| /* | 
 |  * omap_vout_vrfb.c | 
 |  * | 
 |  * Copyright (C) 2010 Texas Instruments. | 
 |  * | 
 |  * This file is licensed under the terms of the GNU General Public License | 
 |  * version 2. This program is licensed "as is" without any warranty of any | 
 |  * kind, whether express or implied. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/videodev2.h> | 
 |  | 
 | #include <media/videobuf-dma-contig.h> | 
 | #include <media/v4l2-device.h> | 
 |  | 
 | #include <linux/omap-dma.h> | 
 | #include <video/omapvrfb.h> | 
 |  | 
 | #include "omap_voutdef.h" | 
 | #include "omap_voutlib.h" | 
 | #include "omap_vout_vrfb.h" | 
 |  | 
 | #define OMAP_DMA_NO_DEVICE	0 | 
 |  | 
 | /* | 
 |  * Function for allocating video buffers | 
 |  */ | 
 | static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout, | 
 | 		unsigned int *count, int startindex) | 
 | { | 
 | 	int i, j; | 
 |  | 
 | 	for (i = 0; i < *count; i++) { | 
 | 		if (!vout->smsshado_virt_addr[i]) { | 
 | 			vout->smsshado_virt_addr[i] = | 
 | 				omap_vout_alloc_buffer(vout->smsshado_size, | 
 | 						&vout->smsshado_phy_addr[i]); | 
 | 		} | 
 | 		if (!vout->smsshado_virt_addr[i] && startindex != -1) { | 
 | 			if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex) | 
 | 				break; | 
 | 		} | 
 | 		if (!vout->smsshado_virt_addr[i]) { | 
 | 			for (j = 0; j < i; j++) { | 
 | 				omap_vout_free_buffer( | 
 | 						vout->smsshado_virt_addr[j], | 
 | 						vout->smsshado_size); | 
 | 				vout->smsshado_virt_addr[j] = 0; | 
 | 				vout->smsshado_phy_addr[j] = 0; | 
 | 			} | 
 | 			*count = 0; | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		memset((void *) vout->smsshado_virt_addr[i], 0, | 
 | 				vout->smsshado_size); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wakes up the application once the DMA transfer to VRFB space is completed. | 
 |  */ | 
 | static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data) | 
 | { | 
 | 	struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data; | 
 |  | 
 | 	t->tx_status = 1; | 
 | 	wake_up_interruptible(&t->wait); | 
 | } | 
 |  | 
 | /* | 
 |  * Free VRFB buffers | 
 |  */ | 
 | void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout) | 
 | { | 
 | 	int j; | 
 |  | 
 | 	for (j = 0; j < VRFB_NUM_BUFS; j++) { | 
 | 		if (vout->smsshado_virt_addr[j]) { | 
 | 			omap_vout_free_buffer(vout->smsshado_virt_addr[j], | 
 | 					      vout->smsshado_size); | 
 | 			vout->smsshado_virt_addr[j] = 0; | 
 | 			vout->smsshado_phy_addr[j] = 0; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int omap_vout_setup_vrfb_bufs(struct platform_device *pdev, int vid_num, | 
 | 			      bool static_vrfb_allocation) | 
 | { | 
 | 	int ret = 0, i, j; | 
 | 	struct omap_vout_device *vout; | 
 | 	struct video_device *vfd; | 
 | 	int image_width, image_height; | 
 | 	int vrfb_num_bufs = VRFB_NUM_BUFS; | 
 | 	struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev); | 
 | 	struct omap2video_device *vid_dev = | 
 | 		container_of(v4l2_dev, struct omap2video_device, v4l2_dev); | 
 |  | 
 | 	vout = vid_dev->vouts[vid_num]; | 
 | 	vfd = vout->vfd; | 
 |  | 
 | 	for (i = 0; i < VRFB_NUM_BUFS; i++) { | 
 | 		if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) { | 
 | 			dev_info(&pdev->dev, ": VRFB allocation failed\n"); | 
 | 			for (j = 0; j < i; j++) | 
