|  | /******************************************************************************* | 
|  |  | 
|  | Intel(R) Gigabit Ethernet Linux driver | 
|  | Copyright(c) 2007-2012 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | /* e1000_82575 | 
|  | * e1000_82576 | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/if_ether.h> | 
|  |  | 
|  | #include "e1000_mac.h" | 
|  | #include "e1000_82575.h" | 
|  | #include "e1000_i210.h" | 
|  |  | 
|  | static s32  igb_get_invariants_82575(struct e1000_hw *); | 
|  | static s32  igb_acquire_phy_82575(struct e1000_hw *); | 
|  | static void igb_release_phy_82575(struct e1000_hw *); | 
|  | static s32  igb_acquire_nvm_82575(struct e1000_hw *); | 
|  | static void igb_release_nvm_82575(struct e1000_hw *); | 
|  | static s32  igb_check_for_link_82575(struct e1000_hw *); | 
|  | static s32  igb_get_cfg_done_82575(struct e1000_hw *); | 
|  | static s32  igb_init_hw_82575(struct e1000_hw *); | 
|  | static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *); | 
|  | static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *); | 
|  | static s32  igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *); | 
|  | static s32  igb_write_phy_reg_82580(struct e1000_hw *, u32, u16); | 
|  | static s32  igb_reset_hw_82575(struct e1000_hw *); | 
|  | static s32  igb_reset_hw_82580(struct e1000_hw *); | 
|  | static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool); | 
|  | static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool); | 
|  | static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool); | 
|  | static s32  igb_setup_copper_link_82575(struct e1000_hw *); | 
|  | static s32  igb_setup_serdes_link_82575(struct e1000_hw *); | 
|  | static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16); | 
|  | static void igb_clear_hw_cntrs_82575(struct e1000_hw *); | 
|  | static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16); | 
|  | static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *, | 
|  | u16 *); | 
|  | static s32  igb_get_phy_id_82575(struct e1000_hw *); | 
|  | static void igb_release_swfw_sync_82575(struct e1000_hw *, u16); | 
|  | static bool igb_sgmii_active_82575(struct e1000_hw *); | 
|  | static s32  igb_reset_init_script_82575(struct e1000_hw *); | 
|  | static s32  igb_read_mac_addr_82575(struct e1000_hw *); | 
|  | static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw); | 
|  | static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw); | 
|  | static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw); | 
|  | static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw); | 
|  | static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw); | 
|  | static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw); | 
|  | static const u16 e1000_82580_rxpbs_table[] = | 
|  | { 36, 72, 144, 1, 2, 4, 8, 16, | 
|  | 35, 70, 140 }; | 
|  | #define E1000_82580_RXPBS_TABLE_SIZE \ | 
|  | (sizeof(e1000_82580_rxpbs_table)/sizeof(u16)) | 
|  |  | 
|  | /** | 
|  | *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Called to determine if the I2C pins are being used for I2C or as an | 
|  | *  external MDIO interface since the two options are mutually exclusive. | 
|  | **/ | 
|  | static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg = 0; | 
|  | bool ext_mdio = false; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82575: | 
|  | case e1000_82576: | 
|  | reg = rd32(E1000_MDIC); | 
|  | ext_mdio = !!(reg & E1000_MDIC_DEST); | 
|  | break; | 
|  | case e1000_82580: | 
|  | case e1000_i350: | 
|  | case e1000_i210: | 
|  | case e1000_i211: | 
|  | reg = rd32(E1000_MDICNFG); | 
|  | ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ext_mdio; | 
|  | } | 
|  |  | 
|  | static s32 igb_get_invariants_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | struct e1000_dev_spec_82575 * dev_spec = &hw->dev_spec._82575; | 
|  | u32 eecd; | 
|  | s32 ret_val; | 
|  | u16 size; | 
|  | u32 ctrl_ext = 0; | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82575EB_COPPER: | 
|  | case E1000_DEV_ID_82575EB_FIBER_SERDES: | 
|  | case E1000_DEV_ID_82575GB_QUAD_COPPER: | 
|  | mac->type = e1000_82575; | 
|  | break; | 
|  | case E1000_DEV_ID_82576: | 
|  | case E1000_DEV_ID_82576_NS: | 
|  | case E1000_DEV_ID_82576_NS_SERDES: | 
|  | case E1000_DEV_ID_82576_FIBER: | 
|  | case E1000_DEV_ID_82576_SERDES: | 
|  | case E1000_DEV_ID_82576_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82576_QUAD_COPPER_ET2: | 
|  | case E1000_DEV_ID_82576_SERDES_QUAD: | 
|  | mac->type = e1000_82576; | 
|  | break; | 
|  | case E1000_DEV_ID_82580_COPPER: | 
|  | case E1000_DEV_ID_82580_FIBER: | 
|  | case E1000_DEV_ID_82580_QUAD_FIBER: | 
|  | case E1000_DEV_ID_82580_SERDES: | 
|  | case E1000_DEV_ID_82580_SGMII: | 
|  | case E1000_DEV_ID_82580_COPPER_DUAL: | 
|  | case E1000_DEV_ID_DH89XXCC_SGMII: | 
|  | case E1000_DEV_ID_DH89XXCC_SERDES: | 
|  | case E1000_DEV_ID_DH89XXCC_BACKPLANE: | 
|  | case E1000_DEV_ID_DH89XXCC_SFP: | 
|  | mac->type = e1000_82580; | 
|  | break; | 
|  | case E1000_DEV_ID_I350_COPPER: | 
|  | case E1000_DEV_ID_I350_FIBER: | 
|  | case E1000_DEV_ID_I350_SERDES: | 
|  | case E1000_DEV_ID_I350_SGMII: | 
|  | mac->type = e1000_i350; | 
|  | break; | 
|  | case E1000_DEV_ID_I210_COPPER: | 
|  | case E1000_DEV_ID_I210_COPPER_OEM1: | 
|  | case E1000_DEV_ID_I210_COPPER_IT: | 
|  | case E1000_DEV_ID_I210_FIBER: | 
|  | case E1000_DEV_ID_I210_SERDES: | 
|  | case E1000_DEV_ID_I210_SGMII: | 
|  | mac->type = e1000_i210; | 
|  | break; | 
|  | case E1000_DEV_ID_I211_COPPER: | 
|  | mac->type = e1000_i211; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_MAC_INIT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set media type */ | 
|  | /* | 
|  | * The 82575 uses bits 22:23 for link mode. The mode can be changed | 
|  | * based on the EEPROM. We cannot rely upon device ID. There | 
|  | * is no distinguishable difference between fiber and internal | 
|  | * SerDes mode on the 82575. There can be an external PHY attached | 
|  | * on the SGMII interface. For this, we'll set sgmii_active to true. | 
|  | */ | 
|  | phy->media_type = e1000_media_type_copper; | 
|  | dev_spec->sgmii_active = false; | 
|  |  | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  | switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { | 
|  | case E1000_CTRL_EXT_LINK_MODE_SGMII: | 
|  | dev_spec->sgmii_active = true; | 
|  | break; | 
|  | case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: | 
|  | case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES: | 
|  | hw->phy.media_type = e1000_media_type_internal_serdes; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set mta register count */ | 
|  | mac->mta_reg_count = 128; | 
|  | /* Set rar entry count */ | 
|  | switch (mac->type) { | 
|  | case e1000_82576: | 
|  | mac->rar_entry_count = E1000_RAR_ENTRIES_82576; | 
|  | break; | 
|  | case e1000_82580: | 
|  | mac->rar_entry_count = E1000_RAR_ENTRIES_82580; | 
|  | break; | 
|  | case e1000_i350: | 
|  | case e1000_i210: | 
|  | case e1000_i211: | 
|  | mac->rar_entry_count = E1000_RAR_ENTRIES_I350; | 
|  | break; | 
|  | default: | 
|  | mac->rar_entry_count = E1000_RAR_ENTRIES_82575; | 
|  | break; | 
|  | } | 
|  | /* reset */ | 
|  | if (mac->type >= e1000_82580) | 
|  | mac->ops.reset_hw = igb_reset_hw_82580; | 
|  | else | 
|  | mac->ops.reset_hw = igb_reset_hw_82575; | 
|  |  | 
|  | if (mac->type >= e1000_i210) { | 
|  | mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210; | 
|  | mac->ops.release_swfw_sync = igb_release_swfw_sync_i210; | 
|  | } else { | 
|  | mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575; | 
|  | mac->ops.release_swfw_sync = igb_release_swfw_sync_82575; | 
|  | } | 
|  |  | 
|  | /* Set if part includes ASF firmware */ | 
|  | mac->asf_firmware_present = true; | 
|  | /* Set if manageability features are enabled. */ | 
|  | mac->arc_subsystem_valid = | 
|  | (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK) | 
|  | ? true : false; | 
|  | /* enable EEE on i350 parts and later parts */ | 
|  | if (mac->type >= e1000_i350) | 
|  | dev_spec->eee_disable = false; | 
|  | else | 
|  | dev_spec->eee_disable = true; | 
|  | /* physical interface link setup */ | 
|  | mac->ops.setup_physical_interface = | 
|  | (hw->phy.media_type == e1000_media_type_copper) | 
|  | ? igb_setup_copper_link_82575 | 
|  | : igb_setup_serdes_link_82575; | 
|  |  | 
|  | /* NVM initialization */ | 
|  | eecd = rd32(E1000_EECD); | 
