_ERR "%s: Au1x No known MII transceivers found!\n", | 
 | 				dev->name); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	printk(KERN_INFO "%s: Using %s as default\n",  | 
 | 			dev->name, aup->mii->chip_info->name); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Buffer allocation/deallocation routines. The buffer descriptor returned | 
 |  * has the virtual and dma address of a buffer suitable for  | 
 |  * both, receive and transmit operations. | 
 |  */ | 
 | static db_dest_t *GetFreeDB(struct au1000_private *aup) | 
 | { | 
 | 	db_dest_t *pDB; | 
 | 	pDB = aup->pDBfree; | 
 |  | 
 | 	if (pDB) { | 
 | 		aup->pDBfree = pDB->pnext; | 
 | 	} | 
 | 	return pDB; | 
 | } | 
 |  | 
 | void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) | 
 | { | 
 | 	db_dest_t *pDBfree = aup->pDBfree; | 
 | 	if (pDBfree) | 
 | 		pDBfree->pnext = pDB; | 
 | 	aup->pDBfree = pDB; | 
 | } | 
 |  | 
 | static void enable_rx_tx(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); | 
 |  | 
 | 	aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); | 
 | 	au_sync_delay(10); | 
 | } | 
 |  | 
 | static void hard_stop(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk(KERN_INFO "%s: hard stop\n", dev->name); | 
 |  | 
 | 	aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); | 
 | 	au_sync_delay(10); | 
 | } | 
 |  | 
 |  | 
 | static void reset_mac(struct net_device *dev) | 
 | { | 
 | 	int i; | 
 | 	u32 flags; | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4)  | 
 | 		printk(KERN_INFO "%s: reset mac, aup %x\n",  | 
 | 				dev->name, (unsigned)aup); | 
 |  | 
 | 	spin_lock_irqsave(&aup->lock, flags); | 
 | 	if (aup->timer.function == &au1000_timer) {/* check if timer initted */ | 
 | 		del_timer(&aup->timer); | 
 | 	} | 
 |  | 
 | 	hard_stop(dev); | 
 | 	#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 	if (aup->mac_id != 0) { | 
 | 	#endif | 
 | 		/* If BCM5222, we can't leave MAC0 in reset because then  | 
 | 		 * we can't access the dual phy for ETH1 */ | 
 | 		*aup->enable = MAC_EN_CLOCK_ENABLE; | 
 | 		au_sync_delay(2); | 
 | 		*aup->enable = 0; | 
 | 		au_sync_delay(2); | 
 | 	#ifdef CONFIG_BCM5222_DUAL_PHY | 
 | 	} | 
 | 	#endif | 
 | 	aup->tx_full = 0; | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		/* reset control bits */ | 
 | 		aup->rx_dma_ring[i]->buff_stat &= ~0xf; | 
 | 	} | 
 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 		/* reset control bits */ | 
 | 		aup->tx_dma_ring[i]->buff_stat &= ~0xf; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 | } | 
 |  | 
 |  | 
 | /*  | 
 |  * Setup the receive and transmit "rings".  These pointers are the addresses | 
 |  * of the rx and tx MAC DMA registers so they are fixed by the hardware -- | 
 |  * these are not descriptors sitting in memory. | 
 |  */ | 
 | static void  | 
 | setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		aup->rx_dma_ring[i] =  | 
 | 			(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); | 
 | 	} | 
 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 		aup->tx_dma_ring[i] =  | 
 | 			(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); | 
 | 	} | 
 | } | 
 |  | 
 | static struct { | 
 | 	int port; | 
 | 	u32 base_addr; | 
 | 	u32 macen_addr; | 
 | 	int irq; | 
 | 	struct net_device *dev; | 
 | } iflist[2]; | 
 |  | 
 | static int num_ifs; | 
 |  | 
 | /* | 
 |  * Setup the base address and interupt of the Au1xxx ethernet macs | 
 |  * based on cpu type and whether the interface is enabled in sys_pinfunc | 
 |  * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0. | 
 |  */ | 
 | static int __init au1000_init_module(void) | 
 | { | 
 | 	struct cpuinfo_mips *c = ¤t_cpu_data; | 
 | 	int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4); | 
 | 	struct net_device *dev; | 
 | 	int i, found_one = 0; | 
 |  | 
 | 	switch (c->cputype) { | 
 | #ifdef CONFIG_SOC_AU1000 | 
 | 	case CPU_AU1000: | 
 | 		num_ifs = 2 - ni; | 
 | 		iflist[0].base_addr = AU1000_ETH0_BASE; | 
 | 		iflist[1].base_addr = AU1000_ETH1_BASE; | 
 | 		iflist[0].macen_addr = AU1000_MAC0_ENABLE; | 
 | 		iflist[1].macen_addr = AU1000_MAC1_ENABLE; | 
 | 		iflist[0].irq = AU1000_MAC0_DMA_INT; | 
 | 		iflist[1].irq = AU1000_MAC1_DMA_INT; | 
 | 		break; | 
 | #endif | 
 | #ifdef CONFIG_SOC_AU1100 | 
 | 	case CPU_AU1100: | 
 | 		num_ifs = 1 - ni; | 
 | 		iflist[0].base_addr = AU1100_ETH0_BASE; | 
 | 		iflist[0].macen_addr = AU1100_MAC0_ENABLE; | 
 | 		iflist[0].irq = AU1100_MAC0_DMA_INT; | 
 | 		break; | 
 | #endif | 
 | #ifdef CONFIG_SOC_AU1500 | 
 | 	case CPU_AU1500: | 
 | 		num_ifs = 2 - ni; | 
 | 		iflist[0].base_addr = AU1500_ETH0_BASE; | 
