|  | /* | 
|  | Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> | 
|  | Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com> | 
|  |  | 
|  | Based on the original rt2800pci.c and rt2800usb.c. | 
|  | Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com> | 
|  | Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> | 
|  | Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> | 
|  | Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> | 
|  | Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> | 
|  | Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> | 
|  | Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt2800lib | 
|  | Abstract: rt2800 generic device routines. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #if defined(CONFIG_RT2800USB) || defined(CONFIG_RT2800USB_MODULE) | 
|  | #include "rt2x00usb.h" | 
|  | #endif | 
|  | #include "rt2800lib.h" | 
|  | #include "rt2800.h" | 
|  | #include "rt2800usb.h" | 
|  |  | 
|  | MODULE_AUTHOR("Bartlomiej Zolnierkiewicz"); | 
|  | MODULE_DESCRIPTION("rt2800 library"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | /* | 
|  | * Register access. | 
|  | * All access to the CSR registers will go through the methods | 
|  | * rt2800_register_read and rt2800_register_write. | 
|  | * BBP and RF register require indirect register access, | 
|  | * and use the CSR registers BBPCSR and RFCSR to achieve this. | 
|  | * These indirect registers work with busy bits, | 
|  | * and we will try maximal REGISTER_BUSY_COUNT times to access | 
|  | * the register while taking a REGISTER_BUSY_DELAY us delay | 
|  | * between each attampt. When the busy bit is still set at that time, | 
|  | * the access attempt is considered to have failed, | 
|  | * and we will print an error. | 
|  | * The _lock versions must be used if you already hold the csr_mutex | 
|  | */ | 
|  | #define WAIT_FOR_BBP(__dev, __reg) \ | 
|  | rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg)) | 
|  | #define WAIT_FOR_RFCSR(__dev, __reg) \ | 
|  | rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg)) | 
|  | #define WAIT_FOR_RF(__dev, __reg) \ | 
|  | rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg)) | 
|  | #define WAIT_FOR_MCU(__dev, __reg) \ | 
|  | rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \ | 
|  | H2M_MAILBOX_CSR_OWNER, (__reg)) | 
|  |  | 
|  | static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u8 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_VALUE, value); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 0); | 
|  | if (rt2x00_intf_is_pci(rt2x00dev)) | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, u8 *value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the read request into the register. | 
|  | * After the data has been written, we wait until hardware | 
|  | * returns the correct value, if at any time the register | 
|  | * doesn't become available in time, reg will be 0xffffffff | 
|  | * which means we return 0xff to the caller. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 1); | 
|  | if (rt2x00_intf_is_pci(rt2x00dev)) | 
|  | rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); | 
|  |  | 
|  | WAIT_FOR_BBP(rt2x00dev, ®); | 
|  | } | 
|  |  | 
|  | *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u8 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RFCSR becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_DATA, value); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, u8 *value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RFCSR becomes available, afterwards we | 
|  | * can safely write the read request into the register. | 
|  | * After the data has been written, we wait until hardware | 
|  | * returns the correct value, if at any time the register | 
|  | * doesn't become available in time, reg will be 0xffffffff | 
|  | * which means we return 0xff to the caller. | 
|  | */ | 
|  | if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); | 
|  |  | 
|  | WAIT_FOR_RFCSR(rt2x00dev, ®); | 
|  | } | 
|  |  | 
|  | *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u32 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RF becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_RF(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, RF_CSR_CFG0_REG_VALUE_BW, value); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG0_STANDBYMODE, 0); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG0_SEL, 0); | 
|  | rt2x00_set_field32(®, RF_CSR_CFG0_BUSY, 1); | 
|  |  | 
|  | rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg); | 
|  | rt2x00_rf_write(rt2x00dev, word, value); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 command, const u8 token, | 
|  | const u8 arg0, const u8 arg1) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * RT2880 and RT3052 don't support MCU requests. | 
|  | */ | 
|  | if (rt2x00_rt(&rt2x00dev->chip, RT2880) || | 
|  | rt2x00_rt(&rt2x00dev->chip, RT3052)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the MCU becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_MCU(rt2x00dev, ®)) { | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); | 
|  | rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg); | 
|  |  | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); | 
|  | rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_mcu_request); | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | const struct rt2x00debug rt2800_rt2x00debug = { | 
|  | .owner	= THIS_MODULE, | 
|  | .csr	= { | 
|  | .read		= rt2800_register_read, | 
|  | .write		= rt2800_register_write, | 
|  | .flags		= RT2X00DEBUGFS_OFFSET, | 
|  | .word_base	= CSR_REG_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= CSR_REG_SIZE / sizeof(u32), | 
|  | }, | 
|  | .eeprom	= { | 
|  | .read		= rt2x00_eeprom_read, | 
|  | .write		= rt2x00_eeprom_write, | 
|  | .word_base	= EEPROM_BASE, | 
|  | .word_size	= sizeof(u16), | 
|  | .word_count	= EEPROM_SIZE / sizeof(u16), | 
|  | }, | 
|  | .bbp	= { | 
|  | .read		= rt2800_bbp_read, | 
|  | .write		= rt2800_bbp_write, | 
|  | .word_base	= BBP_BASE, | 
|  | .word_size	= sizeof(u8), | 
|  | .word_count	= BBP_SIZE / sizeof(u8), | 
|  | }, | 
|  | .rf	= { | 
|  | .read		= rt2x00_rf_read, | 
|  | .write		= rt2800_rf_write, | 
|  | .word_base	= RF_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= RF_SIZE / sizeof(u32), | 
|  | }, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(rt2800_rt2x00debug); | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  |  | 
|  | int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); | 
|  | return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_rfkill_poll); | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | static void rt2800_brightness_set(struct led_classdev *led_cdev, | 
|  | enum led_brightness brightness) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | unsigned int enabled = brightness != LED_OFF; | 
|  | unsigned int bg_mode = | 
|  | (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); | 
|  | unsigned int polarity = | 
|  | rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, | 
|  | EEPROM_FREQ_LED_POLARITY); | 
|  | unsigned int ledmode = | 
|  | rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, | 
|  | EEPROM_FREQ_LED_MODE); | 
|  |  | 
|  | if (led->type == LED_TYPE_RADIO) { | 
|  | rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, | 
|  | enabled ? 0x20 : 0); | 
|  | } else if (led->type == LED_TYPE_ASSOC) { | 
|  | rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, | 
|  | enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20); | 
|  | } else if (led->type == LED_TYPE_QUALITY) { | 
|  | /* | 
|  | * The brightness is divided into 6 levels (0 - 5), | 
|  | * The specs tell us the following levels: | 
|  | *	0, 1 ,3, 7, 15, 31 | 
|  | * to determine the level in a simple way we can simply | 
|  | * work with bitshifting: | 
|  | *	(1 << level) - 1 | 
|  | */ | 
|  | rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, | 
|  | (1 << brightness / (LED_FULL / 6)) - 1, | 
|  | polarity); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2800_blink_set(struct led_classdev *led_cdev, | 
|  | unsigned long *delay_on, unsigned long *delay_off) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(led->rt2x00dev, LED_CFG, ®); | 
|  | rt2x00_set_field32(®, LED_CFG_ON_PERIOD, *delay_on); | 
|  | rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, *delay_off); | 
|  | rt2x00_set_field32(®, LED_CFG_SLOW_BLINK_PERIOD, 3); | 
|  | rt2x00_set_field32(®, LED_CFG_R_LED_MODE, 3); | 
|  | rt2x00_set_field32(®, LED_CFG_G_LED_MODE, 3); | 
|  | rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, 3); | 
|  | rt2x00_set_field32(®, LED_CFG_LED_POLAR, 1); | 
|  | rt2800_register_write(led->rt2x00dev, LED_CFG, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void rt2800_init_led(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_led *led, enum led_type type) | 