|  | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
|  | E1000_EECD_SIZE_EX_SHIFT); | 
|  |  | 
|  | /* | 
|  | * Added to a constant, "size" becomes the left-shift value | 
|  | * for setting word_size. | 
|  | */ | 
|  | size += NVM_WORD_SIZE_BASE_SHIFT; | 
|  |  | 
|  | nvm->word_size = 1 << size; | 
|  | if (hw->mac.type < e1000_i210) { | 
|  | nvm->opcode_bits        = 8; | 
|  | nvm->delay_usec         = 1; | 
|  | switch (nvm->override) { | 
|  | case e1000_nvm_override_spi_large: | 
|  | nvm->page_size    = 32; | 
|  | nvm->address_bits = 16; | 
|  | break; | 
|  | case e1000_nvm_override_spi_small: | 
|  | nvm->page_size    = 8; | 
|  | nvm->address_bits = 8; | 
|  | break; | 
|  | default: | 
|  | nvm->page_size    = eecd | 
|  | & E1000_EECD_ADDR_BITS ? 32 : 8; | 
|  | nvm->address_bits = eecd | 
|  | & E1000_EECD_ADDR_BITS ? 16 : 8; | 
|  | break; | 
|  | } | 
|  | if (nvm->word_size == (1 << 15)) | 
|  | nvm->page_size = 128; | 
|  |  | 
|  | nvm->type = e1000_nvm_eeprom_spi; | 
|  | } else | 
|  | nvm->type = e1000_nvm_flash_hw; | 
|  |  | 
|  | /* | 
|  | * Check for invalid size | 
|  | */ | 
|  | if ((hw->mac.type == e1000_82576) && (size > 15)) { | 
|  | pr_notice("The NVM size is not valid, defaulting to 32K\n"); | 
|  | size = 15; | 
|  | } | 
|  |  | 
|  | /* NVM Function Pointers */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82580: | 
|  | nvm->ops.validate = igb_validate_nvm_checksum_82580; | 
|  | nvm->ops.update = igb_update_nvm_checksum_82580; | 
|  | nvm->ops.acquire = igb_acquire_nvm_82575; | 
|  | nvm->ops.release = igb_release_nvm_82575; | 
|  | if (nvm->word_size < (1 << 15)) | 
|  | nvm->ops.read = igb_read_nvm_eerd; | 
|  | else | 
|  | nvm->ops.read = igb_read_nvm_spi; | 
|  | nvm->ops.write = igb_write_nvm_spi; | 
|  | break; | 
|  | case e1000_i350: | 
|  | nvm->ops.validate = igb_validate_nvm_checksum_i350; | 
|  | nvm->ops.update = igb_update_nvm_checksum_i350; | 
|  | nvm->ops.acquire = igb_acquire_nvm_82575; | 
|  | nvm->ops.release = igb_release_nvm_82575; | 
|  | if (nvm->word_size < (1 << 15)) | 
|  | nvm->ops.read = igb_read_nvm_eerd; | 
|  | else | 
|  | nvm->ops.read = igb_read_nvm_spi; | 
|  | nvm->ops.write = igb_write_nvm_spi; | 
|  | break; | 
|  | case e1000_i210: | 
|  | nvm->ops.validate = igb_validate_nvm_checksum_i210; | 
|  | nvm->ops.update   = igb_update_nvm_checksum_i210; | 
|  | nvm->ops.acquire = igb_acquire_nvm_i210; | 
|  | nvm->ops.release = igb_release_nvm_i210; | 
|  | nvm->ops.read    = igb_read_nvm_srrd_i210; | 
|  | nvm->ops.valid_led_default = igb_valid_led_default_i210; | 
|  | break; | 
|  | case e1000_i211: | 
|  | nvm->ops.acquire  = igb_acquire_nvm_i210; | 
|  | nvm->ops.release  = igb_release_nvm_i210; | 
|  | nvm->ops.read     = igb_read_nvm_i211; | 
|  | nvm->ops.valid_led_default = igb_valid_led_default_i210; | 
|  | nvm->ops.validate = NULL; | 
|  | nvm->ops.update   = NULL; | 
|  | nvm->ops.write    = NULL; | 
|  | break; | 
|  | default: | 
|  | nvm->ops.validate = igb_validate_nvm_checksum; | 
|  | nvm->ops.update = igb_update_nvm_checksum; | 
|  | nvm->ops.acquire = igb_acquire_nvm_82575; | 
|  | nvm->ops.release = igb_release_nvm_82575; | 
|  | if (nvm->word_size < (1 << 15)) | 
|  | nvm->ops.read = igb_read_nvm_eerd; | 
|  | else | 
|  | nvm->ops.read = igb_read_nvm_spi; | 
|  | nvm->ops.write = igb_write_nvm_spi; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* if part supports SR-IOV then initialize mailbox parameters */ | 
|  | switch (mac->type) { | 
|  | case e1000_82576: | 
|  | case e1000_i350: | 
|  | igb_init_mbx_params_pf(hw); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* setup PHY parameters */ | 
|  | if (phy->media_type != e1000_media_type_copper) { | 
|  | phy->type = e1000_phy_none; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | phy->autoneg_mask        = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | phy->reset_delay_us      = 100; | 
|  |  | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  |  | 
|  | /* PHY function pointers */ | 
|  | if (igb_sgmii_active_82575(hw)) { | 
|  | phy->ops.reset      = igb_phy_hw_reset_sgmii_82575; | 
|  | ctrl_ext |= E1000_CTRL_I2C_ENA; | 
|  | } else { | 
|  | phy->ops.reset      = igb_phy_hw_reset; | 
|  | ctrl_ext &= ~E1000_CTRL_I2C_ENA; | 
|  | } | 
|  |  | 
|  | wr32(E1000_CTRL_EXT, ctrl_ext); | 
|  | igb_reset_mdicnfg_82580(hw); | 
|  |  | 
|  | if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) { | 
|  | phy->ops.read_reg   = igb_read_phy_reg_sgmii_82575; | 
|  | phy->ops.write_reg  = igb_write_phy_reg_sgmii_82575; | 
|  | } else if ((hw->mac.type == e1000_82580) | 
|  | || (hw->mac.type == e1000_i350)) { | 
|  | phy->ops.read_reg   = igb_read_phy_reg_82580; | 
|  | phy->ops.write_reg  = igb_write_phy_reg_82580; | 
|  | } else if (hw->phy.type >= e1000_phy_i210) { | 
|  | phy->ops.read_reg   = igb_read_phy_reg_gs40g; | 
|  | phy->ops.write_reg  = igb_write_phy_reg_gs40g; | 
|  | } else { | 
|  | phy->ops.read_reg   = igb_read_phy_reg_igp; | 
|  | phy->ops.write_reg  = igb_write_phy_reg_igp; | 
|  | } | 
|  |  | 
|  | /* set lan id */ | 
|  | hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >> | 
|  | E1000_STATUS_FUNC_SHIFT; | 
|  |  | 
|  | /* Set phy->phy_addr and phy->id. */ | 
|  | ret_val = igb_get_phy_id_82575(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Verify phy id and set remaining function pointers */ | 
|  | switch (phy->id) { | 
|  | case I347AT4_E_PHY_ID: | 
|  | case M88E1112_E_PHY_ID: | 
|  | case M88E1111_I_PHY_ID: | 
|  | phy->type                   = e1000_phy_m88; | 
|  | phy->ops.get_phy_info       = igb_get_phy_info_m88; | 
|  |  | 
|  | if (phy->id == I347AT4_E_PHY_ID || | 
|  | phy->id == M88E1112_E_PHY_ID) | 
|  | phy->ops.get_cable_length = igb_get_cable_length_m88_gen2; | 
|  | else | 
|  | phy->ops.get_cable_length = igb_get_cable_length_m88; | 
|  |  | 
|  | if (phy->id == I210_I_PHY_ID) { | 
|  | phy->ops.get_cable_length = | 
|  | igb_get_cable_length_m88_gen2; | 
|  | phy->ops.set_d0_lplu_state = | 
|  | igb_set_d0_lplu_state_82580; | 
|  | phy->ops.set_d3_lplu_state = | 
|  | igb_set_d3_lplu_state_82580; | 
|  | } | 
|  | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; | 
|  | break; | 
|  | case IGP03E1000_E_PHY_ID: | 
|  | phy->type                   = e1000_phy_igp_3; | 
|  | phy->ops.get_phy_info       = igb_get_phy_info_igp; | 
|  | phy->ops.get_cable_length   = igb_get_cable_length_igp_2; | 
|  | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp; | 
|  | phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82575; | 
|  | phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state; | 
|  | break; | 
|  | case I82580_I_PHY_ID: | 
|  | case I350_I_PHY_ID: | 
|  | phy->type                   = e1000_phy_82580; | 
|  | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_82580; | 
|  | phy->ops.get_cable_length   = igb_get_cable_length_82580; | 
|  | phy->ops.get_phy_info       = igb_get_phy_info_82580; | 
|  | phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580; | 
|  | phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580; | 
|  | break; | 
|  | case I210_I_PHY_ID: | 
|  | phy->type                   = e1000_phy_i210; | 
|  | phy->ops.get_phy_info       = igb_get_phy_info_m88; | 
|  | phy->ops.check_polarity     = igb_check_polarity_m88; | 
|  | phy->ops.get_cable_length   = igb_get_cable_length_m88_gen2; | 
|  | phy->ops.set_d0_lplu_state  = igb_set_d0_lplu_state_82580; | 
|  | phy->ops.set_d3_lplu_state  = igb_set_d3_lplu_state_82580; | 
|  | phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_acquire_phy_82575 - Acquire rights to access PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire access rights to the correct PHY.  This is a | 
|  | *  function pointer entry point called by the api module. | 
|  | **/ | 
|  | static s32 igb_acquire_phy_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u16 mask = E1000_SWFW_PHY0_SM; | 
|  |  | 
|  | if (hw->bus.func == E1000_FUNC_1) | 
|  | mask = E1000_SWFW_PHY1_SM; | 
|  | else if (hw->bus.func == E1000_FUNC_2) | 
|  | mask = E1000_SWFW_PHY2_SM; | 
|  | else if (hw->bus.func == E1000_FUNC_3) | 
|  | mask = E1000_SWFW_PHY3_SM; | 
|  |  | 
|  | return hw->mac.ops.acquire_swfw_sync(hw, mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_release_phy_82575 - Release rights to access PHY | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  A wrapper to release access rights to the correct PHY.  This is a | 