 | 				omap_vrfb_release_ctx(&vout->vrfb_context[j]); | 
 | 			ret = -ENOMEM; | 
 | 			goto free_buffers; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Calculate VRFB memory size */ | 
 | 	/* allocate for worst case size */ | 
 | 	image_width = VID_MAX_WIDTH / TILE_SIZE; | 
 | 	if (VID_MAX_WIDTH % TILE_SIZE) | 
 | 		image_width++; | 
 |  | 
 | 	image_width = image_width * TILE_SIZE; | 
 | 	image_height = VID_MAX_HEIGHT / TILE_SIZE; | 
 |  | 
 | 	if (VID_MAX_HEIGHT % TILE_SIZE) | 
 | 		image_height++; | 
 |  | 
 | 	image_height = image_height * TILE_SIZE; | 
 | 	vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2); | 
 |  | 
 | 	/* | 
 | 	 * Request and Initialize DMA, for DMA based VRFB transfer | 
 | 	 */ | 
 | 	vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE; | 
 | 	vout->vrfb_dma_tx.dma_ch = -1; | 
 | 	vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED; | 
 | 	ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX", | 
 | 			omap_vout_vrfb_dma_tx_callback, | 
 | 			(void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch); | 
 | 	if (ret < 0) { | 
 | 		vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; | 
 | 		dev_info(&pdev->dev, | 
 | 			 ": failed to allocate DMA Channel for video%d\n", | 
 | 			 vfd->minor); | 
 | 	} | 
 | 	init_waitqueue_head(&vout->vrfb_dma_tx.wait); | 
 |  | 
 | 	/* statically allocated the VRFB buffer is done through | 
 | 	   commands line aruments */ | 
 | 	if (static_vrfb_allocation) { | 
 | 		if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) { | 
 | 			ret =  -ENOMEM; | 
 | 			goto release_vrfb_ctx; | 
 | 		} | 
 | 		vout->vrfb_static_allocation = true; | 
 | 	} | 
 | 	return 0; | 
 |  | 
 | release_vrfb_ctx: | 
 | 	for (j = 0; j < VRFB_NUM_BUFS; j++) | 
 | 		omap_vrfb_release_ctx(&vout->vrfb_context[j]); | 
 | free_buffers: | 
 | 	omap_vout_free_buffers(vout); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Release the VRFB context once the module exits | 
 |  */ | 
 | void omap_vout_release_vrfb(struct omap_vout_device *vout) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < VRFB_NUM_BUFS; i++) | 
 | 		omap_vrfb_release_ctx(&vout->vrfb_context[i]); | 
 |  | 
 | 	if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) { | 
 | 		vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; | 
 | 		omap_free_dma(vout->vrfb_dma_tx.dma_ch); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate the buffers for the VRFB space.  Data is copied from V4L2 | 
 |  * buffers to the VRFB buffers using the DMA engine. | 
 |  */ | 
 | int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout, | 
 | 			  unsigned int *count, unsigned int startindex) | 
 | { | 
 | 	int i; | 
 | 	bool yuv_mode; | 
 |  | 
 | 	if (!is_rotation_enabled(vout)) | 
 | 		return 0; | 
 |  | 
 | 	/* If rotation is enabled, allocate memory for VRFB space also */ | 
 | 	*count = *count > VRFB_NUM_BUFS ? VRFB_NUM_BUFS : *count; | 
 |  | 
 | 	/* Allocate the VRFB buffers only if the buffers are not | 
 | 	 * allocated during init time. | 
 | 	 */ | 
 | 	if (!vout->vrfb_static_allocation) | 
 | 		if (omap_vout_allocate_vrfb_buffers(vout, count, startindex)) | 
 | 			return -ENOMEM; | 
 |  | 
 | 	if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 || | 
 | 			vout->dss_mode == OMAP_DSS_COLOR_UYVY) | 
 | 		yuv_mode = true; | 
 | 	else | 
 | 		yuv_mode = false; | 
 |  | 