|  | { | 
|  | led->rt2x00dev = rt2x00dev; | 
|  | led->type = type; | 
|  | led->led_dev.brightness_set = rt2800_brightness_set; | 
|  | led->led_dev.blink_set = rt2800_blink_set; | 
|  | led->flags = LED_INITIALIZED; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_init_led); | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Configuration handlers. | 
|  | */ | 
|  | static void rt2800_config_wcid_attr(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct mac_wcid_entry wcid_entry; | 
|  | struct mac_iveiv_entry iveiv_entry; | 
|  | u32 offset; | 
|  | u32 reg; | 
|  |  | 
|  | offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB, | 
|  | !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER, | 
|  | (crypto->cmd == SET_KEY) * crypto->cipher); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX, | 
|  | (crypto->cmd == SET_KEY) * crypto->bssidx); | 
|  | rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher); | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | offset = MAC_IVEIV_ENTRY(key->hw_key_idx); | 
|  |  | 
|  | memset(&iveiv_entry, 0, sizeof(iveiv_entry)); | 
|  | if ((crypto->cipher == CIPHER_TKIP) || | 
|  | (crypto->cipher == CIPHER_TKIP_NO_MIC) || | 
|  | (crypto->cipher == CIPHER_AES)) | 
|  | iveiv_entry.iv[3] |= 0x20; | 
|  | iveiv_entry.iv[3] |= key->keyidx << 6; | 
|  | rt2800_register_multiwrite(rt2x00dev, offset, | 
|  | &iveiv_entry, sizeof(iveiv_entry)); | 
|  |  | 
|  | offset = MAC_WCID_ENTRY(key->hw_key_idx); | 
|  |  | 
|  | memset(&wcid_entry, 0, sizeof(wcid_entry)); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | memcpy(&wcid_entry, crypto->address, ETH_ALEN); | 
|  | rt2800_register_multiwrite(rt2x00dev, offset, | 
|  | &wcid_entry, sizeof(wcid_entry)); | 
|  | } | 
|  |  | 
|  | int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct hw_key_entry key_entry; | 
|  | struct rt2x00_field32 field; | 
|  | u32 offset; | 
|  | u32 reg; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx; | 
|  |  | 
|  | memcpy(key_entry.key, crypto->key, | 
|  | sizeof(key_entry.key)); | 
|  | memcpy(key_entry.tx_mic, crypto->tx_mic, | 
|  | sizeof(key_entry.tx_mic)); | 
|  | memcpy(key_entry.rx_mic, crypto->rx_mic, | 
|  | sizeof(key_entry.rx_mic)); | 
|  |  | 
|  | offset = SHARED_KEY_ENTRY(key->hw_key_idx); | 
|  | rt2800_register_multiwrite(rt2x00dev, offset, | 
|  | &key_entry, sizeof(key_entry)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The cipher types are stored over multiple registers | 
|  | * starting with SHARED_KEY_MODE_BASE each word will have | 
|  | * 32 bits and contains the cipher types for 2 bssidx each. | 
|  | * Using the correct defines correctly will cause overhead, | 
|  | * so just calculate the correct offset. | 
|  | */ | 
|  | field.bit_offset = 4 * (key->hw_key_idx % 8); | 
|  | field.bit_mask = 0x7 << field.bit_offset; | 
|  |  | 
|  | offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, field, | 
|  | (crypto->cmd == SET_KEY) * crypto->cipher); | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | /* | 
|  | * Update WCID information | 
|  | */ | 
|  | rt2800_config_wcid_attr(rt2x00dev, crypto, key); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_shared_key); | 
|  |  | 
|  | int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct hw_key_entry key_entry; | 
|  | u32 offset; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | /* | 
|  | * 1 pairwise key is possible per AID, this means that the AID | 
|  | * equals our hw_key_idx. Make sure the WCID starts _after_ the | 
|  | * last possible shared key entry. | 
|  | */ | 
|  | if (crypto->aid > (256 - 32)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | key->hw_key_idx = 32 + crypto->aid; | 
|  |  | 
|  | memcpy(key_entry.key, crypto->key, | 
|  | sizeof(key_entry.key)); | 
|  | memcpy(key_entry.tx_mic, crypto->tx_mic, | 
|  | sizeof(key_entry.tx_mic)); | 
|  | memcpy(key_entry.rx_mic, crypto->rx_mic, | 
|  | sizeof(key_entry.rx_mic)); | 
|  |  | 
|  | offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx); | 
|  | rt2800_register_multiwrite(rt2x00dev, offset, | 
|  | &key_entry, sizeof(key_entry)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update WCID information | 
|  | */ | 
|  | rt2800_config_wcid_attr(rt2x00dev, crypto, key); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key); | 
|  |  | 
|  | void rt2800_config_filter(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int filter_flags) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Start configuration steps. | 
|  | * Note that the version error will always be dropped | 
|  | * and broadcast frames will always be accepted since | 
|  | * there is no filter for it at this time. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, RX_FILTER_CFG, ®); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CRC_ERROR, | 
|  | !(filter_flags & FIF_FCSFAIL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PHY_ERROR, | 
|  | !(filter_flags & FIF_PLCPFAIL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_TO_ME, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_VER_ERROR, 1); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_MULTICAST, | 
|  | !(filter_flags & FIF_ALLMULTI)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BROADCAST, 0); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_DUPLICATE, 1); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END_ACK, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_ACK, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CTS, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_RTS, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL, | 
|  | !(filter_flags & FIF_PSPOLL)); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 1); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 0); | 
|  | rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_filter); | 
|  |  | 
|  | void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, | 
|  | struct rt2x00intf_conf *conf, const unsigned int flags) | 
|  | { | 
|  | unsigned int beacon_base; | 
|  | u32 reg; | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_TYPE) { | 
|  | /* | 
|  | * Clear current synchronisation setup. | 
|  | * For the Beacon base registers we only need to clear | 
|  | * the first byte since that byte contains the VALID and OWNER | 
|  | * bits which (when set to 0) will invalidate the entire beacon. | 
|  | */ | 
|  | beacon_base = HW_BEACON_OFFSET(intf->beacon->entry_idx); | 
|  | rt2800_register_write(rt2x00dev, beacon_base, 0); | 
|  |  | 
|  | /* | 
|  | * Enable synchronisation. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, conf->sync); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, | 
|  | (conf->sync == TSF_SYNC_BEACON)); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_MAC) { | 
|  | reg = le32_to_cpu(conf->mac[1]); | 
|  | rt2x00_set_field32(®, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff); | 
|  | conf->mac[1] = cpu_to_le32(reg); | 
|  |  | 
|  | rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0, | 
|  | conf->mac, sizeof(conf->mac)); | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_BSSID) { | 
|  | reg = le32_to_cpu(conf->bssid[1]); | 
|  | rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_ID_MASK, 0); | 
|  | rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_BCN_NUM, 0); | 
|  | conf->bssid[1] = cpu_to_le32(reg); | 
|  |  | 
|  | rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0, | 
|  | conf->bssid, sizeof(conf->bssid)); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_intf); | 
|  |  | 
|  | void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 0x20); | 
|  | rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, | 
|  | !!erp->short_preamble); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, | 
|  | !!erp->short_preamble); | 
|  | rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, | 
|  | erp->cts_protection ? 2 : 0); | 
|  | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, | 
|  | erp->basic_rates); | 
|  | rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®); | 
|  | rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, erp->slot_time); | 
|  | rt2x00_set_field32(®, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2); | 
|  | rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_CCKM_SIFS_TIME, erp->sifs); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_SIFS_TIME, erp->sifs); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, erp->eifs); | 
|  | rt2x00_set_field32(®, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1); | 
|  | rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, | 
|  | erp->beacon_int * 16); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_erp); | 
|  |  | 