|  | *  function pointer entry point called by the api module. | 
|  | **/ | 
|  | static void igb_release_phy_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u16 mask = E1000_SWFW_PHY0_SM; | 
|  |  | 
|  | if (hw->bus.func == E1000_FUNC_1) | 
|  | mask = E1000_SWFW_PHY1_SM; | 
|  | else if (hw->bus.func == E1000_FUNC_2) | 
|  | mask = E1000_SWFW_PHY2_SM; | 
|  | else if (hw->bus.func == E1000_FUNC_3) | 
|  | mask = E1000_SWFW_PHY3_SM; | 
|  |  | 
|  | hw->mac.ops.release_swfw_sync(hw, mask); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Reads the PHY register at offset using the serial gigabit media independent | 
|  | *  interface and stores the retrieved information in data. | 
|  | **/ | 
|  | static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | 
|  | u16 *data) | 
|  | { | 
|  | s32 ret_val = -E1000_ERR_PARAM; | 
|  |  | 
|  | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | 
|  | hw_dbg("PHY Address %u is out of range\n", offset); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_read_phy_reg_i2c(hw, offset, data); | 
|  |  | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write at register offset | 
|  | * | 
|  | *  Writes the data to PHY register at the offset using the serial gigabit | 
|  | *  media independent interface. | 
|  | **/ | 
|  | static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset, | 
|  | u16 data) | 
|  | { | 
|  | s32 ret_val = -E1000_ERR_PARAM; | 
|  |  | 
|  |  | 
|  | if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) { | 
|  | hw_dbg("PHY Address %d is out of range\n", offset); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_write_phy_reg_i2c(hw, offset, data); | 
|  |  | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_phy_id_82575 - Retrieve PHY addr and id | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Retrieves the PHY address and ID for both PHY's which do and do not use | 
|  | *  sgmi interface. | 
|  | **/ | 
|  | static s32 igb_get_phy_id_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32  ret_val = 0; | 
|  | u16 phy_id; | 
|  | u32 ctrl_ext; | 
|  | u32 mdic; | 
|  |  | 
|  | /* | 
|  | * For SGMII PHYs, we try the list of possible addresses until | 
|  | * we find one that works.  For non-SGMII PHYs | 
|  | * (e.g. integrated copper PHYs), an address of 1 should | 
|  | * work.  The result of this function should mean phy->phy_addr | 
|  | * and phy->id are set correctly. | 
|  | */ | 
|  | if (!(igb_sgmii_active_82575(hw))) { | 
|  | phy->addr = 1; | 
|  | ret_val = igb_get_phy_id(hw); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (igb_sgmii_uses_mdio_82575(hw)) { | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82575: | 
|  | case e1000_82576: | 
|  | mdic = rd32(E1000_MDIC); | 
|  | mdic &= E1000_MDIC_PHY_MASK; | 
|  | phy->addr = mdic >> E1000_MDIC_PHY_SHIFT; | 
|  | break; | 
|  | case e1000_82580: | 
|  | case e1000_i350: | 
|  | case e1000_i210: | 
|  | case e1000_i211: | 
|  | mdic = rd32(E1000_MDICNFG); | 
|  | mdic &= E1000_MDICNFG_PHY_MASK; | 
|  | phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT; | 
|  | break; | 
|  | default: | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | ret_val = igb_get_phy_id(hw); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Power on sgmii phy if it is disabled */ | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  | wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA); | 
|  | wrfl(); | 
|  | msleep(300); | 
|  |  | 
|  | /* | 
|  | * The address field in the I2CCMD register is 3 bits and 0 is invalid. | 
|  | * Therefore, we need to test 1-7 | 
|  | */ | 
|  | for (phy->addr = 1; phy->addr < 8; phy->addr++) { | 
|  | ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id); | 
|  | if (ret_val == 0) { | 
|  | hw_dbg("Vendor ID 0x%08X read at address %u\n", | 
|  | phy_id, phy->addr); | 
|  | /* | 
|  | * At the time of this writing, The M88 part is | 
|  | * the only supported SGMII PHY product. | 
|  | */ | 
|  | if (phy_id == M88_VENDOR) | 
|  | break; | 
|  | } else { | 
|  | hw_dbg("PHY address %u was unreadable\n", phy->addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* A valid PHY type couldn't be found. */ | 
|  | if (phy->addr == 8) { | 
|  | phy->addr = 0; | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | goto out; | 
|  | } else { | 
|  | ret_val = igb_get_phy_id(hw); | 
|  | } | 
|  |  | 
|  | /* restore previous sfp cage power state */ | 
|  | wr32(E1000_CTRL_EXT, ctrl_ext); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Resets the PHY using the serial gigabit media independent interface. | 
|  | **/ | 
|  | static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | /* | 
|  | * This isn't a true "hard" reset, but is the only reset | 
|  | * available to us at this time. | 
|  | */ | 
|  |  | 
|  | hw_dbg("Soft resetting SGMII attached PHY...\n"); | 
|  |  | 
|  | /* | 
|  | * SFP documentation requires the following to configure the SPF module | 
|  | * to work on SGMII.  No further documentation is given. | 
|  | */ | 
|  | ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_phy_sw_reset(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: true to enable LPLU, false to disable | 
|  | * | 
|  | *  Sets the LPLU D0 state according to the active flag.  When | 
|  | *  activating LPLU this function also disables smart speed | 
|  | *  and vice versa.  LPLU will not be activated unless the | 
|  | *  device autonegotiation advertisement meets standards of | 
|  | *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | *  This is a function pointer entry point only called by | 
|  | *  PHY setup routines. | 
|  | **/ | 
|  | static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (active) { | 
|  | data |= IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } else { | 
|  | data &= ~IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | data); | 
|  | /* | 
|  | * LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. | 
|  | */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = phy->ops.read_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = phy->ops.write_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } else if (phy->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = phy->ops.read_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, &data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = phy->ops.write_reg(hw, | 
|  | IGP01E1000_PHY_PORT_CONFIG, data); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: true to enable LPLU, false to disable | 
|  | * | 
|  | *  Sets the LPLU D0 state according to the active flag.  When | 
|  | *  activating LPLU this function also disables smart speed | 
|  | *  and vice versa.  LPLU will not be activated unless the | 
|  | *  device autonegotiation advertisement meets standards of | 
|  | *  either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | *  This is a function pointer entry point only called by | 
|  | *  PHY setup routines. | 
|  | **/ | 
|  | static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val = 0; | 
|  | u16 data; | 
|  |  | 
|  | data = rd32(E1000_82580_PHY_POWER_MGMT); | 
|  |  | 
|  | if (active) { | 
|  | data |= E1000_82580_PM_D0_LPLU; | 
|  |  | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | data &= ~E1000_82580_PM_SPD; | 
|  | } else { | 
|  | data &= ~E1000_82580_PM_D0_LPLU; | 
|  |  | 
|  | /* | 
|  | * LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. | 
|  | */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) | 
|  | data |= E1000_82580_PM_SPD; | 
|  | else if (phy->smart_speed == e1000_smart_speed_off) | 
|  | data &= ~E1000_82580_PM_SPD; } | 
|  |  | 
|  | wr32(E1000_82580_PHY_POWER_MGMT, data); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3 | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: boolean used to enable/disable lplu | 
|  | * | 
|  | *  Success returns 0, Failure returns 1 | 
|  | * | 
|  | *  The low power link up (lplu) state is set to the power management level D3 | 
|  | *  and SmartSpeed is disabled when active is true, else clear lplu for D3 | 
|  | *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU | 
|  | *  is used during Dx states where the power conservation is most important. | 
|  | *  During driver activity, SmartSpeed should be enabled so performance is | 
|  | *  maintained. | 
|  | **/ | 
|  | s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val = 0; | 
|  | u16 data; | 
|  |  | 
|  | data = rd32(E1000_82580_PHY_POWER_MGMT); | 
|  |  | 
|  | if (!active) { | 