 | 		iflist[1].base_addr = AU1500_ETH1_BASE; | 
 | 		iflist[0].macen_addr = AU1500_MAC0_ENABLE; | 
 | 		iflist[1].macen_addr = AU1500_MAC1_ENABLE; | 
 | 		iflist[0].irq = AU1500_MAC0_DMA_INT; | 
 | 		iflist[1].irq = AU1500_MAC1_DMA_INT; | 
 | 		break; | 
 | #endif | 
 | #ifdef CONFIG_SOC_AU1550 | 
 | 	case CPU_AU1550: | 
 | 		num_ifs = 2 - ni; | 
 | 		iflist[0].base_addr = AU1550_ETH0_BASE; | 
 | 		iflist[1].base_addr = AU1550_ETH1_BASE; | 
 | 		iflist[0].macen_addr = AU1550_MAC0_ENABLE; | 
 | 		iflist[1].macen_addr = AU1550_MAC1_ENABLE; | 
 | 		iflist[0].irq = AU1550_MAC0_DMA_INT; | 
 | 		iflist[1].irq = AU1550_MAC1_DMA_INT; | 
 | 		break; | 
 | #endif | 
 | 	default: | 
 | 		num_ifs = 0; | 
 | 	} | 
 | 	for(i = 0; i < num_ifs; i++) { | 
 | 		dev = au1000_probe(iflist[i].base_addr, iflist[i].irq, i); | 
 | 		iflist[i].dev = dev; | 
 | 		if (dev) | 
 | 			found_one++; | 
 | 	} | 
 | 	if (!found_one) | 
 | 		return -ENODEV; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int au1000_setup_aneg(struct net_device *dev, u32 advertise) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 	u16 ctl, adv; | 
 |  | 
 | 	/* Setup standard advertise */ | 
 | 	adv = mdio_read(dev, aup->phy_addr, MII_ADVERTISE); | 
 | 	adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); | 
 | 	if (advertise & ADVERTISED_10baseT_Half) | 
 | 		adv |= ADVERTISE_10HALF; | 
 | 	if (advertise & ADVERTISED_10baseT_Full) | 
 | 		adv |= ADVERTISE_10FULL; | 
 | 	if (advertise & ADVERTISED_100baseT_Half) | 
 | 		adv |= ADVERTISE_100HALF; | 
 | 	if (advertise & ADVERTISED_100baseT_Full) | 
 | 		adv |= ADVERTISE_100FULL; | 
 | 	mdio_write(dev, aup->phy_addr, MII_ADVERTISE, adv); | 
 |  | 
 | 	/* Start/Restart aneg */ | 
 | 	ctl = mdio_read(dev, aup->phy_addr, MII_BMCR); | 
 | 	ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); | 
 | 	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int au1000_setup_forced(struct net_device *dev, int speed, int fd) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 	u16 ctl; | 
 |  | 
 | 	ctl = mdio_read(dev, aup->phy_addr, MII_BMCR); | 
 | 	ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE); | 
 |  | 
 | 	/* First reset the PHY */ | 
 | 	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl | BMCR_RESET); | 
 |  | 
 | 	/* Select speed & duplex */ | 
 | 	switch (speed) { | 
 | 		case SPEED_10: | 
 | 			break; | 
 | 		case SPEED_100: | 
 | 			ctl |= BMCR_SPEED100; | 
 | 			break; | 
 | 		case SPEED_1000: | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	if (fd == DUPLEX_FULL) | 
 | 		ctl |= BMCR_FULLDPLX; | 
 | 	mdio_write(dev, aup->phy_addr, MII_BMCR, ctl); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | au1000_start_link(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 	u32 advertise; | 
 | 	int autoneg; | 
 | 	int forced_speed; | 
 | 	int forced_duplex; | 
 |  | 
 | 	/* Default advertise */ | 
 | 	advertise = GENMII_DEFAULT_ADVERTISE; | 
 | 	autoneg = aup->want_autoneg; | 
 | 	forced_speed = SPEED_100; | 
 | 	forced_duplex = DUPLEX_FULL; | 
 |  | 
 | 	/* Setup link parameters */ | 
 | 	if (cmd) { | 
 | 		if (cmd->autoneg == AUTONEG_ENABLE) { | 
 | 			advertise = cmd->advertising; | 
 | 			autoneg = 1; | 
 | 		} else { | 
 | 			autoneg = 0; | 
 |  | 
 | 			forced_speed = cmd->speed; | 
 | 			forced_duplex = cmd->duplex; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Configure PHY & start aneg */ | 
 | 	aup->want_autoneg = autoneg; | 
 | 	if (autoneg) | 
 | 		au1000_setup_aneg(dev, advertise); | 
 | 	else | 
 | 		au1000_setup_forced(dev, forced_speed, forced_duplex); | 
 | 	mod_timer(&aup->timer, jiffies + HZ); | 
 | } | 
 |  | 
 | static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 	u16 link, speed; | 
 |  | 
 | 	cmd->supported = GENMII_DEFAULT_FEATURES; | 
 | 	cmd->advertising = GENMII_DEFAULT_ADVERTISE; | 
 | 	cmd->port = PORT_MII; | 
 | 	cmd->transceiver = XCVR_EXTERNAL; | 
 | 	cmd->phy_address = aup->phy_addr; | 
 | 	spin_lock_irq(&aup->lock); | 
 | 	cmd->autoneg = aup->want_autoneg; | 
 | 	aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); | 
 | 	if ((speed == IF_PORT_100BASETX) || (speed == IF_PORT_100BASEFX)) | 
 | 		cmd->speed = SPEED_100; | 
 | 	else if (speed == IF_PORT_10BASET) | 
 | 		cmd->speed = SPEED_10; | 
 | 	if (link && (dev->if_port == IF_PORT_100BASEFX)) | 
 | 		cmd->duplex = DUPLEX_FULL; | 
 | 	else | 
 | 		cmd->duplex = DUPLEX_HALF; | 
 | 	spin_unlock_irq(&aup->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	 struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 	  unsigned long features = GENMII_DEFAULT_FEATURES; | 
 |  | 
 | 	 if (!capable(CAP_NET_ADMIN)) | 
 | 		 return -EPERM; | 
 |  | 