|  | void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) | 
|  | { | 
|  | u8 r1; | 
|  | u8 r3; | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 1, &r1); | 
|  | rt2800_bbp_read(rt2x00dev, 3, &r3); | 
|  |  | 
|  | /* | 
|  | * Configure the TX antenna. | 
|  | */ | 
|  | switch ((int)ant->tx) { | 
|  | case 1: | 
|  | rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0); | 
|  | if (rt2x00_intf_is_pci(rt2x00dev)) | 
|  | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0); | 
|  | break; | 
|  | case 2: | 
|  | rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2); | 
|  | break; | 
|  | case 3: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch ((int)ant->rx) { | 
|  | case 1: | 
|  | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0); | 
|  | break; | 
|  | case 2: | 
|  | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1); | 
|  | break; | 
|  | case 3: | 
|  | rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 3, r3); | 
|  | rt2800_bbp_write(rt2x00dev, 1, r1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config_ant); | 
|  |  | 
|  | static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u16 eeprom; | 
|  | short lna_gain; | 
|  |  | 
|  | if (libconf->rf.channel <= 14) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); | 
|  | lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG); | 
|  | } else if (libconf->rf.channel <= 64) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); | 
|  | lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0); | 
|  | } else if (libconf->rf.channel <= 128) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom); | 
|  | lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1); | 
|  | } else { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom); | 
|  | lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2); | 
|  | } | 
|  |  | 
|  | rt2x00dev->lna_gain = lna_gain; | 
|  | } | 
|  |  | 
|  | static void rt2800_config_channel_rt2x(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_conf *conf, | 
|  | struct rf_channel *rf, | 
|  | struct channel_info *info) | 
|  | { | 
|  | rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); | 
|  |  | 
|  | if (rt2x00dev->default_ant.tx == 1) | 
|  | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1); | 
|  |  | 
|  | if (rt2x00dev->default_ant.rx == 1) { | 
|  | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1); | 
|  | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); | 
|  | } else if (rt2x00dev->default_ant.rx == 2) | 
|  | rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); | 
|  |  | 
|  | if (rf->channel > 14) { | 
|  | /* | 
|  | * When TX power is below 0, we should increase it by 7 to | 
|  | * make it a positive value (Minumum value is -7). | 
|  | * However this means that values between 0 and 7 have | 
|  | * double meaning, and we should set a 7DBm boost flag. | 
|  | */ | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST, | 
|  | (info->tx_power1 >= 0)); | 
|  |  | 
|  | if (info->tx_power1 < 0) | 
|  | info->tx_power1 += 7; | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, | 
|  | TXPOWER_A_TO_DEV(info->tx_power1)); | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST, | 
|  | (info->tx_power2 >= 0)); | 
|  |  | 
|  | if (info->tx_power2 < 0) | 
|  | info->tx_power2 += 7; | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, | 
|  | TXPOWER_A_TO_DEV(info->tx_power2)); | 
|  | } else { | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, | 
|  | TXPOWER_G_TO_DEV(info->tx_power1)); | 
|  | rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, | 
|  | TXPOWER_G_TO_DEV(info->tx_power2)); | 
|  | } | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf)); | 
|  |  | 
|  | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
|  | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | udelay(200); | 
|  |  | 
|  | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); | 
|  | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | udelay(200); | 
|  |  | 
|  | rt2800_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt2800_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
|  | rt2800_rf_write(rt2x00dev, 4, rf->rf4); | 
|  | } | 
|  |  | 
|  | static void rt2800_config_channel_rt3x(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_conf *conf, | 
|  | struct rf_channel *rf, | 
|  | struct channel_info *info) | 
|  | { | 
|  | u8 rfcsr; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR6_R, rf->rf2); | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, | 
|  | TXPOWER_G_TO_DEV(info->tx_power1)); | 
|  | rt2800_rfcsr_write(rt2x00dev, 12, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset); | 
|  | rt2800_rfcsr_write(rt2x00dev, 23, rfcsr); | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, | 
|  | rt2x00dev->calibration[conf_is_ht40(conf)]); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 23, rfcsr); | 
|  | } | 
|  |  | 
|  | static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev, | 
|  | struct ieee80211_conf *conf, | 
|  | struct rf_channel *rf, | 
|  | struct channel_info *info) | 
|  | { | 
|  | u32 reg; | 
|  | unsigned int tx_pin; | 
|  | u8 bbp; | 
|  |  | 
|  | if ((rt2x00_rt(&rt2x00dev->chip, RT3070) || | 
|  | rt2x00_rt(&rt2x00dev->chip, RT3090)) && | 
|  | (rt2x00_rf(&rt2x00dev->chip, RF2020) || | 
|  | rt2x00_rf(&rt2x00dev->chip, RF3020) || | 
|  | rt2x00_rf(&rt2x00dev->chip, RF3021) || | 
|  | rt2x00_rf(&rt2x00dev->chip, RF3022))) | 
|  | rt2800_config_channel_rt3x(rt2x00dev, conf, rf, info); | 
|  | else | 
|  | rt2800_config_channel_rt2x(rt2x00dev, conf, rf, info); | 
|  |  | 
|  | /* | 
|  | * Change BBP settings | 
|  | */ | 
|  | rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain); | 
|  | rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain); | 
|  | rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain); | 
|  | rt2800_bbp_write(rt2x00dev, 86, 0); | 
|  |  | 
|  | if (rf->channel <= 14) { | 
|  | if (test_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags)) { | 
|  | rt2800_bbp_write(rt2x00dev, 82, 0x62); | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x46); | 
|  | } else { | 
|  | rt2800_bbp_write(rt2x00dev, 82, 0x84); | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x50); | 
|  | } | 
|  | } else { | 
|  | rt2800_bbp_write(rt2x00dev, 82, 0xf2); | 
|  |  | 
|  | if (test_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags)) | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x46); | 
|  | else | 
|  | rt2800_bbp_write(rt2x00dev, 75, 0x50); | 
|  | } | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_BAND_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_BAND_CFG_HT40_PLUS, conf_is_ht40_plus(conf)); | 
|  | rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14); | 
|  | rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14); | 
|  | rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg); | 
|  |  | 
|  | tx_pin = 0; | 
|  |  | 
|  | /* Turn on unused PA or LNA when not using 1T or 1R */ | 
|  | if (rt2x00dev->default_ant.tx != 1) { | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, 1); | 
|  | } | 
|  |  | 
|  | /* Turn on unused PA or LNA when not using 1T or 1R */ | 
|  | if (rt2x00dev->default_ant.rx != 1) { | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1); | 
|  | } | 
|  |  | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, rf->channel <= 14); | 
|  | rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 4, &bbp); | 
|  | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf)); | 
|  | rt2800_bbp_write(rt2x00dev, 4, bbp); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 3, &bbp); | 
|  | rt2x00_set_field8(&bbp, BBP3_HT40_PLUS, conf_is_ht40_plus(conf)); | 
|  | rt2800_bbp_write(rt2x00dev, 3, bbp); | 
|  |  | 
|  | if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) { | 
|  | if (conf_is_ht40(conf)) { | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x1a); | 
|  | rt2800_bbp_write(rt2x00dev, 70, 0x0a); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x16); | 
|  | } else { | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x16); | 
|  | rt2800_bbp_write(rt2x00dev, 70, 0x08); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x11); | 
|  | } | 
|  | } | 
|  |  | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev, | 
|  | const int txpower) | 
|  | { | 
|  | u32 reg; | 
|  | u32 value = TXPOWER_G_TO_DEV(txpower); | 
|  | u8 r1; | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 1, &r1); | 
|  | rt2x00_set_field8(®, BBP1_TX_POWER, 0); | 
|  | rt2800_bbp_write(rt2x00dev, 1, r1); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, ®); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_0_1MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_0_2MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_0_55MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_0_11MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_0_6MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_0_9MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_0_12MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_0_18MBS, value); | 