|  | data &= ~E1000_82580_PM_D3_LPLU; | 
|  | /* | 
|  | * LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. | 
|  | */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) | 
|  | data |= E1000_82580_PM_SPD; | 
|  | else if (phy->smart_speed == e1000_smart_speed_off) | 
|  | data &= ~E1000_82580_PM_SPD; | 
|  | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | 
|  | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | 
|  | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | 
|  | data |= E1000_82580_PM_D3_LPLU; | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | data &= ~E1000_82580_PM_SPD; | 
|  | } | 
|  |  | 
|  | wr32(E1000_82580_PHY_POWER_MGMT, data); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_acquire_nvm_82575 - Request for access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the necessary semaphores for exclusive access to the EEPROM. | 
|  | *  Set the EEPROM access request bit and wait for EEPROM access grant bit. | 
|  | *  Return successful if access grant bit set, else clear the request for | 
|  | *  EEPROM access and return -E1000_ERR_NVM (-1). | 
|  | **/ | 
|  | static s32 igb_acquire_nvm_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_acquire_nvm(hw); | 
|  |  | 
|  | if (ret_val) | 
|  | hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_release_nvm_82575 - Release exclusive access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Stop any current commands to the EEPROM and clear the EEPROM request bit, | 
|  | *  then release the semaphores acquired. | 
|  | **/ | 
|  | static void igb_release_nvm_82575(struct e1000_hw *hw) | 
|  | { | 
|  | igb_release_nvm(hw); | 
|  | hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mask: specifies which semaphore to acquire | 
|  | * | 
|  | *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask | 
|  | *  will also specify which port we're acquiring the lock for. | 
|  | **/ | 
|  | static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | 
|  | { | 
|  | u32 swfw_sync; | 
|  | u32 swmask = mask; | 
|  | u32 fwmask = mask << 16; | 
|  | s32 ret_val = 0; | 
|  | s32 i = 0, timeout = 200; /* FIXME: find real value to use here */ | 
|  |  | 
|  | while (i < timeout) { | 
|  | if (igb_get_hw_semaphore(hw)) { | 
|  | ret_val = -E1000_ERR_SWFW_SYNC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | swfw_sync = rd32(E1000_SW_FW_SYNC); | 
|  | if (!(swfw_sync & (fwmask | swmask))) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Firmware currently using resource (fwmask) | 
|  | * or other software thread using resource (swmask) | 
|  | */ | 
|  | igb_put_hw_semaphore(hw); | 
|  | mdelay(5); | 
|  | i++; | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n"); | 
|  | ret_val = -E1000_ERR_SWFW_SYNC; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | swfw_sync |= swmask; | 
|  | wr32(E1000_SW_FW_SYNC, swfw_sync); | 
|  |  | 
|  | igb_put_hw_semaphore(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_release_swfw_sync_82575 - Release SW/FW semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mask: specifies which semaphore to acquire | 
|  | * | 
|  | *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask | 
|  | *  will also specify which port we're releasing the lock for. | 
|  | **/ | 
|  | static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask) | 
|  | { | 
|  | u32 swfw_sync; | 
|  |  | 
|  | while (igb_get_hw_semaphore(hw) != 0); | 
|  | /* Empty */ | 
|  |  | 
|  | swfw_sync = rd32(E1000_SW_FW_SYNC); | 
|  | swfw_sync &= ~mask; | 
|  | wr32(E1000_SW_FW_SYNC, swfw_sync); | 
|  |  | 
|  | igb_put_hw_semaphore(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_cfg_done_82575 - Read config done bit | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Read the management control register for the config done bit for | 
|  | *  completion status.  NOTE: silicon which is EEPROM-less will fail trying | 
|  | *  to read the config done bit, so an error is *ONLY* logged and returns | 
|  | *  0.  If we were to return with error, EEPROM-less silicon | 
|  | *  would not be able to be reset or change link. | 
|  | **/ | 
|  | static s32 igb_get_cfg_done_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = PHY_CFG_TIMEOUT; | 
|  | s32 ret_val = 0; | 
|  | u32 mask = E1000_NVM_CFG_DONE_PORT_0; | 
|  |  | 
|  | if (hw->bus.func == 1) | 
|  | mask = E1000_NVM_CFG_DONE_PORT_1; | 
|  | else if (hw->bus.func == E1000_FUNC_2) | 
|  | mask = E1000_NVM_CFG_DONE_PORT_2; | 
|  | else if (hw->bus.func == E1000_FUNC_3) | 
|  | mask = E1000_NVM_CFG_DONE_PORT_3; | 
|  |  | 
|  | while (timeout) { | 
|  | if (rd32(E1000_EEMNGCTL) & mask) | 
|  | break; | 
|  | msleep(1); | 
|  | timeout--; | 
|  | } | 
|  | if (!timeout) | 
|  | hw_dbg("MNG configuration cycle has not completed.\n"); | 
|  |  | 
|  | /* If EEPROM is not marked present, init the PHY manually */ | 
|  | if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) && | 
|  | (hw->phy.type == e1000_phy_igp_3)) | 
|  | igb_phy_init_script_igp3(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_check_for_link_82575 - Check for link | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  If sgmii is enabled, then use the pcs register to determine link, otherwise | 
|  | *  use the generic interface for determining link. | 
|  | **/ | 
|  | static s32 igb_check_for_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 speed, duplex; | 
|  |  | 
|  | if (hw->phy.media_type != e1000_media_type_copper) { | 
|  | ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed, | 
|  | &duplex); | 
|  | /* | 
|  | * Use this flag to determine if link needs to be checked or | 
|  | * not.  If  we have link clear the flag so that we do not | 
|  | * continue to check for link. | 
|  | */ | 
|  | hw->mac.get_link_status = !hw->mac.serdes_has_link; | 
|  | } else { | 
|  | ret_val = igb_check_for_copper_link(hw); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | void igb_power_up_serdes_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  |  | 
|  | if ((hw->phy.media_type != e1000_media_type_internal_serdes) && | 
|  | !igb_sgmii_active_82575(hw)) | 
|  | return; | 
|  |  | 
|  | /* Enable PCS to turn on link */ | 
|  | reg = rd32(E1000_PCS_CFG0); | 
|  | reg |= E1000_PCS_CFG_PCS_EN; | 
|  | wr32(E1000_PCS_CFG0, reg); | 
|  |  | 
|  | /* Power up the laser */ | 
|  | reg = rd32(E1000_CTRL_EXT); | 
|  | reg &= ~E1000_CTRL_EXT_SDP3_DATA; | 
|  | wr32(E1000_CTRL_EXT, reg); | 
|  |  | 
|  | /* flush the write to verify completion */ | 
|  | wrfl(); | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @speed: stores the current speed | 
|  | *  @duplex: stores the current duplex | 
|  | * | 
|  | *  Using the physical coding sub-layer (PCS), retrieve the current speed and | 
|  | *  duplex, then store the values in the pointers provided. | 
|  | **/ | 
|  | static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed, | 
|  | u16 *duplex) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 pcs; | 
|  |  | 
|  | /* Set up defaults for the return values of this function */ | 
|  | mac->serdes_has_link = false; | 
|  | *speed = 0; | 
|  | *duplex = 0; | 
|  |  | 
|  | /* | 
|  | * Read the PCS Status register for link state. For non-copper mode, | 
|  | * the status register is not accurate. The PCS status register is | 
|  | * used instead. | 
|  | */ | 
|  | pcs = rd32(E1000_PCS_LSTAT); | 
|  |  | 
|  | /* | 
|  | * The link up bit determines when link is up on autoneg. The sync ok | 
|  | * gets set once both sides sync up and agree upon link. Stable link | 
|  | * can be determined by checking for both link up and link sync ok | 
|  | */ | 
|  | if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) { | 
|  | mac->serdes_has_link = true; | 
|  |  | 
|  | /* Detect and store PCS speed */ | 
|  | if (pcs & E1000_PCS_LSTS_SPEED_1000) { | 
|  | *speed = SPEED_1000; | 
|  | } else if (pcs & E1000_PCS_LSTS_SPEED_100) { | 
|  | *speed = SPEED_100; | 
|  | } else { | 
|  | *speed = SPEED_10; | 
|  | } | 
|  |  | 
|  | /* Detect and store PCS duplex */ | 
|  | if (pcs & E1000_PCS_LSTS_DUPLEX_FULL) { | 
|  | *duplex = FULL_DUPLEX; | 
|  | } else { | 
|  | *duplex = HALF_DUPLEX; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_shutdown_serdes_link_82575 - Remove link during power down | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  In the case of fiber serdes, shut down optics and PCS on driver unload | 
|  | *  when management pass thru is not enabled. | 
|  | **/ | 