 | 	 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) | 
 | 		 return -EINVAL; | 
 | 	 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) | 
 | 		 return -EINVAL; | 
 | 	 if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) | 
 | 		 return -EINVAL; | 
 | 	 if (cmd->autoneg == AUTONEG_DISABLE) | 
 | 		 switch (cmd->speed) { | 
 | 		 case SPEED_10: | 
 | 			 if (cmd->duplex == DUPLEX_HALF && | 
 | 				 (features & SUPPORTED_10baseT_Half) == 0) | 
 | 				 return -EINVAL; | 
 | 			 if (cmd->duplex == DUPLEX_FULL && | 
 | 				 (features & SUPPORTED_10baseT_Full) == 0) | 
 | 				 return -EINVAL; | 
 | 			 break; | 
 | 		 case SPEED_100: | 
 | 			 if (cmd->duplex == DUPLEX_HALF && | 
 | 				 (features & SUPPORTED_100baseT_Half) == 0) | 
 | 				 return -EINVAL; | 
 | 			 if (cmd->duplex == DUPLEX_FULL && | 
 | 				 (features & SUPPORTED_100baseT_Full) == 0) | 
 | 				 return -EINVAL; | 
 | 			 break; | 
 | 		 default: | 
 | 			 return -EINVAL; | 
 | 		 } | 
 | 	 else if ((features & SUPPORTED_Autoneg) == 0) | 
 | 		 return -EINVAL; | 
 |  | 
 | 	 spin_lock_irq(&aup->lock); | 
 | 	 au1000_start_link(dev, cmd); | 
 | 	 spin_unlock_irq(&aup->lock); | 
 | 	 return 0; | 
 | } | 
 |  | 
 | static int au1000_nway_reset(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 |  | 
 | 	if (!aup->want_autoneg) | 
 | 		return -EINVAL; | 
 | 	spin_lock_irq(&aup->lock); | 
 | 	au1000_start_link(dev, NULL); | 
 | 	spin_unlock_irq(&aup->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 |  | 
 | 	strcpy(info->driver, DRV_NAME); | 
 | 	strcpy(info->version, DRV_VERSION); | 
 | 	info->fw_version[0] = '\0'; | 
 | 	sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); | 
 | 	info->regdump_len = 0; | 
 | } | 
 |  | 
 | static u32 au1000_get_link(struct net_device *dev) | 
 | { | 
 | 	return netif_carrier_ok(dev); | 
 | } | 
 |  | 
 | static struct ethtool_ops au1000_ethtool_ops = { | 
 | 	.get_settings = au1000_get_settings, | 
 | 	.set_settings = au1000_set_settings, | 
 | 	.get_drvinfo = au1000_get_drvinfo, | 
 | 	.nway_reset = au1000_nway_reset, | 
 | 	.get_link = au1000_get_link | 
 | }; | 
 |  | 
 | static struct net_device * | 
 | au1000_probe(u32 ioaddr, int irq, int port_num) | 
 | { | 
 | 	static unsigned version_printed = 0; | 
 | 	struct au1000_private *aup = NULL; | 
 | 	struct net_device *dev = NULL; | 
 | 	db_dest_t *pDB, *pDBfree; | 
 | 	char *pmac, *argptr; | 
 | 	char ethaddr[6]; | 
 | 	int i, err; | 
 |  | 
 | 	if (!request_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE, "Au1x00 ENET")) | 
 | 		return NULL; | 
 |  | 
 | 	if (version_printed++ == 0)  | 
 | 		printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); | 
 |  | 
 | 	dev = alloc_etherdev(sizeof(struct au1000_private)); | 
 | 	if (!dev) { | 
 | 		printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n");   | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	if ((err = register_netdev(dev))) { | 
 | 		printk(KERN_ERR "Au1x_eth Cannot register net device err %d\n", | 
 | 				err); | 
 | 		free_netdev(dev); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	printk("%s: Au1x Ethernet found at 0x%x, irq %d\n",  | 
 | 			dev->name, ioaddr, irq); | 
 |  | 
 | 	aup = dev->priv; | 
 |  | 
 | 	/* Allocate the data buffers */ | 
 | 	/* Snooping works fine with eth on all au1xxx */ | 
 | 	aup->vaddr = (u32)dma_alloc_noncoherent(NULL, | 
 | 			MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | 
 | 			&aup->dma_addr, | 
 | 			0); | 
 | 	if (!aup->vaddr) { | 
 | 		free_netdev(dev); | 
 | 		release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* aup->mac is the base address of the MAC's registers */ | 
 | 	aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr); | 
 | 	/* Setup some variables for quick register address access */ | 
 | 	if (ioaddr == iflist[0].base_addr) | 
 | 	{ | 
 | 		/* check env variables first */ | 
 | 		if (!get_ethernet_addr(ethaddr)) {  | 
 | 			memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); | 
 | 		} else { | 
 | 			/* Check command line */ | 
 | 			argptr = prom_getcmdline(); | 
 | 			if ((pmac = strstr(argptr, "ethaddr=")) == NULL) { | 
 | 				printk(KERN_INFO "%s: No mac address found\n",  | 
 | 						dev->name); | 
 | 				/* use the hard coded mac addresses */ | 
 | 			} else { | 
 | 				str2eaddr(ethaddr, pmac + strlen("ethaddr=")); | 
 | 				memcpy(au1000_mac_addr, ethaddr,  | 
 | 						sizeof(au1000_mac_addr)); | 
 | 			} | 
 | 		} | 
 | 			aup->enable = (volatile u32 *)  | 
 | 				((unsigned long)iflist[0].macen_addr); | 
 | 		memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); | 
 | 		setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); | 