|  | rt2800_register_write(rt2x00dev, TX_PWR_CFG_0, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_PWR_CFG_1, ®); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_1_24MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_1_36MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_1_48MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_1_54MBS, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_1_MCS0, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_1_MCS1, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_1_MCS2, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_1_MCS3, value); | 
|  | rt2800_register_write(rt2x00dev, TX_PWR_CFG_1, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_PWR_CFG_2, ®); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_2_MCS4, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_2_MCS5, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_2_MCS6, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_2_MCS7, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_2_MCS8, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_2_MCS9, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_2_MCS10, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_2_MCS11, value); | 
|  | rt2800_register_write(rt2x00dev, TX_PWR_CFG_2, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_PWR_CFG_3, ®); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_3_MCS12, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_3_MCS13, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_3_MCS14, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_3_MCS15, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN1, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN2, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN3, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_3_UKNOWN4, value); | 
|  | rt2800_register_write(rt2x00dev, TX_PWR_CFG_3, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_PWR_CFG_4, ®); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN5, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN6, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN7, value); | 
|  | rt2x00_set_field32(®, TX_PWR_CFG_4_UKNOWN8, value); | 
|  | rt2800_register_write(rt2x00dev, TX_PWR_CFG_4, reg); | 
|  | } | 
|  |  | 
|  | static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, | 
|  | libconf->conf->short_frame_max_tx_count); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, | 
|  | libconf->conf->long_frame_max_tx_count); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_THRE, 2000); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_NON_AGG_RTY_MODE, 0); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_AGG_RTY_MODE, 0); | 
|  | rt2x00_set_field32(®, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1); | 
|  | rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg); | 
|  | } | 
|  |  | 
|  | static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | enum dev_state state = | 
|  | (libconf->conf->flags & IEEE80211_CONF_PS) ? | 
|  | STATE_SLEEP : STATE_AWAKE; | 
|  | u32 reg; | 
|  |  | 
|  | if (state == STATE_SLEEP) { | 
|  | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, | 
|  | libconf->conf->listen_interval - 1); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1); | 
|  | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); | 
|  |  | 
|  | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | 
|  | } else { | 
|  | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0); | 
|  | rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 0); | 
|  | rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void rt2800_config(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | /* Always recalculate LNA gain before changing configuration */ | 
|  | rt2800_config_lna_gain(rt2x00dev, libconf); | 
|  |  | 
|  | if (flags & IEEE80211_CONF_CHANGE_CHANNEL) | 
|  | rt2800_config_channel(rt2x00dev, libconf->conf, | 
|  | &libconf->rf, &libconf->channel); | 
|  | if (flags & IEEE80211_CONF_CHANGE_POWER) | 
|  | rt2800_config_txpower(rt2x00dev, libconf->conf->power_level); | 
|  | if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) | 
|  | rt2800_config_retry_limit(rt2x00dev, libconf); | 
|  | if (flags & IEEE80211_CONF_CHANGE_PS) | 
|  | rt2800_config_ps(rt2x00dev, libconf); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_config); | 
|  |  | 
|  | /* | 
|  | * Link tuning | 
|  | */ | 
|  | void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Update FCS error count from register. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); | 
|  | qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_link_stats); | 
|  |  | 
|  | static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { | 
|  | if (rt2x00_intf_is_usb(rt2x00dev) && | 
|  | rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION) | 
|  | return 0x1c + (2 * rt2x00dev->lna_gain); | 
|  | else | 
|  | return 0x2e + rt2x00dev->lna_gain; | 
|  | } | 
|  |  | 
|  | if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) | 
|  | return 0x32 + (rt2x00dev->lna_gain * 5) / 3; | 
|  | else | 
|  | return 0x3a + (rt2x00dev->lna_gain * 5) / 3; | 
|  | } | 
|  |  | 
|  | static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual, u8 vgc_level) | 
|  | { | 
|  | if (qual->vgc_level != vgc_level) { | 
|  | rt2800_bbp_write(rt2x00dev, 66, vgc_level); | 
|  | qual->vgc_level = vgc_level; | 
|  | qual->vgc_level_reg = vgc_level; | 
|  | } | 
|  | } | 
|  |  | 
|  | void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) | 
|  | { | 
|  | rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_reset_tuner); | 
|  |  | 
|  | void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, | 
|  | const u32 count) | 
|  | { | 
|  | if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * When RSSI is better then -80 increase VGC level with 0x10 | 
|  | */ | 
|  | rt2800_set_vgc(rt2x00dev, qual, | 
|  | rt2800_get_default_vgc(rt2x00dev) + | 
|  | ((qual->rssi > -80) * 0x10)); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_link_tuner); | 
|  |  | 
|  | /* | 
|  | * Initialization functions. | 
|  | */ | 
|  | int rt2800_init_registers(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  | unsigned int i; | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev)) { | 
|  | /* | 
|  | * Wait until BBP and RF are ready. | 
|  | */ | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2800_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  | if (reg && reg != ~0) | 
|  | break; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | if (i == REGISTER_BUSY_COUNT) { | 
|  | ERROR(rt2x00dev, "Unstable hardware.\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®); | 
|  | rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, | 
|  | reg & ~0x00002000); | 
|  | } else if (rt2x00_intf_is_pci(rt2x00dev)) | 
|  | rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); | 
|  | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev)) { | 
|  | rt2800_register_write(rt2x00dev, USB_DMA_CFG, 0x00000000); | 
|  | #if defined(CONFIG_RT2800USB) || defined(CONFIG_RT2800USB_MODULE) | 
|  | rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, | 
|  | USB_MODE_RESET, REGISTER_TIMEOUT); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BCN_OFFSET0, ®); | 
|  | rt2x00_set_field32(®, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */ | 
|  | rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BCN_OFFSET1, ®); | 
|  | rt2x00_set_field32(®, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */ | 
|  | rt2x00_set_field32(®, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */ | 
|  | rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f); | 
|  | rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0); | 
|  | rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev) && | 
|  | rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION) { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); | 
|  | } else { | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000); | 
|  | rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); | 
|  | } | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_LINK_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_MFB_ENABLE, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_TX_MRQ_EN, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_TX_RDG_EN, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_TX_CF_ACK_EN, 1); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB, 0); | 
|  | rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFS, 0); | 