|  | void igb_shutdown_serdes_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | if (hw->phy.media_type != e1000_media_type_internal_serdes && | 
|  | igb_sgmii_active_82575(hw)) | 
|  | return; | 
|  |  | 
|  | if (!igb_enable_mng_pass_thru(hw)) { | 
|  | /* Disable PCS to turn off link */ | 
|  | reg = rd32(E1000_PCS_CFG0); | 
|  | reg &= ~E1000_PCS_CFG_PCS_EN; | 
|  | wr32(E1000_PCS_CFG0, reg); | 
|  |  | 
|  | /* shutdown the laser */ | 
|  | reg = rd32(E1000_CTRL_EXT); | 
|  | reg |= E1000_CTRL_EXT_SDP3_DATA; | 
|  | wr32(E1000_CTRL_EXT, reg); | 
|  |  | 
|  | /* flush the write to verify completion */ | 
|  | wrfl(); | 
|  | msleep(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_reset_hw_82575 - Reset hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This resets the hardware into a known state.  This is a | 
|  | *  function pointer entry point called by the api module. | 
|  | **/ | 
|  | static s32 igb_reset_hw_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl, icr; | 
|  | s32 ret_val; | 
|  |  | 
|  | /* | 
|  | * Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | * on the last TLP read/write transaction when MAC is reset. | 
|  | */ | 
|  | ret_val = igb_disable_pcie_master(hw); | 
|  | if (ret_val) | 
|  | hw_dbg("PCI-E Master disable polling has failed.\n"); | 
|  |  | 
|  | /* set the completion timeout for interface */ | 
|  | ret_val = igb_set_pcie_completion_timeout(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg("PCI-E Set completion timeout has failed.\n"); | 
|  | } | 
|  |  | 
|  | hw_dbg("Masking off all interrupts\n"); | 
|  | wr32(E1000_IMC, 0xffffffff); | 
|  |  | 
|  | wr32(E1000_RCTL, 0); | 
|  | wr32(E1000_TCTL, E1000_TCTL_PSP); | 
|  | wrfl(); | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | ctrl = rd32(E1000_CTRL); | 
|  |  | 
|  | hw_dbg("Issuing a global reset to MAC\n"); | 
|  | wr32(E1000_CTRL, ctrl | E1000_CTRL_RST); | 
|  |  | 
|  | ret_val = igb_get_auto_rd_done(hw); | 
|  | if (ret_val) { | 
|  | /* | 
|  | * When auto config read does not complete, do not | 
|  | * return with an error. This can happen in situations | 
|  | * where there is no eeprom and prevents getting link. | 
|  | */ | 
|  | hw_dbg("Auto Read Done did not complete\n"); | 
|  | } | 
|  |  | 
|  | /* If EEPROM is not present, run manual init scripts */ | 
|  | if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) | 
|  | igb_reset_init_script_82575(hw); | 
|  |  | 
|  | /* Clear any pending interrupt events. */ | 
|  | wr32(E1000_IMC, 0xffffffff); | 
|  | icr = rd32(E1000_ICR); | 
|  |  | 
|  | /* Install any alternate MAC address into RAR0 */ | 
|  | ret_val = igb_check_alt_mac_addr(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_init_hw_82575 - Initialize hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This inits the hardware readying it for operation. | 
|  | **/ | 
|  | static s32 igb_init_hw_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | s32 ret_val; | 
|  | u16 i, rar_count = mac->rar_entry_count; | 
|  |  | 
|  | /* Initialize identification LED */ | 
|  | ret_val = igb_id_led_init(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg("Error initializing identification LED\n"); | 
|  | /* This is not fatal and we should not stop init due to this */ | 
|  | } | 
|  |  | 
|  | /* Disabling VLAN filtering */ | 
|  | hw_dbg("Initializing the IEEE VLAN\n"); | 
|  | if (hw->mac.type == e1000_i350) | 
|  | igb_clear_vfta_i350(hw); | 
|  | else | 
|  | igb_clear_vfta(hw); | 
|  |  | 
|  | /* Setup the receive address */ | 
|  | igb_init_rx_addrs(hw, rar_count); | 
|  |  | 
|  | /* Zero out the Multicast HASH table */ | 
|  | hw_dbg("Zeroing the MTA\n"); | 
|  | for (i = 0; i < mac->mta_reg_count; i++) | 
|  | array_wr32(E1000_MTA, i, 0); | 
|  |  | 
|  | /* Zero out the Unicast HASH table */ | 
|  | hw_dbg("Zeroing the UTA\n"); | 
|  | for (i = 0; i < mac->uta_reg_count; i++) | 
|  | array_wr32(E1000_UTA, i, 0); | 
|  |  | 
|  | /* Setup link and flow control */ | 
|  | ret_val = igb_setup_link(hw); | 
|  |  | 
|  | /* | 
|  | * Clear all of the statistics registers (clear on read).  It is | 
|  | * important that we do this after we have tried to establish link | 
|  | * because the symbol error count will increment wildly if there | 
|  | * is no link. | 
|  | */ | 
|  | igb_clear_hw_cntrs_82575(hw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_setup_copper_link_82575 - Configure copper link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures the link for auto-neg or forced speed and duplex.  Then we check | 
|  | *  for link, once link is established calls to configure collision distance | 
|  | *  and flow control are called. | 
|  | **/ | 
|  | static s32 igb_setup_copper_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32  ret_val; | 
|  |  | 
|  | ctrl = rd32(E1000_CTRL); | 
|  | ctrl |= E1000_CTRL_SLU; | 
|  | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | wr32(E1000_CTRL, ctrl); | 
|  |  | 
|  | ret_val = igb_setup_serdes_link_82575(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) { | 
|  | /* allow time for SFP cage time to power up phy */ | 
|  | msleep(300); | 
|  |  | 
|  | ret_val = hw->phy.ops.reset(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg("Error resetting the PHY.\n"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | switch (hw->phy.type) { | 
|  | case e1000_phy_i210: | 
|  | case e1000_phy_m88: | 
|  | if (hw->phy.id == I347AT4_E_PHY_ID || | 
|  | hw->phy.id == M88E1112_E_PHY_ID) | 
|  | ret_val = igb_copper_link_setup_m88_gen2(hw); | 
|  | else | 
|  | ret_val = igb_copper_link_setup_m88(hw); | 
|  | break; | 
|  | case e1000_phy_igp_3: | 
|  | ret_val = igb_copper_link_setup_igp(hw); | 
|  | break; | 
|  | case e1000_phy_82580: | 
|  | ret_val = igb_copper_link_setup_82580(hw); | 
|  | break; | 
|  | default: | 
|  | ret_val = -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_setup_copper_link(hw); | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_setup_serdes_link_82575 - Setup link for serdes | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configure the physical coding sub-layer (PCS) link.  The PCS link is | 
|  | *  used on copper connections where the serialized gigabit media independent | 
|  | *  interface (sgmii), or serdes fiber is being used.  Configures the link | 
|  | *  for auto-negotiation or forces speed/duplex. | 
|  | **/ | 
|  | static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl_ext, ctrl_reg, reg; | 
|  | bool pcs_autoneg; | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  | u16 data; | 
|  |  | 
|  | if ((hw->phy.media_type != e1000_media_type_internal_serdes) && | 
|  | !igb_sgmii_active_82575(hw)) | 
|  | return ret_val; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * On the 82575, SerDes loopback mode persists until it is | 
|  | * explicitly turned off or a power cycle is performed.  A read to | 
|  | * the register does not indicate its status.  Therefore, we ensure | 
|  | * loopback mode is disabled during initialization. | 
|  | */ | 
|  | wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK); | 
|  |  | 
|  | /* power on the sfp cage if present */ | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  | ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA; | 
|  | wr32(E1000_CTRL_EXT, ctrl_ext); | 
|  |  | 
|  | ctrl_reg = rd32(E1000_CTRL); | 
|  | ctrl_reg |= E1000_CTRL_SLU; | 
|  |  | 
|  | if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) { | 
|  | /* set both sw defined pins */ | 
|  | ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1; | 
|  |  | 
|  | /* Set switch control to serdes energy detect */ | 
|  | reg = rd32(E1000_CONNSW); | 
|  | reg |= E1000_CONNSW_ENRGSRC; | 
|  | wr32(E1000_CONNSW, reg); | 
|  | } | 
|  |  | 
|  | reg = rd32(E1000_PCS_LCTL); | 
|  |  | 
|  | /* default pcs_autoneg to the same setting as mac autoneg */ | 
|  | pcs_autoneg = hw->mac.autoneg; | 
|  |  | 
|  | switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) { | 
|  | case E1000_CTRL_EXT_LINK_MODE_SGMII: | 
|  | /* sgmii mode lets the phy handle forcing speed/duplex */ | 
|  | pcs_autoneg = true; | 
|  | /* autoneg time out should be disabled for SGMII mode */ | 
|  | reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT); | 
|  | break; | 
|  | case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX: | 
|  | /* disable PCS autoneg and support parallel detect only */ | 
|  | pcs_autoneg = false; | 
|  | default: | 