 | 		aup->mac_id = 0; | 
 | 		au_macs[0] = aup; | 
 | 	} | 
 | 		else | 
 | 	if (ioaddr == iflist[1].base_addr) | 
 | 	{ | 
 | 			aup->enable = (volatile u32 *)  | 
 | 				((unsigned long)iflist[1].macen_addr); | 
 | 		memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); | 
 | 		dev->dev_addr[4] += 0x10; | 
 | 		setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); | 
 | 		aup->mac_id = 1; | 
 | 		au_macs[1] = aup; | 
 | 	} | 
 | 	else | 
 | 	{ | 
 | 		printk(KERN_ERR "%s: bad ioaddr\n", dev->name); | 
 | 	} | 
 |  | 
 | 	/* bring the device out of reset, otherwise probing the mii | 
 | 	 * will hang */ | 
 | 	*aup->enable = MAC_EN_CLOCK_ENABLE; | 
 | 	au_sync_delay(2); | 
 | 	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |  | 
 | 		MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; | 
 | 	au_sync_delay(2); | 
 |  | 
 | 	aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL); | 
 | 	if (!aup->mii) { | 
 | 		printk(KERN_ERR "%s: out of memory\n", dev->name); | 
 | 		goto err_out; | 
 | 	} | 
 | 	aup->mii->next = NULL; | 
 | 	aup->mii->chip_info = NULL; | 
 | 	aup->mii->status = 0; | 
 | 	aup->mii->mii_control_reg = 0; | 
 | 	aup->mii->mii_data_reg = 0; | 
 |  | 
 | 	if (mii_probe(dev) != 0) { | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	pDBfree = NULL; | 
 | 	/* setup the data buffer descriptors and attach a buffer to each one */ | 
 | 	pDB = aup->db; | 
 | 	for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { | 
 | 		pDB->pnext = pDBfree; | 
 | 		pDBfree = pDB; | 
 | 		pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); | 
 | 		pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); | 
 | 		pDB++; | 
 | 	} | 
 | 	aup->pDBfree = pDBfree; | 
 |  | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		pDB = GetFreeDB(aup); | 
 | 		if (!pDB) { | 
 | 			goto err_out; | 
 | 		} | 
 | 		aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; | 
 | 		aup->rx_db_inuse[i] = pDB; | 
 | 	} | 
 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 		pDB = GetFreeDB(aup); | 
 | 		if (!pDB) { | 
 | 			goto err_out; | 
 | 		} | 
 | 		aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; | 
 | 		aup->tx_dma_ring[i]->len = 0; | 
 | 		aup->tx_db_inuse[i] = pDB; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&aup->lock); | 
 | 	dev->base_addr = ioaddr; | 
 | 	dev->irq = irq; | 
 | 	dev->open = au1000_open; | 
 | 	dev->hard_start_xmit = au1000_tx; | 
 | 	dev->stop = au1000_close; | 
 | 	dev->get_stats = au1000_get_stats; | 
 | 	dev->set_multicast_list = &set_rx_mode; | 
 | 	dev->do_ioctl = &au1000_ioctl; | 
 | 	SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); | 
 | 	dev->set_config = &au1000_set_config; | 
 | 	dev->tx_timeout = au1000_tx_timeout; | 
 | 	dev->watchdog_timeo = ETH_TX_TIMEOUT; | 
 |  | 
 | 	/*  | 
 | 	 * The boot code uses the ethernet controller, so reset it to start  | 
 | 	 * fresh.  au1000_init() expects that the device is in reset state. | 
 | 	 */ | 
 | 	reset_mac(dev); | 
 |  | 
 | 	return dev; | 
 |  | 
 | err_out: | 
 | 	/* here we should have a valid dev plus aup-> register addresses | 
 | 	 * so we can reset the mac properly.*/ | 
 | 	reset_mac(dev); | 
 | 	kfree(aup->mii); | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		if (aup->rx_db_inuse[i]) | 
 | 			ReleaseDB(aup, aup->rx_db_inuse[i]); | 
 | 	} | 
 | 	for (i = 0; i < NUM_TX_DMA; i++) { | 
 | 		if (aup->tx_db_inuse[i]) | 
 | 			ReleaseDB(aup, aup->tx_db_inuse[i]); | 
 | 	} | 
 | 	dma_free_noncoherent(NULL, | 
 | 			MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | 
 | 			(void *)aup->vaddr, | 
 | 			aup->dma_addr); | 
 | 	unregister_netdev(dev); | 
 | 	free_netdev(dev); | 
 | 	release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /*  | 
 |  * Initialize the interface. | 
 |  * | 
 |  * When the device powers up, the clocks are disabled and the | 
 |  * mac is in reset state.  When the interface is closed, we | 
 |  * do the same -- reset the device and disable the clocks to | 
 |  * conserve power. Thus, whenever au1000_init() is called, | 
 |  * the device should already be in reset state. | 
 |  */ | 
 | static int au1000_init(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	u32 flags; | 
 | 	int i; | 
 | 	u32 control; | 
 | 	u16 link, speed; | 
 |  | 
 | 	if (au1000_debug > 4)  | 
 | 		printk("%s: au1000_init\n", dev->name); | 
 |  | 
 | 	spin_lock_irqsave(&aup->lock, flags); | 
 |  | 
 | 	/* bring the device out of reset */ | 
 | 	*aup->enable = MAC_EN_CLOCK_ENABLE; | 
 |         au_sync_delay(2); | 
 | 	*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |  | 