|  | rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9); | 
|  | rt2x00_set_field32(®, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10); | 
|  | rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MAX_LEN_CFG, ®); | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE); | 
|  | if (rt2x00_rev(&rt2x00dev->chip) >= RT2880E_VERSION && | 
|  | rt2x00_rev(&rt2x00dev->chip) < RT3070_VERSION) | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 2); | 
|  | else | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 1); | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MIN_PSDU, 0); | 
|  | rt2x00_set_field32(®, MAX_LEN_CFG_MIN_MPDU, 0); | 
|  | rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_AUTORESPONDER, 1); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MMODE, 0); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MREF, 0); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_DUAL_CTS_EN, 0); | 
|  | rt2x00_set_field32(®, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0); | 
|  | rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 8); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 1); | 
|  | rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 8); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 1); | 
|  | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, 0x4004); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_NAV, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0); | 
|  | rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, 0x4084); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_NAV, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1); | 
|  | rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, 0x4004); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_NAV, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0); | 
|  | rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, 0x4084); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, 0); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_NAV, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1); | 
|  | rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev)) { | 
|  | rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_BIG_ENDIAN, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_HDR_SEG_LEN, 0); | 
|  | rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | 
|  | } | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, 0x0000583f); | 
|  | rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32); | 
|  | rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, | 
|  | IEEE80211_MAX_RTS_THRESHOLD); | 
|  | rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0); | 
|  | rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca); | 
|  | rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); | 
|  |  | 
|  | /* | 
|  | * ASIC will keep garbage value after boot, clear encryption keys. | 
|  | */ | 
|  | for (i = 0; i < 4; i++) | 
|  | rt2800_register_write(rt2x00dev, | 
|  | SHARED_KEY_MODE_ENTRY(i), 0); | 
|  |  | 
|  | for (i = 0; i < 256; i++) { | 
|  | u32 wcid[2] = { 0xffffffff, 0x00ffffff }; | 
|  | rt2800_register_multiwrite(rt2x00dev, MAC_WCID_ENTRY(i), | 
|  | wcid, sizeof(wcid)); | 
|  |  | 
|  | rt2800_register_write(rt2x00dev, MAC_WCID_ATTR_ENTRY(i), 1); | 
|  | rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear all beacons | 
|  | * For the Beacon base registers we only need to clear | 
|  | * the first byte since that byte contains the VALID and OWNER | 
|  | * bits which (when set to 0) will invalidate the entire beacon. | 
|  | */ | 
|  | rt2800_register_write(rt2x00dev, HW_BEACON_BASE0, 0); | 
|  | rt2800_register_write(rt2x00dev, HW_BEACON_BASE1, 0); | 
|  | rt2800_register_write(rt2x00dev, HW_BEACON_BASE2, 0); | 
|  | rt2800_register_write(rt2x00dev, HW_BEACON_BASE3, 0); | 
|  | rt2800_register_write(rt2x00dev, HW_BEACON_BASE4, 0); | 
|  | rt2800_register_write(rt2x00dev, HW_BEACON_BASE5, 0); | 
|  | rt2800_register_write(rt2x00dev, HW_BEACON_BASE6, 0); | 
|  | rt2800_register_write(rt2x00dev, HW_BEACON_BASE7, 0); | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev)) { | 
|  | rt2800_register_read(rt2x00dev, USB_CYC_CFG, ®); | 
|  | rt2x00_set_field32(®, USB_CYC_CFG_CLOCK_CYCLE, 30); | 
|  | rt2800_register_write(rt2x00dev, USB_CYC_CFG, reg); | 
|  | } | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, HT_FBK_CFG0, ®); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS0FBK, 0); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS1FBK, 0); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS2FBK, 1); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS3FBK, 2); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS4FBK, 3); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS5FBK, 4); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS6FBK, 5); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS7FBK, 6); | 
|  | rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, HT_FBK_CFG1, ®); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS8FBK, 8); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS9FBK, 8); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS10FBK, 9); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS11FBK, 10); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS12FBK, 11); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS13FBK, 12); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS14FBK, 13); | 
|  | rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS15FBK, 14); | 
|  | rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, LG_FBK_CFG0, ®); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 9); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14); | 
|  | rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, LG_FBK_CFG1, ®); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS0FBK, 0); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS1FBK, 0); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS2FBK, 1); | 
|  | rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS3FBK, 2); | 
|  | rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg); | 
|  |  | 
|  | /* | 
|  | * We must clear the error counters. | 
|  | * These registers are cleared on read, | 
|  | * so we may pass a useless variable to store the value. | 
|  | */ | 
|  | rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); | 
|  | rt2800_register_read(rt2x00dev, RX_STA_CNT1, ®); | 
|  | rt2800_register_read(rt2x00dev, RX_STA_CNT2, ®); | 
|  | rt2800_register_read(rt2x00dev, TX_STA_CNT0, ®); | 
|  | rt2800_register_read(rt2x00dev, TX_STA_CNT1, ®); | 
|  | rt2800_register_read(rt2x00dev, TX_STA_CNT2, ®); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_init_registers); | 
|  |  | 
|  | static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u32 reg; | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, ®); | 
|  | if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY)) | 
|  | return 0; | 
|  |  | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u8 value; | 
|  |  | 
|  | /* | 
|  | * BBP was enabled after firmware was loaded, | 
|  | * but we need to reactivate it now. | 
|  | */ | 
|  | rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); | 
|  | rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); | 
|  | msleep(1); | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2800_bbp_read(rt2x00dev, 0, &value); | 
|  | if ((value != 0xff) && (value != 0x00)) | 
|  | return 0; | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u16 eeprom; | 
|  | u8 reg_id; | 
|  | u8 value; | 
|  |  | 
|  | if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) || | 
|  | rt2800_wait_bbp_ready(rt2x00dev))) | 
|  | return -EACCES; | 
|  |  | 
|  | rt2800_bbp_write(rt2x00dev, 65, 0x2c); | 
|  | rt2800_bbp_write(rt2x00dev, 66, 0x38); | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x12); | 
|  | rt2800_bbp_write(rt2x00dev, 70, 0x0a); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x10); | 
|  | rt2800_bbp_write(rt2x00dev, 81, 0x37); | 
|  | rt2800_bbp_write(rt2x00dev, 82, 0x62); | 
|  | rt2800_bbp_write(rt2x00dev, 83, 0x6a); | 
|  | rt2800_bbp_write(rt2x00dev, 84, 0x99); | 
|  | rt2800_bbp_write(rt2x00dev, 86, 0x00); | 
|  | rt2800_bbp_write(rt2x00dev, 91, 0x04); | 
|  | rt2800_bbp_write(rt2x00dev, 92, 0x00); | 
|  | rt2800_bbp_write(rt2x00dev, 103, 0x00); | 
|  | rt2800_bbp_write(rt2x00dev, 105, 0x05); | 
|  |  | 
|  | if (rt2x00_rev(&rt2x00dev->chip) == RT2860C_VERSION) { | 
|  | rt2800_bbp_write(rt2x00dev, 69, 0x16); | 
|  | rt2800_bbp_write(rt2x00dev, 73, 0x12); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rev(&rt2x00dev->chip) > RT2860D_VERSION) | 
|  | rt2800_bbp_write(rt2x00dev, 84, 0x19); | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev) && | 
|  | rt2x00_rev(&rt2x00dev->chip) == RT3070_VERSION) { | 
|  | rt2800_bbp_write(rt2x00dev, 70, 0x0a); | 