|  | if (hw->mac.type == e1000_82575 || | 
|  | hw->mac.type == e1000_82576) { | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data); | 
|  | if (ret_val) { | 
|  | printk(KERN_DEBUG "NVM Read Error\n\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT) | 
|  | pcs_autoneg = false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * non-SGMII modes only supports a speed of 1000/Full for the | 
|  | * link so it is best to just force the MAC and let the pcs | 
|  | * link either autoneg or be forced to 1000/Full | 
|  | */ | 
|  | ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD | | 
|  | E1000_CTRL_FD | E1000_CTRL_FRCDPX; | 
|  |  | 
|  | /* set speed of 1000/Full if speed/duplex is forced */ | 
|  | reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | wr32(E1000_CTRL, ctrl_reg); | 
|  |  | 
|  | /* | 
|  | * New SerDes mode allows for forcing speed or autonegotiating speed | 
|  | * at 1gb. Autoneg should be default set by most drivers. This is the | 
|  | * mode that will be compatible with older link partners and switches. | 
|  | * However, both are supported by the hardware and some drivers/tools. | 
|  | */ | 
|  | reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP | | 
|  | E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK); | 
|  |  | 
|  | /* | 
|  | * We force flow control to prevent the CTRL register values from being | 
|  | * overwritten by the autonegotiated flow control values | 
|  | */ | 
|  | reg |= E1000_PCS_LCTL_FORCE_FCTRL; | 
|  |  | 
|  | if (pcs_autoneg) { | 
|  | /* Set PCS register for autoneg */ | 
|  | reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */ | 
|  | E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */ | 
|  | hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg); | 
|  | } else { | 
|  | /* Set PCS register for forced link */ | 
|  | reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */ | 
|  |  | 
|  | hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg); | 
|  | } | 
|  |  | 
|  | wr32(E1000_PCS_LCTL, reg); | 
|  |  | 
|  | if (!igb_sgmii_active_82575(hw)) | 
|  | igb_force_mac_fc(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_sgmii_active_82575 - Return sgmii state | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  82575 silicon has a serialized gigabit media independent interface (sgmii) | 
|  | *  which can be enabled for use in the embedded applications.  Simply | 
|  | *  return the current state of the sgmii interface. | 
|  | **/ | 
|  | static bool igb_sgmii_active_82575(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575; | 
|  | return dev_spec->sgmii_active; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_reset_init_script_82575 - Inits HW defaults after reset | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Inits recommended HW defaults after a reset when there is no EEPROM | 
|  | *  detected. This is only for the 82575. | 
|  | **/ | 
|  | static s32 igb_reset_init_script_82575(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->mac.type == e1000_82575) { | 
|  | hw_dbg("Running reset init script for 82575\n"); | 
|  | /* SerDes configuration via SERDESCTRL */ | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15); | 
|  |  | 
|  | /* CCM configuration via CCMCTL register */ | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00); | 
|  |  | 
|  | /* PCIe lanes configuration */ | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81); | 
|  |  | 
|  | /* PCIe PLL Configuration */ | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00); | 
|  | igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_mac_addr_82575 - Read device MAC address | 
|  | *  @hw: pointer to the HW structure | 
|  | **/ | 
|  | static s32 igb_read_mac_addr_82575(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* | 
|  | * If there's an alternate MAC address place it in RAR0 | 
|  | * so that it will override the Si installed default perm | 
|  | * address. | 
|  | */ | 
|  | ret_val = igb_check_alt_mac_addr(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_read_mac_addr(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * igb_power_down_phy_copper_82575 - Remove link during PHY power down | 
|  | * @hw: pointer to the HW structure | 
|  | * | 
|  | * In the case of a PHY power down to save power, or to turn off link during a | 
|  | * driver unload, or wake on lan is not enabled, remove the link. | 
|  | **/ | 
|  | void igb_power_down_phy_copper_82575(struct e1000_hw *hw) | 
|  | { | 
|  | /* If the management interface is not enabled, then power down */ | 
|  | if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw))) | 
|  | igb_power_down_phy_copper(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the hardware counters by reading the counter registers. | 
|  | **/ | 
|  | static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw) | 
|  | { | 
|  | igb_clear_hw_cntrs_base(hw); | 
|  |  | 
|  | rd32(E1000_PRC64); | 
|  | rd32(E1000_PRC127); | 
|  | rd32(E1000_PRC255); | 
|  | rd32(E1000_PRC511); | 
|  | rd32(E1000_PRC1023); | 
|  | rd32(E1000_PRC1522); | 
|  | rd32(E1000_PTC64); | 
|  | rd32(E1000_PTC127); | 
|  | rd32(E1000_PTC255); | 
|  | rd32(E1000_PTC511); | 
|  | rd32(E1000_PTC1023); | 
|  | rd32(E1000_PTC1522); | 
|  |  | 
|  | rd32(E1000_ALGNERRC); | 
|  | rd32(E1000_RXERRC); | 
|  | rd32(E1000_TNCRS); | 
|  | rd32(E1000_CEXTERR); | 
|  | rd32(E1000_TSCTC); | 
|  | rd32(E1000_TSCTFC); | 
|  |  | 
|  | rd32(E1000_MGTPRC); | 
|  | rd32(E1000_MGTPDC); | 
|  | rd32(E1000_MGTPTC); | 
|  |  | 
|  | rd32(E1000_IAC); | 
|  | rd32(E1000_ICRXOC); | 
|  |  | 
|  | rd32(E1000_ICRXPTC); | 
|  | rd32(E1000_ICRXATC); | 
|  | rd32(E1000_ICTXPTC); | 
|  | rd32(E1000_ICTXATC); | 
|  | rd32(E1000_ICTXQEC); | 
|  | rd32(E1000_ICTXQMTC); | 
|  | rd32(E1000_ICRXDMTC); | 
|  |  | 
|  | rd32(E1000_CBTMPC); | 
|  | rd32(E1000_HTDPMC); | 
|  | rd32(E1000_CBRMPC); | 
|  | rd32(E1000_RPTHC); | 
|  | rd32(E1000_HGPTC); | 
|  | rd32(E1000_HTCBDPC); | 
|  | rd32(E1000_HGORCL); | 
|  | rd32(E1000_HGORCH); | 
|  | rd32(E1000_HGOTCL); | 
|  | rd32(E1000_HGOTCH); | 
|  | rd32(E1000_LENERRS); | 
|  |  | 
|  | /* This register should not be read in copper configurations */ | 
|  | if (hw->phy.media_type == e1000_media_type_internal_serdes || | 
|  | igb_sgmii_active_82575(hw)) | 
|  | rd32(E1000_SCVPC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  After rx enable if managability is enabled then there is likely some | 
|  | *  bad data at the start of the fifo and possibly in the DMA fifo.  This | 
|  | *  function clears the fifos and flushes any packets that came in as rx was | 
|  | *  being enabled. | 
|  | **/ | 
|  | void igb_rx_fifo_flush_82575(struct e1000_hw *hw) | 
|  | { | 
|  | u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled; | 
|  | int i, ms_wait; | 
|  |  | 
|  | if (hw->mac.type != e1000_82575 || | 
|  | !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN)) | 
|  | return; | 
|  |  | 
|  | /* Disable all RX queues */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | rxdctl[i] = rd32(E1000_RXDCTL(i)); | 
|  | wr32(E1000_RXDCTL(i), | 
|  | rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE); | 
|  | } | 
|  | /* Poll all queues to verify they have shut down */ | 
|  | for (ms_wait = 0; ms_wait < 10; ms_wait++) { | 
|  | msleep(1); | 
|  | rx_enabled = 0; | 
|  | for (i = 0; i < 4; i++) | 
|  | rx_enabled |= rd32(E1000_RXDCTL(i)); | 
|  | if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ms_wait == 10) | 
|  | hw_dbg("Queue disable timed out after 10ms\n"); | 
|  |  | 
|  | /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all | 
|  | * incoming packets are rejected.  Set enable and wait 2ms so that | 
|  | * any packet that was coming in as RCTL.EN was set is flushed | 
|  | */ | 
|  | rfctl = rd32(E1000_RFCTL); | 
|  | wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF); | 
|  |  | 
|  | rlpml = rd32(E1000_RLPML); | 
|  | wr32(E1000_RLPML, 0); | 
|  |  | 
|  | rctl = rd32(E1000_RCTL); | 
|  | temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP); | 
|  | temp_rctl |= E1000_RCTL_LPE; | 
|  |  | 
|  | wr32(E1000_RCTL, temp_rctl); | 
|  | wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN); | 
|  | wrfl(); | 
|  | msleep(2); | 
|  |  | 
|  | /* Enable RX queues that were previously enabled and restore our | 
|  | * previous state | 
|  | */ | 
|  | for (i = 0; i < 4; i++) | 
|  | wr32(E1000_RXDCTL(i), rxdctl[i]); | 
|  | wr32(E1000_RCTL, rctl); | 
|  | wrfl(); | 
|  |  | 