 | 		MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; | 
 | 	au_sync_delay(20); | 
 |  | 
 | 	aup->mac->control = 0; | 
 | 	aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; | 
 | 	aup->tx_tail = aup->tx_head; | 
 | 	aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; | 
 |  | 
 | 	aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; | 
 | 	aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | | 
 | 		dev->dev_addr[1]<<8 | dev->dev_addr[0]; | 
 |  | 
 | 	for (i = 0; i < NUM_RX_DMA; i++) { | 
 | 		aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; | 
 | 	} | 
 | 	au_sync(); | 
 |  | 
 | 	aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); | 
 | 	control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE; | 
 | #ifndef CONFIG_CPU_LITTLE_ENDIAN | 
 | 	control |= MAC_BIG_ENDIAN; | 
 | #endif | 
 | 	if (link && (dev->if_port == IF_PORT_100BASEFX)) { | 
 | 		control |= MAC_FULL_DUPLEX; | 
 | 	} | 
 |  | 
 | 	aup->mac->control = control; | 
 | 	aup->mac->vlan1_tag = 0x8100; /* activate vlan support */ | 
 | 	au_sync(); | 
 |  | 
 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void au1000_timer(unsigned long data) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *)data; | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	unsigned char if_port; | 
 | 	u16 link, speed; | 
 |  | 
 | 	if (!dev) { | 
 | 		/* fatal error, don't restart the timer */ | 
 | 		printk(KERN_ERR "au1000_timer error: NULL dev\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if_port = dev->if_port; | 
 | 	if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) { | 
 | 		if (link) { | 
 | 			if (!netif_carrier_ok(dev)) { | 
 | 				netif_carrier_on(dev); | 
 | 				printk(KERN_INFO "%s: link up\n", dev->name); | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			if (netif_carrier_ok(dev)) { | 
 | 				netif_carrier_off(dev); | 
 | 				dev->if_port = 0; | 
 | 				printk(KERN_INFO "%s: link down\n", dev->name); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (link && (dev->if_port != if_port) &&  | 
 | 			(dev->if_port != IF_PORT_UNKNOWN)) { | 
 | 		hard_stop(dev); | 
 | 		if (dev->if_port == IF_PORT_100BASEFX) { | 
 | 			printk(KERN_INFO "%s: going to full duplex\n",  | 
 | 					dev->name); | 
 | 			aup->mac->control |= MAC_FULL_DUPLEX; | 
 | 			au_sync_delay(1); | 
 | 		} | 
 | 		else { | 
 | 			aup->mac->control &= ~MAC_FULL_DUPLEX; | 
 | 			au_sync_delay(1); | 
 | 		} | 
 | 		enable_rx_tx(dev); | 
 | 	} | 
 |  | 
 | 	aup->timer.expires = RUN_AT((1*HZ));  | 
 | 	aup->timer.data = (unsigned long)dev; | 
 | 	aup->timer.function = &au1000_timer; /* timer handler */ | 
 | 	add_timer(&aup->timer); | 
 |  | 
 | } | 
 |  | 
 | static int au1000_open(struct net_device *dev) | 
 | { | 
 | 	int retval; | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: open: dev=%p\n", dev->name, dev); | 
 |  | 
 | 	if ((retval = au1000_init(dev))) { | 
 | 		printk(KERN_ERR "%s: error in au1000_init\n", dev->name); | 
 | 		free_irq(dev->irq, dev); | 
 | 		return retval; | 
 | 	} | 
 | 	netif_start_queue(dev); | 
 |  | 
 | 	if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,  | 
 | 					dev->name, dev))) { | 
 | 		printk(KERN_ERR "%s: unable to get IRQ %d\n",  | 
 | 				dev->name, dev->irq); | 
 | 		return retval; | 
 | 	} | 
 |  | 
 | 	init_timer(&aup->timer); /* used in ioctl() */ | 
 | 	aup->timer.expires = RUN_AT((3*HZ));  | 
 | 	aup->timer.data = (unsigned long)dev; | 
 | 	aup->timer.function = &au1000_timer; /* timer handler */ | 
 | 	add_timer(&aup->timer); | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: open: Initialization done.\n", dev->name); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int au1000_close(struct net_device *dev) | 
 | { | 
 | 	u32 flags; | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: close: dev=%p\n", dev->name, dev); | 
 |  | 
 | 	reset_mac(dev); | 
 |  | 
 | 	spin_lock_irqsave(&aup->lock, flags); | 
 | 	 | 
 | 	/* stop the device */ | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	/* disable the interrupt */ | 
 | 	free_irq(dev->irq, dev); | 
 | 	spin_unlock_irqrestore(&aup->lock, flags); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit au1000_cleanup_module(void) | 
 | { | 
 | 	int i, j; | 
 | 	struct net_device *dev; | 
 | 	struct au1000_private *aup; | 
 |  | 
 | 	for (i = 0; i < num_ifs; i++) { | 
 | 		dev = iflist[i].dev; | 
 | 		if (dev) { | 
 | 			aup = (struct au1000_private *) dev->priv; | 
 | 			unregister_netdev(dev); | 
 | 			kfree(aup->mii); | 
 | 			for (j = 0; j < NUM_RX_DMA; j++) { | 
 | 				if (aup->rx_db_inuse[j]) | 
 | 					ReleaseDB(aup, aup->rx_db_inuse[j]); | 
 | 			} | 