|  | rt2800_bbp_write(rt2x00dev, 84, 0x99); | 
|  | rt2800_bbp_write(rt2x00dev, 105, 0x05); | 
|  | } | 
|  |  | 
|  | if (rt2x00_rt(&rt2x00dev->chip, RT3052)) { | 
|  | rt2800_bbp_write(rt2x00dev, 31, 0x08); | 
|  | rt2800_bbp_write(rt2x00dev, 78, 0x0e); | 
|  | rt2800_bbp_write(rt2x00dev, 80, 0x08); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < EEPROM_BBP_SIZE; i++) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); | 
|  |  | 
|  | if (eeprom != 0xffff && eeprom != 0x0000) { | 
|  | reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); | 
|  | rt2800_bbp_write(rt2x00dev, reg_id, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_init_bbp); | 
|  |  | 
|  | static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev, | 
|  | bool bw40, u8 rfcsr24, u8 filter_target) | 
|  | { | 
|  | unsigned int i; | 
|  | u8 bbp; | 
|  | u8 rfcsr; | 
|  | u8 passband; | 
|  | u8 stopband; | 
|  | u8 overtuned = 0; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 4, &bbp); | 
|  | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40); | 
|  | rt2800_bbp_write(rt2x00dev, 4, bbp); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); | 
|  |  | 
|  | /* | 
|  | * Set power & frequency of passband test tone | 
|  | */ | 
|  | rt2800_bbp_write(rt2x00dev, 24, 0); | 
|  |  | 
|  | for (i = 0; i < 100; i++) { | 
|  | rt2800_bbp_write(rt2x00dev, 25, 0x90); | 
|  | msleep(1); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 55, &passband); | 
|  | if (passband) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set power & frequency of stopband test tone | 
|  | */ | 
|  | rt2800_bbp_write(rt2x00dev, 24, 0x06); | 
|  |  | 
|  | for (i = 0; i < 100; i++) { | 
|  | rt2800_bbp_write(rt2x00dev, 25, 0x90); | 
|  | msleep(1); | 
|  |  | 
|  | rt2800_bbp_read(rt2x00dev, 55, &stopband); | 
|  |  | 
|  | if ((passband - stopband) <= filter_target) { | 
|  | rfcsr24++; | 
|  | overtuned += ((passband - stopband) == filter_target); | 
|  | } else | 
|  | break; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | 
|  | } | 
|  |  | 
|  | rfcsr24 -= !!overtuned; | 
|  |  | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); | 
|  | return rfcsr24; | 
|  | } | 
|  |  | 
|  | int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u8 rfcsr; | 
|  | u8 bbp; | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev) && | 
|  | rt2x00_rev(&rt2x00dev->chip) != RT3070_VERSION) | 
|  | return 0; | 
|  |  | 
|  | if (rt2x00_intf_is_pci(rt2x00dev)) { | 
|  | if (!rt2x00_rf(&rt2x00dev->chip, RF3020) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF3021) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF3022)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init RF calibration. | 
|  | */ | 
|  | rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1); | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); | 
|  | msleep(1); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev)) { | 
|  | rt2800_rfcsr_write(rt2x00dev, 4, 0x40); | 
|  | rt2800_rfcsr_write(rt2x00dev, 5, 0x03); | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, 0x02); | 
|  | rt2800_rfcsr_write(rt2x00dev, 7, 0x70); | 
|  | rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); | 
|  | rt2800_rfcsr_write(rt2x00dev, 10, 0x71); | 
|  | rt2800_rfcsr_write(rt2x00dev, 11, 0x21); | 
|  | rt2800_rfcsr_write(rt2x00dev, 12, 0x7b); | 
|  | rt2800_rfcsr_write(rt2x00dev, 14, 0x90); | 
|  | rt2800_rfcsr_write(rt2x00dev, 15, 0x58); | 
|  | rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); | 
|  | rt2800_rfcsr_write(rt2x00dev, 17, 0x92); | 
|  | rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); | 
|  | rt2800_rfcsr_write(rt2x00dev, 19, 0x02); | 
|  | rt2800_rfcsr_write(rt2x00dev, 20, 0xba); | 
|  | rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, 0x16); | 
|  | rt2800_rfcsr_write(rt2x00dev, 25, 0x01); | 
|  | rt2800_rfcsr_write(rt2x00dev, 27, 0x03); | 
|  | rt2800_rfcsr_write(rt2x00dev, 29, 0x1f); | 
|  | } else if (rt2x00_intf_is_pci(rt2x00dev)) { | 
|  | rt2800_rfcsr_write(rt2x00dev, 0, 0x50); | 
|  | rt2800_rfcsr_write(rt2x00dev, 1, 0x01); | 
|  | rt2800_rfcsr_write(rt2x00dev, 2, 0xf7); | 
|  | rt2800_rfcsr_write(rt2x00dev, 3, 0x75); | 
|  | rt2800_rfcsr_write(rt2x00dev, 4, 0x40); | 
|  | rt2800_rfcsr_write(rt2x00dev, 5, 0x03); | 
|  | rt2800_rfcsr_write(rt2x00dev, 6, 0x02); | 
|  | rt2800_rfcsr_write(rt2x00dev, 7, 0x50); | 
|  | rt2800_rfcsr_write(rt2x00dev, 8, 0x39); | 
|  | rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); | 
|  | rt2800_rfcsr_write(rt2x00dev, 10, 0x60); | 
|  | rt2800_rfcsr_write(rt2x00dev, 11, 0x21); | 
|  | rt2800_rfcsr_write(rt2x00dev, 12, 0x75); | 
|  | rt2800_rfcsr_write(rt2x00dev, 13, 0x75); | 
|  | rt2800_rfcsr_write(rt2x00dev, 14, 0x90); | 
|  | rt2800_rfcsr_write(rt2x00dev, 15, 0x58); | 
|  | rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); | 
|  | rt2800_rfcsr_write(rt2x00dev, 17, 0x92); | 
|  | rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); | 
|  | rt2800_rfcsr_write(rt2x00dev, 19, 0x02); | 
|  | rt2800_rfcsr_write(rt2x00dev, 20, 0xba); | 
|  | rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); | 
|  | rt2800_rfcsr_write(rt2x00dev, 22, 0x00); | 
|  | rt2800_rfcsr_write(rt2x00dev, 23, 0x31); | 
|  | rt2800_rfcsr_write(rt2x00dev, 24, 0x08); | 
|  | rt2800_rfcsr_write(rt2x00dev, 25, 0x01); | 
|  | rt2800_rfcsr_write(rt2x00dev, 26, 0x25); | 
|  | rt2800_rfcsr_write(rt2x00dev, 27, 0x23); | 
|  | rt2800_rfcsr_write(rt2x00dev, 28, 0x13); | 
|  | rt2800_rfcsr_write(rt2x00dev, 29, 0x83); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set RX Filter calibration for 20MHz and 40MHz | 
|  | */ | 
|  | rt2x00dev->calibration[0] = | 
|  | rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16); | 
|  | rt2x00dev->calibration[1] = | 
|  | rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19); | 
|  |  | 
|  | /* | 
|  | * Set back to initial state | 
|  | */ | 
|  | rt2800_bbp_write(rt2x00dev, 24, 0); | 
|  |  | 
|  | rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); | 
|  | rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0); | 
|  | rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); | 
|  |  | 
|  | /* | 
|  | * set BBP back to BW20 | 
|  | */ | 
|  | rt2800_bbp_read(rt2x00dev, 4, &bbp); | 
|  | rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0); | 
|  | rt2800_bbp_write(rt2x00dev, 4, bbp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_init_rfcsr); | 
|  |  | 
|  | int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, EFUSE_CTRL, ®); | 
|  |  | 
|  | return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_efuse_detect); | 
|  |  | 
|  | static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, ®); | 
|  | rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i); | 
|  | rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0); | 
|  | rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1); | 
|  | rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg); | 
|  |  | 
|  | /* Wait until the EEPROM has been loaded */ | 
|  | rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, ®); | 
|  |  | 
|  | /* Apparently the data is read from end to start */ | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3, | 
|  | (u32 *)&rt2x00dev->eeprom[i]); | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2, | 
|  | (u32 *)&rt2x00dev->eeprom[i + 2]); | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1, | 
|  | (u32 *)&rt2x00dev->eeprom[i + 4]); | 
|  | rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0, | 
|  | (u32 *)&rt2x00dev->eeprom[i + 6]); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8) | 
|  | rt2800_efuse_read(rt2x00dev, i); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse); | 
|  |  | 
|  | int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u16 word; | 
|  | u8 *mac; | 
|  | u8 default_lna_gain; | 
|  |  | 
|  | /* | 
|  | * Start validation of the data that has been read. | 
|  | */ | 
|  | mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); | 
|  | if (!is_valid_ether_addr(mac)) { | 
|  | random_ether_addr(mac); | 
|  | EEPROM(rt2x00dev, "MAC: %pM\n", mac); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_TXPATH, 1); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2820); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | 
|  | EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); | 
|  | } else if (rt2x00_rev(&rt2x00dev->chip) < RT2883_VERSION) { | 
|  | /* | 
|  | * There is a max of 2 RX streams for RT28x0 series | 
|  | */ | 
|  | if (rt2x00_get_field16(word, EEPROM_ANTENNA_RXPATH) > 2) | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RXPATH, 2); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_HW_RADIO, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_DYNAMIC_TX_AGC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_BG, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_BW40M_SB_A, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_WPS_PBC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_BW40M_BG, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_BW40M_A, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); | 