 | 	for (i = 0; i < *count; i++) | 
 | 		omap_vrfb_setup(&vout->vrfb_context[i], | 
 | 				vout->smsshado_phy_addr[i], vout->pix.width, | 
 | 				vout->pix.height, vout->bpp, yuv_mode); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int omap_vout_prepare_vrfb(struct omap_vout_device *vout, | 
 | 				struct videobuf_buffer *vb) | 
 | { | 
 | 	dma_addr_t dmabuf; | 
 | 	struct vid_vrfb_dma *tx; | 
 | 	enum dss_rotation rotation; | 
 | 	u32 dest_frame_index = 0, src_element_index = 0; | 
 | 	u32 dest_element_index = 0, src_frame_index = 0; | 
 | 	u32 elem_count = 0, frame_count = 0, pixsize = 2; | 
 |  | 
 | 	if (!is_rotation_enabled(vout)) | 
 | 		return 0; | 
 |  | 
 | 	dmabuf = vout->buf_phy_addr[vb->i]; | 
 | 	/* If rotation is enabled, copy input buffer into VRFB | 
 | 	 * memory space using DMA. We are copying input buffer | 
 | 	 * into VRFB memory space of desired angle and DSS will | 
 | 	 * read image VRFB memory for 0 degree angle | 
 | 	 */ | 
 | 	pixsize = vout->bpp * vout->vrfb_bpp; | 
 | 	/* | 
 | 	 * DMA transfer in double index mode | 
 | 	 */ | 
 |  | 
 | 	/* Frame index */ | 
 | 	dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) - | 
 | 			(vout->pix.width * vout->bpp)) + 1; | 
 |  | 
 | 	/* Source and destination parameters */ | 
 | 	src_element_index = 0; | 
 | 	src_frame_index = 0; | 
 | 	dest_element_index = 1; | 
 | 	/* Number of elements per frame */ | 
 | 	elem_count = vout->pix.width * vout->bpp; | 
 | 	frame_count = vout->pix.height; | 
 | 	tx = &vout->vrfb_dma_tx; | 
 | 	tx->tx_status = 0; | 
 | 	omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32, | 
 | 			(elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT, | 
 | 			tx->dev_id, 0x0); | 
 | 	/* src_port required only for OMAP1 */ | 
 | 	omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, | 
 | 			dmabuf, src_element_index, src_frame_index); | 
 | 	/*set dma source burst mode for VRFB */ | 
 | 	omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16); | 
 | 	rotation = calc_rotation(vout); | 
 |  | 
 | 	/* dest_port required only for OMAP1 */ | 
 | 	omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX, | 
 | 			vout->vrfb_context[vb->i].paddr[0], dest_element_index, | 
 | 			dest_frame_index); | 
 | 	/*set dma dest burst mode for VRFB */ | 
 | 	omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16); | 
 | 	omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0); | 
 |  | 
 | 	omap_start_dma(tx->dma_ch); | 
 | 	wait_event_interruptible_timeout(tx->wait, tx->tx_status == 1, | 
 | 					 VRFB_TX_TIMEOUT); | 
 |  | 
 | 	if (tx->tx_status == 0) { | 
 | 		omap_stop_dma(tx->dma_ch); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	/* Store buffers physical address into an array. Addresses | 
 | 	 * from this array will be used to configure DSS */ | 
 | 	vout->queued_buf_addr[vb->i] = (u8 *) | 
 | 		vout->vrfb_context[vb->i].paddr[rotation]; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the buffer offsets from which the streaming should | 
 |  * start. This offset calculation is mainly required because of | 
 |  * the VRFB 32 pixels alignment with rotation. | 
 |  */ | 
 | void omap_vout_calculate_vrfb_offset(struct omap_vout_device *vout) | 
 | { | 
 | 	enum dss_rotation rotation; | 
 | 	bool mirroring = vout->mirror; | 
 | 	struct v4l2_rect *crop = &vout->crop; | 
 | 	struct v4l2_pix_format *pix = &vout->pix; | 