 | 			for (j = 0; j < NUM_TX_DMA; j++) { | 
 | 				if (aup->tx_db_inuse[j]) | 
 | 					ReleaseDB(aup, aup->tx_db_inuse[j]); | 
 | 			} | 
 | 			dma_free_noncoherent(NULL, | 
 | 					MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | 
 | 					(void *)aup->vaddr, | 
 | 					aup->dma_addr); | 
 | 			free_netdev(dev); | 
 | 			release_mem_region(CPHYSADDR(iflist[i].base_addr), MAC_IOSIZE); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static inline void  | 
 | update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	struct net_device_stats *ps = &aup->stats; | 
 |  | 
 | 	ps->tx_packets++; | 
 | 	ps->tx_bytes += pkt_len; | 
 |  | 
 | 	if (status & TX_FRAME_ABORTED) { | 
 | 		if (dev->if_port == IF_PORT_100BASEFX) { | 
 | 			if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { | 
 | 				/* any other tx errors are only valid | 
 | 				 * in half duplex mode */ | 
 | 				ps->tx_errors++; | 
 | 				ps->tx_aborted_errors++; | 
 | 			} | 
 | 		} | 
 | 		else { | 
 | 			ps->tx_errors++; | 
 | 			ps->tx_aborted_errors++; | 
 | 			if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) | 
 | 				ps->tx_carrier_errors++; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Called from the interrupt service routine to acknowledge | 
 |  * the TX DONE bits.  This is a must if the irq is setup as | 
 |  * edge triggered. | 
 |  */ | 
 | static void au1000_tx_ack(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	volatile tx_dma_t *ptxd; | 
 |  | 
 | 	ptxd = aup->tx_dma_ring[aup->tx_tail]; | 
 |  | 
 | 	while (ptxd->buff_stat & TX_T_DONE) { | 
 | 		update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff); | 
 | 		ptxd->buff_stat &= ~TX_T_DONE; | 
 | 		ptxd->len = 0; | 
 | 		au_sync(); | 
 |  | 
 | 		aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); | 
 | 		ptxd = aup->tx_dma_ring[aup->tx_tail]; | 
 |  | 
 | 		if (aup->tx_full) { | 
 | 			aup->tx_full = 0; | 
 | 			netif_wake_queue(dev); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Au1000 transmit routine. | 
 |  */ | 
 | static int au1000_tx(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	volatile tx_dma_t *ptxd; | 
 | 	u32 buff_stat; | 
 | 	db_dest_t *pDB; | 
 | 	int i; | 
 |  | 
 | 	if (au1000_debug > 5) | 
 | 		printk("%s: tx: aup %x len=%d, data=%p, head %d\n",  | 
 | 				dev->name, (unsigned)aup, skb->len,  | 
 | 				skb->data, aup->tx_head); | 
 |  | 
 | 	ptxd = aup->tx_dma_ring[aup->tx_head]; | 
 | 	buff_stat = ptxd->buff_stat; | 
 | 	if (buff_stat & TX_DMA_ENABLE) { | 
 | 		/* We've wrapped around and the transmitter is still busy */ | 
 | 		netif_stop_queue(dev); | 
 | 		aup->tx_full = 1; | 
 | 		return 1; | 
 | 	} | 
 | 	else if (buff_stat & TX_T_DONE) { | 
 | 		update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff); | 
 | 		ptxd->len = 0; | 
 | 	} | 
 |  | 
 | 	if (aup->tx_full) { | 
 | 		aup->tx_full = 0; | 
 | 		netif_wake_queue(dev); | 
 | 	} | 
 |  | 
 | 	pDB = aup->tx_db_inuse[aup->tx_head]; | 
 | 	memcpy((void *)pDB->vaddr, skb->data, skb->len); | 
 | 	if (skb->len < ETH_ZLEN) { | 
 | 		for (i=skb->len; i<ETH_ZLEN; i++) {  | 
 | 			((char *)pDB->vaddr)[i] = 0; | 
 | 		} | 
 | 		ptxd->len = ETH_ZLEN; | 
 | 	} | 
 | 	else | 
 | 		ptxd->len = skb->len; | 
 |  | 
 | 	ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; | 
 | 	au_sync(); | 
 | 	dev_kfree_skb(skb); | 
 | 	aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); | 
 | 	dev->trans_start = jiffies; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static inline void update_rx_stats(struct net_device *dev, u32 status) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	struct net_device_stats *ps = &aup->stats; | 
 |  | 
 | 	ps->rx_packets++; | 
 | 	if (status & RX_MCAST_FRAME) | 
 | 		ps->multicast++; | 
 |  | 
 | 	if (status & RX_ERROR) { | 
 | 		ps->rx_errors++; | 
 | 		if (status & RX_MISSED_FRAME) | 
 | 			ps->rx_missed_errors++; | 
 | 		if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR)) | 
 | 			ps->rx_length_errors++; | 
 | 		if (status & RX_CRC_ERROR) | 
 | 			ps->rx_crc_errors++; | 
 | 		if (status & RX_COLL) | 
 | 			ps->collisions++; | 
 | 	} | 
 | 	else  | 
 | 		ps->rx_bytes += status & RX_FRAME_LEN_MASK; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Au1000 receive routine. | 
 |  */ | 
 | static int au1000_rx(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	struct sk_buff *skb; | 
 | 	volatile rx_dma_t *prxd; | 
 | 	u32 buff_stat, status; | 
 | 	db_dest_t *pDB; | 
 | 	u32	frmlen; | 
 |  | 
 | 	if (au1000_debug > 5) | 
 | 		printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); | 
 |  | 
 | 	prxd = aup->rx_dma_ring[aup->rx_head]; | 
 | 	buff_stat = prxd->buff_stat; | 