|  | EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); | 
|  | if ((word & 0x00ff) == 0x00ff) { | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE, | 
|  | LED_MODE_TXRX_ACTIVITY); | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED1, 0x5555); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED2, 0x2221); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED3, 0xa9f8); | 
|  | EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * During the LNA validation we are going to use | 
|  | * lna0 as correct value. Note that EEPROM_LNA | 
|  | * is never validated. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word); | 
|  | default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0); | 
|  | if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 || | 
|  | rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1, | 
|  | default_lna_gain); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word); | 
|  | if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0); | 
|  | if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 || | 
|  | rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2, | 
|  | default_lna_gain); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_validate_eeprom); | 
|  |  | 
|  | int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  | u16 value; | 
|  | u16 eeprom; | 
|  |  | 
|  | /* | 
|  | * Read EEPROM word for configuration. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | 
|  |  | 
|  | /* | 
|  | * Identify RF chipset. | 
|  | */ | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); | 
|  | rt2800_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  |  | 
|  | rt2x00_set_chip_rf(rt2x00dev, value, reg); | 
|  |  | 
|  | if (rt2x00_intf_is_usb(rt2x00dev)) { | 
|  | struct rt2x00_chip *chip = &rt2x00dev->chip; | 
|  |  | 
|  | /* | 
|  | * The check for rt2860 is not a typo, some rt2870 hardware | 
|  | * identifies itself as rt2860 in the CSR register. | 
|  | */ | 
|  | if (rt2x00_check_rev(chip, 0xfff00000, 0x28600000) || | 
|  | rt2x00_check_rev(chip, 0xfff00000, 0x28700000) || | 
|  | rt2x00_check_rev(chip, 0xfff00000, 0x28800000)) { | 
|  | rt2x00_set_chip_rt(rt2x00dev, RT2870); | 
|  | } else if (rt2x00_check_rev(chip, 0xffff0000, 0x30700000)) { | 
|  | rt2x00_set_chip_rt(rt2x00dev, RT3070); | 
|  | } else { | 
|  | ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  | rt2x00_print_chip(rt2x00dev); | 
|  |  | 
|  | if (!rt2x00_rf(&rt2x00dev->chip, RF2820) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF2850) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF2720) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF2750) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF3020) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF2020) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF3021) && | 
|  | !rt2x00_rf(&rt2x00dev->chip, RF3022)) { | 
|  | ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify default antenna configuration. | 
|  | */ | 
|  | rt2x00dev->default_ant.tx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH); | 
|  | rt2x00dev->default_ant.rx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH); | 
|  |  | 
|  | /* | 
|  | * Read frequency offset and RF programming sequence. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); | 
|  | rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); | 
|  |  | 
|  | /* | 
|  | * Read external LNA informations. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); | 
|  |  | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) | 
|  | __set_bit(CONFIG_EXTERNAL_LNA_A, &rt2x00dev->flags); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) | 
|  | __set_bit(CONFIG_EXTERNAL_LNA_BG, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Detect if this device has an hardware controlled radio. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_HW_RADIO)) | 
|  | __set_bit(CONFIG_SUPPORT_HW_BUTTON, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Store led settings, for correct led behaviour. | 
|  | */ | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); | 
|  | rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); | 
|  | rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &rt2x00dev->led_mcu_reg); | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_init_eeprom); | 
|  |  | 
|  | /* | 
|  | * RF value list for rt28x0 | 
|  | * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750) | 
|  | */ | 
|  | static const struct rf_channel rf_vals[] = { | 
|  | { 1,  0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b }, | 
|  | { 2,  0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f }, | 
|  | { 3,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b }, | 
|  | { 4,  0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f }, | 
|  | { 5,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b }, | 
|  | { 6,  0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f }, | 
|  | { 7,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b }, | 
|  | { 8,  0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f }, | 
|  | { 9,  0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b }, | 
|  | { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f }, | 
|  | { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b }, | 
|  | { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f }, | 
|  | { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b }, | 
|  | { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 }, | 
|  | { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 }, | 
|  | { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 }, | 
|  | { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 }, | 
|  | { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b }, | 
|  | { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b }, | 
|  | { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 }, | 
|  | { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 }, | 
|  | { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b }, | 
|  | { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 }, | 
|  | { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 }, | 
|  | { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 }, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 }, | 
|  | { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 }, | 
|  | { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 }, | 
|  | { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 }, | 
|  | { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 }, | 
|  | { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b }, | 
|  | { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 }, | 
|  | { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 }, | 
|  | { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 }, | 
|  | { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 }, | 
|  | { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b }, | 
|  | { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 }, | 
|  | { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b }, | 
|  | { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 }, | 
|  | { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b }, | 
|  | { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 }, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 }, | 
|  | { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 }, | 
|  | { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f }, | 
|  | { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f }, | 
|  | { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 }, | 
|  | { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 }, | 
|  | { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 }, | 
|  | { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f }, | 
|  | { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 }, | 
|  | { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 }, | 
|  | { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f }, | 
|  |  | 
|  | /* 802.11 Japan */ | 
|  | { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b }, | 
|  | { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 }, | 
|  | { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b }, | 
|  | { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 }, | 
|  | { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 }, | 
|  | { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b }, | 
|  | { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for rt3070 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_302x[] = { | 