 | 	int *cropped_offset = &vout->cropped_offset; | 
 | 	int vr_ps = 1, ps = 2, temp_ps = 2; | 
 | 	int offset = 0, ctop = 0, cleft = 0, line_length = 0; | 
 |  | 
 | 	rotation = calc_rotation(vout); | 
 |  | 
 | 	if (V4L2_PIX_FMT_YUYV == pix->pixelformat || | 
 | 			V4L2_PIX_FMT_UYVY == pix->pixelformat) { | 
 | 		if (is_rotation_enabled(vout)) { | 
 | 			/* | 
 | 			 * ps    - Actual pixel size for YUYV/UYVY for | 
 | 			 *         VRFB/Mirroring is 4 bytes | 
 | 			 * vr_ps - Virtually pixel size for YUYV/UYVY is | 
 | 			 *         2 bytes | 
 | 			 */ | 
 | 			ps = 4; | 
 | 			vr_ps = 2; | 
 | 		} else { | 
 | 			ps = 2;	/* otherwise the pixel size is 2 byte */ | 
 | 		} | 
 | 	} else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) { | 
 | 		ps = 4; | 
 | 	} else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) { | 
 | 		ps = 3; | 
 | 	} | 
 | 	vout->ps = ps; | 
 | 	vout->vr_ps = vr_ps; | 
 |  | 
 | 	if (is_rotation_enabled(vout)) { | 
 | 		line_length = MAX_PIXELS_PER_LINE; | 
 | 		ctop = (pix->height - crop->height) - crop->top; | 
 | 		cleft = (pix->width - crop->width) - crop->left; | 
 | 	} else { | 
 | 		line_length = pix->width; | 
 | 	} | 
 | 	vout->line_length = line_length; | 
 | 	switch (rotation) { | 
 | 	case dss_rotation_90_degree: | 
 | 		offset = vout->vrfb_context[0].yoffset * | 
 | 			vout->vrfb_context[0].bytespp; | 
 | 		temp_ps = ps / vr_ps; | 
 | 		if (!mirroring) { | 
 | 			*cropped_offset = offset + line_length * | 
 | 				temp_ps * cleft + crop->top * temp_ps; | 
 | 		} else { | 
 | 			*cropped_offset = offset + line_length * temp_ps * | 
 | 				cleft + crop->top * temp_ps + (line_length * | 
 | 				((crop->width / (vr_ps)) - 1) * ps); | 
 | 		} | 
 | 		break; | 
 | 	case dss_rotation_180_degree: | 
 | 		offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset * | 
 | 			vout->vrfb_context[0].bytespp) + | 
 | 			(vout->vrfb_context[0].xoffset * | 
 | 			vout->vrfb_context[0].bytespp)); | 
 | 		if (!mirroring) { | 
 | 			*cropped_offset = offset + (line_length * ps * ctop) + | 
 | 				(cleft / vr_ps) * ps; | 
 |  | 
 | 		} else { | 
 | 			*cropped_offset = offset + (line_length * ps * ctop) + | 
 | 				(cleft / vr_ps) * ps + (line_length * | 
 | 				(crop->height - 1) * ps); | 
 | 		} | 
 | 		break; | 
 | 	case dss_rotation_270_degree: | 
 | 		offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset * | 
 | 			vout->vrfb_context[0].bytespp; | 
 | 		temp_ps = ps / vr_ps; | 
 | 		if (!mirroring) { | 
 | 			*cropped_offset = offset + line_length * | 
 | 			    temp_ps * crop->left + ctop * ps; | 
 | 		} else { | 
 | 			*cropped_offset = offset + line_length * | 
 | 				temp_ps * crop->left + ctop * ps + | 
 | 				(line_length * ((crop->width / vr_ps) - 1) * | 
 | 				 ps); | 
 | 		} | 
 | 		break; | 
 | 	case dss_rotation_0_degree: | 
 | 		if (!mirroring) { | 
 | 			*cropped_offset = (line_length * ps) * | 
 | 				crop->top + (crop->left / vr_ps) * ps; | 
 | 		} else { | 
 | 			*cropped_offset = (line_length * ps) * | 
 | 				crop->top + (crop->left / vr_ps) * ps + | 
 | 				(line_length * (crop->height - 1) * ps); | 
 | 		} | 
 | 		break; | 
 | 	default: | 
 | 		*cropped_offset = (line_length * ps * crop->top) / | 
 | 			vr_ps + (crop->left * ps) / vr_ps + | 
 | 			((crop->width / vr_ps) - 1) * ps; | 
 | 		break; | 
 | 	} | 
 | } |