 | 	while (buff_stat & RX_T_DONE)  { | 
 | 		status = prxd->status; | 
 | 		pDB = aup->rx_db_inuse[aup->rx_head]; | 
 | 		update_rx_stats(dev, status); | 
 | 		if (!(status & RX_ERROR))  { | 
 |  | 
 | 			/* good frame */ | 
 | 			frmlen = (status & RX_FRAME_LEN_MASK); | 
 | 			frmlen -= 4; /* Remove FCS */ | 
 | 			skb = dev_alloc_skb(frmlen + 2); | 
 | 			if (skb == NULL) { | 
 | 				printk(KERN_ERR | 
 | 				       "%s: Memory squeeze, dropping packet.\n", | 
 | 				       dev->name); | 
 | 				aup->stats.rx_dropped++; | 
 | 				continue; | 
 | 			} | 
 | 			skb->dev = dev; | 
 | 			skb_reserve(skb, 2);	/* 16 byte IP header align */ | 
 | 			eth_copy_and_sum(skb, | 
 | 				(unsigned char *)pDB->vaddr, frmlen, 0); | 
 | 			skb_put(skb, frmlen); | 
 | 			skb->protocol = eth_type_trans(skb, dev); | 
 | 			netif_rx(skb);	/* pass the packet to upper layers */ | 
 | 		} | 
 | 		else { | 
 | 			if (au1000_debug > 4) { | 
 | 				if (status & RX_MISSED_FRAME)  | 
 | 					printk("rx miss\n"); | 
 | 				if (status & RX_WDOG_TIMER)  | 
 | 					printk("rx wdog\n"); | 
 | 				if (status & RX_RUNT)  | 
 | 					printk("rx runt\n"); | 
 | 				if (status & RX_OVERLEN)  | 
 | 					printk("rx overlen\n"); | 
 | 				if (status & RX_COLL) | 
 | 					printk("rx coll\n"); | 
 | 				if (status & RX_MII_ERROR) | 
 | 					printk("rx mii error\n"); | 
 | 				if (status & RX_CRC_ERROR) | 
 | 					printk("rx crc error\n"); | 
 | 				if (status & RX_LEN_ERROR) | 
 | 					printk("rx len error\n"); | 
 | 				if (status & RX_U_CNTRL_FRAME) | 
 | 					printk("rx u control frame\n"); | 
 | 				if (status & RX_MISSED_FRAME) | 
 | 					printk("rx miss\n"); | 
 | 			} | 
 | 		} | 
 | 		prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); | 
 | 		aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); | 
 | 		au_sync(); | 
 |  | 
 | 		/* next descriptor */ | 
 | 		prxd = aup->rx_dma_ring[aup->rx_head]; | 
 | 		buff_stat = prxd->buff_stat; | 
 | 		dev->last_rx = jiffies; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Au1000 interrupt service routine. | 
 |  */ | 
 | static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | { | 
 | 	struct net_device *dev = (struct net_device *) dev_id; | 
 |  | 
 | 	if (dev == NULL) { | 
 | 		printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name); | 
 | 		return IRQ_RETVAL(1); | 
 | 	} | 
 |  | 
 | 	/* Handle RX interrupts first to minimize chance of overrun */ | 
 |  | 
 | 	au1000_rx(dev); | 
 | 	au1000_tx_ack(dev); | 
 | 	return IRQ_RETVAL(1); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * The Tx ring has been full longer than the watchdog timeout | 
 |  * value. The transmitter must be hung? | 
 |  */ | 
 | static void au1000_tx_timeout(struct net_device *dev) | 
 | { | 
 | 	printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); | 
 | 	reset_mac(dev); | 
 | 	au1000_init(dev); | 
 | 	dev->trans_start = jiffies; | 
 | 	netif_wake_queue(dev); | 
 | } | 
 |  | 
 |  | 
 | static unsigned const ethernet_polynomial = 0x04c11db7U; | 
 | static inline u32 ether_crc(int length, unsigned char *data) | 
 | { | 
 |     int crc = -1; | 
 |  | 
 |     while(--length >= 0) { | 
 | 		unsigned char current_octet = *data++; | 
 | 		int bit; | 
 | 		for (bit = 0; bit < 8; bit++, current_octet >>= 1) | 
 | 			crc = (crc << 1) ^ | 
 | 				((crc < 0) ^ (current_octet & 1) ?  | 
 | 				 ethernet_polynomial : 0); | 
 |     } | 
 |     return crc; | 
 | } | 
 |  | 
 | static void set_rx_mode(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4)  | 
 | 		printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags); | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */ | 
 | 		aup->mac->control |= MAC_PROMISCUOUS; | 
 | 		printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); | 
 | 	} else if ((dev->flags & IFF_ALLMULTI)  || | 
 | 			   dev->mc_count > MULTICAST_FILTER_LIMIT) { | 
 | 		aup->mac->control |= MAC_PASS_ALL_MULTI; | 
 | 		aup->mac->control &= ~MAC_PROMISCUOUS; | 
 | 		printk(KERN_INFO "%s: Pass all multicast\n", dev->name); | 
 | 	} else { | 
 | 		int i; | 
 | 		struct dev_mc_list *mclist; | 
 | 		u32 mc_filter[2];	/* Multicast hash filter */ | 
 |  | 
 | 		mc_filter[1] = mc_filter[0] = 0; | 
 | 		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; | 
 | 			 i++, mclist = mclist->next) { | 
 | 			set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26,  | 
 | 					(long *)mc_filter); | 
 | 		} | 
 | 		aup->mac->multi_hash_high = mc_filter[1]; | 
 | 		aup->mac->multi_hash_low = mc_filter[0]; | 
 | 		aup->mac->control &= ~MAC_PROMISCUOUS; | 
 | 		aup->mac->control |= MAC_HASH_MODE; | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *)dev->priv; | 