|  | wr32(E1000_RLPML, rlpml); | 
|  | wr32(E1000_RFCTL, rfctl); | 
|  |  | 
|  | /* Flush receive errors generated by workaround */ | 
|  | rd32(E1000_ROC); | 
|  | rd32(E1000_RNBC); | 
|  | rd32(E1000_MPC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_set_pcie_completion_timeout - set pci-e completion timeout | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms, | 
|  | *  however the hardware default for these parts is 500us to 1ms which is less | 
|  | *  than the 10ms recommended by the pci-e spec.  To address this we need to | 
|  | *  increase the value to either 10ms to 200ms for capability version 1 config, | 
|  | *  or 16ms to 55ms for version 2. | 
|  | **/ | 
|  | static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw) | 
|  | { | 
|  | u32 gcr = rd32(E1000_GCR); | 
|  | s32 ret_val = 0; | 
|  | u16 pcie_devctl2; | 
|  |  | 
|  | /* only take action if timeout value is defaulted to 0 */ | 
|  | if (gcr & E1000_GCR_CMPL_TMOUT_MASK) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * if capababilities version is type 1 we can write the | 
|  | * timeout of 10ms to 200ms through the GCR register | 
|  | */ | 
|  | if (!(gcr & E1000_GCR_CAP_VER2)) { | 
|  | gcr |= E1000_GCR_CMPL_TMOUT_10ms; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * for version 2 capabilities we need to write the config space | 
|  | * directly in order to set the completion timeout value for | 
|  | * 16ms to 55ms | 
|  | */ | 
|  | ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, | 
|  | &pcie_devctl2); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms; | 
|  |  | 
|  | ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2, | 
|  | &pcie_devctl2); | 
|  | out: | 
|  | /* disable completion timeout resend */ | 
|  | gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND; | 
|  |  | 
|  | wr32(E1000_GCR, gcr); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing | 
|  | *  @hw: pointer to the hardware struct | 
|  | *  @enable: state to enter, either enabled or disabled | 
|  | *  @pf: Physical Function pool - do not set anti-spoofing for the PF | 
|  | * | 
|  | *  enables/disables L2 switch anti-spoofing functionality. | 
|  | **/ | 
|  | void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf) | 
|  | { | 
|  | u32 dtxswc; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82576: | 
|  | case e1000_i350: | 
|  | dtxswc = rd32(E1000_DTXSWC); | 
|  | if (enable) { | 
|  | dtxswc |= (E1000_DTXSWC_MAC_SPOOF_MASK | | 
|  | E1000_DTXSWC_VLAN_SPOOF_MASK); | 
|  | /* The PF can spoof - it has to in order to | 
|  | * support emulation mode NICs */ | 
|  | dtxswc ^= (1 << pf | 1 << (pf + MAX_NUM_VFS)); | 
|  | } else { | 
|  | dtxswc &= ~(E1000_DTXSWC_MAC_SPOOF_MASK | | 
|  | E1000_DTXSWC_VLAN_SPOOF_MASK); | 
|  | } | 
|  | wr32(E1000_DTXSWC, dtxswc); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback | 
|  | *  @hw: pointer to the hardware struct | 
|  | *  @enable: state to enter, either enabled or disabled | 
|  | * | 
|  | *  enables/disables L2 switch loopback functionality. | 
|  | **/ | 
|  | void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable) | 
|  | { | 
|  | u32 dtxswc; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82576: | 
|  | dtxswc = rd32(E1000_DTXSWC); | 
|  | if (enable) | 
|  | dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; | 
|  | else | 
|  | dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; | 
|  | wr32(E1000_DTXSWC, dtxswc); | 
|  | break; | 
|  | case e1000_i350: | 
|  | dtxswc = rd32(E1000_TXSWC); | 
|  | if (enable) | 
|  | dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN; | 
|  | else | 
|  | dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN; | 
|  | wr32(E1000_TXSWC, dtxswc); | 
|  | break; | 
|  | default: | 
|  | /* Currently no other hardware supports loopback */ | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_vmdq_set_replication_pf - enable or disable vmdq replication | 
|  | *  @hw: pointer to the hardware struct | 
|  | *  @enable: state to enter, either enabled or disabled | 
|  | * | 
|  | *  enables/disables replication of packets across multiple pools. | 
|  | **/ | 
|  | void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable) | 
|  | { | 
|  | u32 vt_ctl = rd32(E1000_VT_CTL); | 
|  |  | 
|  | if (enable) | 
|  | vt_ctl |= E1000_VT_CTL_VM_REPL_EN; | 
|  | else | 
|  | vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN; | 
|  |  | 
|  | wr32(E1000_VT_CTL, vt_ctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_phy_reg_82580 - Read 82580 MDI control register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to be read | 
|  | *  @data: pointer to the read data | 
|  | * | 
|  | *  Reads the MDI control register in the PHY at offset and stores the | 
|  | *  information read to data. | 
|  | **/ | 
|  | static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_read_phy_reg_mdic(hw, offset, data); | 
|  |  | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_write_phy_reg_82580 - Write 82580 MDI control register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: register offset to write to | 
|  | *  @data: data to write to register at offset | 
|  | * | 
|  | *  Writes data to MDI control register in the PHY at offset. | 
|  | **/ | 
|  | static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  |  | 
|  | ret_val = hw->phy.ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_write_phy_reg_mdic(hw, offset, data); | 
|  |  | 
|  | hw->phy.ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on | 
|  | *  the values found in the EEPROM.  This addresses an issue in which these | 
|  | *  bits are not restored from EEPROM after reset. | 
|  | **/ | 
|  | static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 mdicnfg; | 
|  | u16 nvm_data = 0; | 
|  |  | 
|  | if (hw->mac.type != e1000_82580) | 
|  | goto out; | 
|  | if (!igb_sgmii_active_82575(hw)) | 
|  | goto out; | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A + | 
|  | NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1, | 
|  | &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mdicnfg = rd32(E1000_MDICNFG); | 
|  | if (nvm_data & NVM_WORD24_EXT_MDIO) | 
|  | mdicnfg |= E1000_MDICNFG_EXT_MDIO; | 
|  | if (nvm_data & NVM_WORD24_COM_MDIO) | 
|  | mdicnfg |= E1000_MDICNFG_COM_MDIO; | 
|  | wr32(E1000_MDICNFG, mdicnfg); | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_reset_hw_82580 - Reset hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This resets function or entire device (all ports, etc.) | 
|  | *  to a known state. | 
|  | **/ | 
|  | static s32 igb_reset_hw_82580(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | /* BH SW mailbox bit in SW_FW_SYNC */ | 
|  | u16 swmbsw_mask = E1000_SW_SYNCH_MB; | 
|  | u32 ctrl, icr; | 
|  | bool global_device_reset = hw->dev_spec._82575.global_device_reset; | 
|  |  | 
|  |  | 
|  | hw->dev_spec._82575.global_device_reset = false; | 
|  |  | 
|  | /* Get current control state. */ | 
|  | ctrl = rd32(E1000_CTRL); | 
|  |  | 
|  | /* | 
|  | * Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | * on the last TLP read/write transaction when MAC is reset. | 
|  | */ | 
|  | ret_val = igb_disable_pcie_master(hw); | 
|  | if (ret_val) | 
|  | hw_dbg("PCI-E Master disable polling has failed.\n"); | 
|  |  | 
|  | hw_dbg("Masking off all interrupts\n"); | 
|  | wr32(E1000_IMC, 0xffffffff); | 
|  | wr32(E1000_RCTL, 0); | 
|  | wr32(E1000_TCTL, E1000_TCTL_PSP); | 
|  | wrfl(); | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | /* Determine whether or not a global dev reset is requested */ | 
|  | if (global_device_reset && | 
|  | hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask)) | 
|  | global_device_reset = false; | 
|  |  | 
|  | if (global_device_reset && | 
|  | !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET)) | 
|  | ctrl |= E1000_CTRL_DEV_RST; | 
|  | else | 
|  | ctrl |= E1000_CTRL_RST; | 
|  |  | 
|  | wr32(E1000_CTRL, ctrl); | 
|  | wrfl(); | 
|  |  | 
|  | /* Add delay to insure DEV_RST has time to complete */ | 
|  | if (global_device_reset) | 
|  | msleep(5); | 
|  |  | 
|  | ret_val = igb_get_auto_rd_done(hw); | 
|  | if (ret_val) { | 
|  | /* | 
|  | * When auto config read does not complete, do not | 
|  | * return with an error. This can happen in situations | 
|  | * where there is no eeprom and prevents getting link. | 
|  | */ | 
|  | hw_dbg("Auto Read Done did not complete\n"); | 
|  | } | 
|  |  | 
|  | /* If EEPROM is not present, run manual init scripts */ | 