|  | {1,  241, 2, 2 }, | 
|  | {2,  241, 2, 7 }, | 
|  | {3,  242, 2, 2 }, | 
|  | {4,  242, 2, 7 }, | 
|  | {5,  243, 2, 2 }, | 
|  | {6,  243, 2, 7 }, | 
|  | {7,  244, 2, 2 }, | 
|  | {8,  244, 2, 7 }, | 
|  | {9,  245, 2, 2 }, | 
|  | {10, 245, 2, 7 }, | 
|  | {11, 246, 2, 2 }, | 
|  | {12, 246, 2, 7 }, | 
|  | {13, 247, 2, 2 }, | 
|  | {14, 248, 2, 4 }, | 
|  | }; | 
|  |  | 
|  | int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct rt2x00_chip *chip = &rt2x00dev->chip; | 
|  | struct hw_mode_spec *spec = &rt2x00dev->spec; | 
|  | struct channel_info *info; | 
|  | char *tx_power1; | 
|  | char *tx_power2; | 
|  | unsigned int i; | 
|  | u16 eeprom; | 
|  |  | 
|  | /* | 
|  | * Disable powersaving as default on PCI devices. | 
|  | */ | 
|  | if (rt2x00_intf_is_pci(rt2x00dev)) | 
|  | rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; | 
|  |  | 
|  | /* | 
|  | * Initialize all hw fields. | 
|  | */ | 
|  | rt2x00dev->hw->flags = | 
|  | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | | 
|  | IEEE80211_HW_SIGNAL_DBM | | 
|  | IEEE80211_HW_SUPPORTS_PS | | 
|  | IEEE80211_HW_PS_NULLFUNC_STACK; | 
|  |  | 
|  | SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); | 
|  | SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, | 
|  | rt2x00_eeprom_addr(rt2x00dev, | 
|  | EEPROM_MAC_ADDR_0)); | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | 
|  |  | 
|  | /* | 
|  | * Initialize hw_mode information. | 
|  | */ | 
|  | spec->supported_bands = SUPPORT_BAND_2GHZ; | 
|  | spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; | 
|  |  | 
|  | if (rt2x00_rf(chip, RF2820) || | 
|  | rt2x00_rf(chip, RF2720) || | 
|  | (rt2x00_intf_is_pci(rt2x00dev) && rt2x00_rf(chip, RF3052))) { | 
|  | spec->num_channels = 14; | 
|  | spec->channels = rf_vals; | 
|  | } else if (rt2x00_rf(chip, RF2850) || rt2x00_rf(chip, RF2750)) { | 
|  | spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals); | 
|  | spec->channels = rf_vals; | 
|  | } else if (rt2x00_rf(chip, RF3020) || | 
|  | rt2x00_rf(chip, RF2020) || | 
|  | rt2x00_rf(chip, RF3021) || | 
|  | rt2x00_rf(chip, RF3022)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_302x); | 
|  | spec->channels = rf_vals_302x; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize HT information. | 
|  | */ | 
|  | if (!rt2x00_rf(chip, RF2020)) | 
|  | spec->ht.ht_supported = true; | 
|  | else | 
|  | spec->ht.ht_supported = false; | 
|  |  | 
|  | spec->ht.cap = | 
|  | IEEE80211_HT_CAP_SUP_WIDTH_20_40 | | 
|  | IEEE80211_HT_CAP_GRN_FLD | | 
|  | IEEE80211_HT_CAP_SGI_20 | | 
|  | IEEE80211_HT_CAP_SGI_40 | | 
|  | IEEE80211_HT_CAP_TX_STBC | | 
|  | IEEE80211_HT_CAP_RX_STBC; | 
|  | spec->ht.ampdu_factor = 3; | 
|  | spec->ht.ampdu_density = 4; | 
|  | spec->ht.mcs.tx_params = | 
|  | IEEE80211_HT_MCS_TX_DEFINED | | 
|  | IEEE80211_HT_MCS_TX_RX_DIFF | | 
|  | ((rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TXPATH) - 1) << | 
|  | IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); | 
|  |  | 
|  | switch (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RXPATH)) { | 
|  | case 3: | 
|  | spec->ht.mcs.rx_mask[2] = 0xff; | 
|  | case 2: | 
|  | spec->ht.mcs.rx_mask[1] = 0xff; | 
|  | case 1: | 
|  | spec->ht.mcs.rx_mask[0] = 0xff; | 
|  | spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create channel information array | 
|  | */ | 
|  | info = kzalloc(spec->num_channels * sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spec->channels_info = info; | 
|  |  | 
|  | tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1); | 
|  | tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2); | 
|  |  | 
|  | for (i = 0; i < 14; i++) { | 
|  | info[i].tx_power1 = TXPOWER_G_FROM_DEV(tx_power1[i]); | 
|  | info[i].tx_power2 = TXPOWER_G_FROM_DEV(tx_power2[i]); | 
|  | } | 
|  |  | 
|  | if (spec->num_channels > 14) { | 
|  | tx_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1); | 
|  | tx_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2); | 
|  |  | 
|  | for (i = 14; i < spec->num_channels; i++) { | 
|  | info[i].tx_power1 = TXPOWER_A_FROM_DEV(tx_power1[i]); | 
|  | info[i].tx_power2 = TXPOWER_A_FROM_DEV(tx_power2[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode); | 
|  |  | 
|  | /* | 
|  | * IEEE80211 stack callback functions. | 
|  | */ | 
|  | static void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, | 
|  | u32 *iv32, u16 *iv16) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | struct mac_iveiv_entry iveiv_entry; | 
|  | u32 offset; | 
|  |  | 
|  | offset = MAC_IVEIV_ENTRY(hw_key_idx); | 
|  | rt2800_register_multiread(rt2x00dev, offset, | 
|  | &iveiv_entry, sizeof(iveiv_entry)); | 
|  |  | 
|  | memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16)); | 
|  | memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32)); | 
|  | } | 
|  |  | 
|  | static int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | u32 reg; | 
|  | bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); | 
|  | rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, value); | 
|  | rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); | 
|  | rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, enabled); | 
|  | rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2800_conf_tx(struct ieee80211_hw *hw, u16 queue_idx, | 
|  | const struct ieee80211_tx_queue_params *params) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | struct data_queue *queue; | 
|  | struct rt2x00_field32 field; | 
|  | int retval; | 
|  | u32 reg; | 
|  | u32 offset; | 
|  |  | 
|  | /* | 
|  | * First pass the configuration through rt2x00lib, that will | 
|  | * update the queue settings and validate the input. After that | 
|  | * we are free to update the registers based on the value | 
|  | * in the queue parameter. | 
|  | */ | 
|  | retval = rt2x00mac_conf_tx(hw, queue_idx, params); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * We only need to perform additional register initialization | 
|  | * for WMM queues/ | 
|  | */ | 
|  | if (queue_idx >= 4) | 
|  | return 0; | 
|  |  | 
|  | queue = rt2x00queue_get_queue(rt2x00dev, queue_idx); | 
|  |  | 
|  | /* Update WMM TXOP register */ | 
|  | offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2))); | 
|  | field.bit_offset = (queue_idx & 1) * 16; | 
|  | field.bit_mask = 0xffff << field.bit_offset; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, field, queue->txop); | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | /* Update WMM registers */ | 
|  | field.bit_offset = queue_idx * 4; | 
|  | field.bit_mask = 0xf << field.bit_offset; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, ®); | 
|  | rt2x00_set_field32(®, field, queue->aifs); | 
|  | rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, ®); | 
|  | rt2x00_set_field32(®, field, queue->cw_min); | 
|  | rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, ®); | 
|  | rt2x00_set_field32(®, field, queue->cw_max); | 
|  | rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg); | 
|  |  | 
|  | /* Update EDCA registers */ | 
|  | offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx); | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, EDCA_AC0_CFG_TX_OP, queue->txop); | 
|  | rt2x00_set_field32(®, EDCA_AC0_CFG_AIFSN, queue->aifs); | 
|  | rt2x00_set_field32(®, EDCA_AC0_CFG_CWMIN, queue->cw_min); | 
|  | rt2x00_set_field32(®, EDCA_AC0_CFG_CWMAX, queue->cw_max); | 
|  | rt2800_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 rt2800_get_tsf(struct ieee80211_hw *hw) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | u64 tsf; | 
|  | u32 reg; | 
|  |  | 
|  | rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, ®); | 
|  | tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32; | 
|  | rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, ®); | 
|  | tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD); | 
|  |  | 
|  | return tsf; | 
|  | } | 
|  |  | 
|  | const struct ieee80211_ops rt2800_mac80211_ops = { | 
|  | .tx			= rt2x00mac_tx, | 
|  | .start			= rt2x00mac_start, | 
|  | .stop			= rt2x00mac_stop, | 
|  | .add_interface		= rt2x00mac_add_interface, | 
|  | .remove_interface	= rt2x00mac_remove_interface, | 
|  | .config			= rt2x00mac_config, | 
|  | .configure_filter	= rt2x00mac_configure_filter, | 
|  | .set_tim		= rt2x00mac_set_tim, | 
|  | .set_key		= rt2x00mac_set_key, | 
|  | .get_stats		= rt2x00mac_get_stats, | 
|  | .get_tkip_seq		= rt2800_get_tkip_seq, | 
|  | .set_rts_threshold	= rt2800_set_rts_threshold, | 
|  | .bss_info_changed	= rt2x00mac_bss_info_changed, | 
|  | .conf_tx		= rt2800_conf_tx, | 
|  | .get_tx_stats		= rt2x00mac_get_tx_stats, | 
|  | .get_tsf		= rt2800_get_tsf, | 
|  | .rfkill_poll		= rt2x00mac_rfkill_poll, | 
|  | }; | 
|  | EXPORT_SYMBOL_GPL(rt2800_mac80211_ops); |