 | 	u16 *data = (u16 *)&rq->ifr_ifru; | 
 |  | 
 | 	switch(cmd) {  | 
 | 		case SIOCDEVPRIVATE:	/* Get the address of the PHY in use. */ | 
 | 		case SIOCGMIIPHY: | 
 | 		        if (!netif_running(dev)) return -EINVAL; | 
 | 			data[0] = aup->phy_addr; | 
 | 		case SIOCDEVPRIVATE+1:	/* Read the specified MII register. */ | 
 | 		case SIOCGMIIREG: | 
 | 			data[3] =  mdio_read(dev, data[0], data[1]);  | 
 | 			return 0; | 
 | 		case SIOCDEVPRIVATE+2:	/* Write the specified MII register */ | 
 | 		case SIOCSMIIREG:  | 
 | 			if (!capable(CAP_NET_ADMIN)) | 
 | 				return -EPERM; | 
 | 			mdio_write(dev, data[0], data[1],data[2]); | 
 | 			return 0; | 
 | 		default: | 
 | 			return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 |  | 
 | static int au1000_set_config(struct net_device *dev, struct ifmap *map) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 | 	u16 control; | 
 |  | 
 | 	if (au1000_debug > 4)  { | 
 | 		printk("%s: set_config called: dev->if_port %d map->port %x\n",  | 
 | 				dev->name, dev->if_port, map->port); | 
 | 	} | 
 |  | 
 | 	switch(map->port){ | 
 | 		case IF_PORT_UNKNOWN: /* use auto here */    | 
 | 			printk(KERN_INFO "%s: config phy for aneg\n",  | 
 | 					dev->name); | 
 | 			dev->if_port = map->port; | 
 | 			/* Link Down: the timer will bring it up */ | 
 | 			netif_carrier_off(dev); | 
 | 	 | 
 | 			/* read current control */ | 
 | 			control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | 
 | 			control &= ~(MII_CNTL_FDX | MII_CNTL_F100); | 
 |  | 
 | 			/* enable auto negotiation and reset the negotiation */ | 
 | 			mdio_write(dev, aup->phy_addr, MII_CONTROL,  | 
 | 					control | MII_CNTL_AUTO |  | 
 | 					MII_CNTL_RST_AUTO); | 
 |  | 
 | 			break; | 
 |      | 
 | 		case IF_PORT_10BASET: /* 10BaseT */          | 
 | 			printk(KERN_INFO "%s: config phy for 10BaseT\n",  | 
 | 					dev->name); | 
 | 			dev->if_port = map->port; | 
 | 	 | 
 | 			/* Link Down: the timer will bring it up */ | 
 | 			netif_carrier_off(dev); | 
 |  | 
 | 			/* set Speed to 10Mbps, Half Duplex */ | 
 | 			control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | 
 | 			control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO |  | 
 | 					MII_CNTL_FDX); | 
 | 	 | 
 | 			/* disable auto negotiation and force 10M/HD mode*/ | 
 | 			mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | 
 | 			break; | 
 |      | 
 | 		case IF_PORT_100BASET: /* 100BaseT */ | 
 | 		case IF_PORT_100BASETX: /* 100BaseTx */  | 
 | 			printk(KERN_INFO "%s: config phy for 100BaseTX\n",  | 
 | 					dev->name); | 
 | 			dev->if_port = map->port; | 
 | 	 | 
 | 			/* Link Down: the timer will bring it up */ | 
 | 			netif_carrier_off(dev); | 
 | 	 | 
 | 			/* set Speed to 100Mbps, Half Duplex */ | 
 | 			/* disable auto negotiation and enable 100MBit Mode */ | 
 | 			control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | 
 | 			control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX); | 
 | 			control |= MII_CNTL_F100; | 
 | 			mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | 
 | 			break; | 
 |      | 
 | 		case IF_PORT_100BASEFX: /* 100BaseFx */ | 
 | 			printk(KERN_INFO "%s: config phy for 100BaseFX\n",  | 
 | 					dev->name); | 
 | 			dev->if_port = map->port; | 
 | 	 | 
 | 			/* Link Down: the timer will bring it up */ | 
 | 			netif_carrier_off(dev); | 
 | 	 | 
 | 			/* set Speed to 100Mbps, Full Duplex */ | 
 | 			/* disable auto negotiation and enable 100MBit Mode */ | 
 | 			control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | 
 | 			control &= ~MII_CNTL_AUTO; | 
 | 			control |=  MII_CNTL_F100 | MII_CNTL_FDX; | 
 | 			mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | 
 | 			break; | 
 | 		case IF_PORT_10BASE2: /* 10Base2 */ | 
 | 		case IF_PORT_AUI: /* AUI */ | 
 | 		/* These Modes are not supported (are they?)*/ | 
 | 			printk(KERN_ERR "%s: 10Base2/AUI not supported",  | 
 | 					dev->name); | 
 | 			return -EOPNOTSUPP; | 
 | 			break; | 
 |      | 
 | 		default: | 
 | 			printk(KERN_ERR "%s: Invalid media selected",  | 
 | 					dev->name); | 
 | 			return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct net_device_stats *au1000_get_stats(struct net_device *dev) | 
 | { | 
 | 	struct au1000_private *aup = (struct au1000_private *) dev->priv; | 
 |  | 
 | 	if (au1000_debug > 4) | 
 | 		printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev); | 
 |  | 
 | 	if (netif_device_present(dev)) { | 
 | 		return &aup->stats; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | module_init(au1000_init_module); | 
 | module_exit(au1000_cleanup_module); |