|  | if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) | 
|  | igb_reset_init_script_82575(hw); | 
|  |  | 
|  | /* clear global device reset status bit */ | 
|  | wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET); | 
|  |  | 
|  | /* Clear any pending interrupt events. */ | 
|  | wr32(E1000_IMC, 0xffffffff); | 
|  | icr = rd32(E1000_ICR); | 
|  |  | 
|  | ret_val = igb_reset_mdicnfg_82580(hw); | 
|  | if (ret_val) | 
|  | hw_dbg("Could not reset MDICNFG based on EEPROM\n"); | 
|  |  | 
|  | /* Install any alternate MAC address into RAR0 */ | 
|  | ret_val = igb_check_alt_mac_addr(hw); | 
|  |  | 
|  | /* Release semaphore */ | 
|  | if (global_device_reset) | 
|  | hw->mac.ops.release_swfw_sync(hw, swmbsw_mask); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size | 
|  | *  @data: data received by reading RXPBS register | 
|  | * | 
|  | *  The 82580 uses a table based approach for packet buffer allocation sizes. | 
|  | *  This function converts the retrieved value into the correct table value | 
|  | *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 | 
|  | *  0x0 36  72 144   1   2   4   8  16 | 
|  | *  0x8 35  70 140 rsv rsv rsv rsv rsv | 
|  | */ | 
|  | u16 igb_rxpbs_adjust_82580(u32 data) | 
|  | { | 
|  | u16 ret_val = 0; | 
|  |  | 
|  | if (data < E1000_82580_RXPBS_TABLE_SIZE) | 
|  | ret_val = e1000_82580_rxpbs_table[data]; | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_validate_nvm_checksum_with_offset - Validate EEPROM | 
|  | *  checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset in words of the checksum protected region | 
|  | * | 
|  | *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  and then verifies that the sum of the EEPROM is equal to 0xBABA. | 
|  | **/ | 
|  | static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw, | 
|  | u16 offset) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) { | 
|  | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  |  | 
|  | if (checksum != (u16) NVM_SUM) { | 
|  | hw_dbg("NVM Checksum Invalid\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_update_nvm_checksum_with_offset - Update EEPROM | 
|  | *  checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset in words of the checksum protected region | 
|  | * | 
|  | *  Updates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  up to the checksum.  Then calculates the EEPROM checksum and writes the | 
|  | *  value to the EEPROM. | 
|  | **/ | 
|  | static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) { | 
|  | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error while updating checksum.\n"); | 
|  | goto out; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  | checksum = (u16) NVM_SUM - checksum; | 
|  | ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1, | 
|  | &checksum); | 
|  | if (ret_val) | 
|  | hw_dbg("NVM Write Error while updating checksum.\n"); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calculates the EEPROM section checksum by reading/adding each word of | 
|  | *  the EEPROM and then verifies that the sum of the EEPROM is | 
|  | *  equal to 0xBABA. | 
|  | **/ | 
|  | static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 eeprom_regions_count = 1; | 
|  | u16 j, nvm_data; | 
|  | u16 nvm_offset; | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) { | 
|  | /* if checksums compatibility bit is set validate checksums | 
|  | * for all 4 ports. */ | 
|  | eeprom_regions_count = 4; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < eeprom_regions_count; j++) { | 
|  | nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); | 
|  | ret_val = igb_validate_nvm_checksum_with_offset(hw, | 
|  | nvm_offset); | 
|  | if (ret_val != 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_update_nvm_checksum_82580 - Update EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Updates the EEPROM section checksums for all 4 ports by reading/adding | 
|  | *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM | 
|  | *  checksum and writes the value to the EEPROM. | 
|  | **/ | 
|  | static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 j, nvm_data; | 
|  | u16 nvm_offset; | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error while updating checksum" | 
|  | " compatibility bit.\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) { | 
|  | /* set compatibility bit to validate checksums appropriately */ | 
|  | nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK; | 
|  | ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1, | 
|  | &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Write Error while updating checksum" | 
|  | " compatibility bit.\n"); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (j = 0; j < 4; j++) { | 
|  | nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); | 
|  | ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); | 
|  | if (ret_val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calculates the EEPROM section checksum by reading/adding each word of | 
|  | *  the EEPROM and then verifies that the sum of the EEPROM is | 
|  | *  equal to 0xBABA. | 
|  | **/ | 
|  | static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 j; | 
|  | u16 nvm_offset; | 
|  |  | 
|  | for (j = 0; j < 4; j++) { | 
|  | nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); | 
|  | ret_val = igb_validate_nvm_checksum_with_offset(hw, | 
|  | nvm_offset); | 
|  | if (ret_val != 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_update_nvm_checksum_i350 - Update EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Updates the EEPROM section checksums for all 4 ports by reading/adding | 
|  | *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM | 
|  | *  checksum and writes the value to the EEPROM. | 
|  | **/ | 
|  | static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 j; | 
|  | u16 nvm_offset; | 
|  |  | 
|  | for (j = 0; j < 4; j++) { | 
|  | nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j); | 
|  | ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset); | 
|  | if (ret_val != 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_set_eee_i350 - Enable/disable EEE support | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Enable/disable EEE based on setting in dev_spec structure. | 
|  | * | 
|  | **/ | 
|  | s32 igb_set_eee_i350(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u32 ipcnfg, eeer, ctrl_ext; | 
|  |  | 
|  | ctrl_ext = rd32(E1000_CTRL_EXT); | 
|  | if ((hw->mac.type != e1000_i350) || | 
|  | (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK)) | 
|  | goto out; | 
|  | ipcnfg = rd32(E1000_IPCNFG); | 
|  | eeer = rd32(E1000_EEER); | 
|  |  | 
|  | /* enable or disable per user setting */ | 
|  | if (!(hw->dev_spec._82575.eee_disable)) { | 
|  | ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | | 
|  | E1000_IPCNFG_EEE_100M_AN); | 
|  | eeer |= (E1000_EEER_TX_LPI_EN | | 
|  | E1000_EEER_RX_LPI_EN | | 
|  | E1000_EEER_LPI_FC); | 
|  |  | 
|  | } else { | 
|  | ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN | | 
|  | E1000_IPCNFG_EEE_100M_AN); | 
|  | eeer &= ~(E1000_EEER_TX_LPI_EN | | 
|  | E1000_EEER_RX_LPI_EN | | 
|  | E1000_EEER_LPI_FC); | 
|  | } | 
|  | wr32(E1000_IPCNFG, ipcnfg); | 
|  | wr32(E1000_EEER, eeer); | 
|  | out: | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static struct e1000_mac_operations e1000_mac_ops_82575 = { | 
|  | .init_hw              = igb_init_hw_82575, | 
|  | .check_for_link       = igb_check_for_link_82575, | 
|  | .rar_set              = igb_rar_set, | 
|  | .read_mac_addr        = igb_read_mac_addr_82575, | 
|  | .get_speed_and_duplex = igb_get_speed_and_duplex_copper, | 
|  | }; | 
|  |  | 
|  | static struct e1000_phy_operations e1000_phy_ops_82575 = { | 
|  | .acquire              = igb_acquire_phy_82575, | 
|  | .get_cfg_done         = igb_get_cfg_done_82575, | 
|  | .release              = igb_release_phy_82575, | 
|  | }; | 
|  |  | 
|  | static struct e1000_nvm_operations e1000_nvm_ops_82575 = { | 
|  | .acquire              = igb_acquire_nvm_82575, | 
|  | .read                 = igb_read_nvm_eerd, | 
|  | .release              = igb_release_nvm_82575, | 
|  | .write                = igb_write_nvm_spi, | 
|  | }; | 
|  |  | 
|  | const struct e1000_info e1000_82575_info = { | 
|  | .get_invariants = igb_get_invariants_82575, | 
|  | .mac_ops = &e1000_mac_ops_82575, | 
|  | .phy_ops = &e1000_phy_ops_82575, | 
|  | .nvm_ops = &e1000_nvm_ops_82575, | 
|  | }; | 
|  |  |