|  | #ifndef _ASM_X86_MMU_CONTEXT_H | 
|  | #define _ASM_X86_MMU_CONTEXT_H | 
|  |  | 
|  | #include <asm/desc.h> | 
|  | #include <linux/atomic.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/pkeys.h> | 
|  |  | 
|  | #include <trace/events/tlb.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/paravirt.h> | 
|  | #include <asm/mpx.h> | 
|  |  | 
|  | extern atomic64_t last_mm_ctx_id; | 
|  |  | 
|  | #ifndef CONFIG_PARAVIRT | 
|  | static inline void paravirt_activate_mm(struct mm_struct *prev, | 
|  | struct mm_struct *next) | 
|  | { | 
|  | } | 
|  | #endif	/* !CONFIG_PARAVIRT */ | 
|  |  | 
|  | #ifdef CONFIG_PERF_EVENTS | 
|  | extern struct static_key rdpmc_always_available; | 
|  |  | 
|  | static inline void load_mm_cr4(struct mm_struct *mm) | 
|  | { | 
|  | if (static_key_false(&rdpmc_always_available) || | 
|  | atomic_read(&mm->context.perf_rdpmc_allowed)) | 
|  | cr4_set_bits(X86_CR4_PCE); | 
|  | else | 
|  | cr4_clear_bits(X86_CR4_PCE); | 
|  | } | 
|  | #else | 
|  | static inline void load_mm_cr4(struct mm_struct *mm) {} | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MODIFY_LDT_SYSCALL | 
|  | /* | 
|  | * ldt_structs can be allocated, used, and freed, but they are never | 
|  | * modified while live. | 
|  | */ | 
|  | struct ldt_struct { | 
|  | /* | 
|  | * Xen requires page-aligned LDTs with special permissions.  This is | 
|  | * needed to prevent us from installing evil descriptors such as | 
|  | * call gates.  On native, we could merge the ldt_struct and LDT | 
|  | * allocations, but it's not worth trying to optimize. | 
|  | */ | 
|  | struct desc_struct *entries; | 
|  | unsigned int nr_entries; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Used for LDT copy/destruction. | 
|  | */ | 
|  | int init_new_context_ldt(struct task_struct *tsk, struct mm_struct *mm); | 
|  | void destroy_context_ldt(struct mm_struct *mm); | 
|  | #else	/* CONFIG_MODIFY_LDT_SYSCALL */ | 
|  | static inline int init_new_context_ldt(struct task_struct *tsk, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | static inline void destroy_context_ldt(struct mm_struct *mm) {} | 
|  | #endif | 
|  |  | 
|  | static inline void load_mm_ldt(struct mm_struct *mm) | 
|  | { | 
|  | #ifdef CONFIG_MODIFY_LDT_SYSCALL | 
|  | struct ldt_struct *ldt; | 
|  |  | 
|  | /* lockless_dereference synchronizes with smp_store_release */ | 
|  | ldt = lockless_dereference(mm->context.ldt); | 
|  |  | 
|  | /* | 
|  | * Any change to mm->context.ldt is followed by an IPI to all | 
|  | * CPUs with the mm active.  The LDT will not be freed until | 
|  | * after the IPI is handled by all such CPUs.  This means that, | 
|  | * if the ldt_struct changes before we return, the values we see | 
|  | * will be safe, and the new values will be loaded before we run | 
|  | * any user code. | 
|  | * | 
|  | * NB: don't try to convert this to use RCU without extreme care. | 
|  | * We would still need IRQs off, because we don't want to change | 
|  | * the local LDT after an IPI loaded a newer value than the one | 
|  | * that we can see. | 
|  | */ | 
|  |  | 
|  | if (unlikely(ldt)) | 
|  | set_ldt(ldt->entries, ldt->nr_entries); | 
|  | else | 
|  | clear_LDT(); | 
|  | #else | 
|  | clear_LDT(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void switch_ldt(struct mm_struct *prev, struct mm_struct *next) | 
|  | { | 
|  | #ifdef CONFIG_MODIFY_LDT_SYSCALL | 
|  | /* | 
|  | * Load the LDT if either the old or new mm had an LDT. | 
|  | * | 
|  | * An mm will never go from having an LDT to not having an LDT.  Two | 
|  | * mms never share an LDT, so we don't gain anything by checking to | 
|  | * see whether the LDT changed.  There's also no guarantee that | 
|  | * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL, | 
|  | * then prev->context.ldt will also be non-NULL. | 
|  | * | 
|  | * If we really cared, we could optimize the case where prev == next | 
|  | * and we're exiting lazy mode.  Most of the time, if this happens, | 
|  | * we don't actually need to reload LDTR, but modify_ldt() is mostly | 
|  | * used by legacy code and emulators where we don't need this level of | 
|  | * performance. | 
|  | * | 
|  | * This uses | instead of || because it generates better code. | 
|  | */ | 
|  | if (unlikely((unsigned long)prev->context.ldt | | 
|  | (unsigned long)next->context.ldt)) | 
|  | load_mm_ldt(next); | 
|  | #endif | 
|  |  | 
|  | DEBUG_LOCKS_WARN_ON(preemptible()); | 
|  | } | 
|  |  | 
|  | void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk); | 
|  |  | 
|  | static inline int init_new_context(struct task_struct *tsk, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | mm->context.ctx_id = atomic64_inc_return(&last_mm_ctx_id); | 
|  | atomic64_set(&mm->context.tlb_gen, 0); | 
|  |  | 
|  | #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS | 
|  | if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { | 
|  | /* pkey 0 is the default and always allocated */ | 
|  | mm->context.pkey_allocation_map = 0x1; | 
|  | /* -1 means unallocated or invalid */ | 
|  | mm->context.execute_only_pkey = -1; | 
|  | } | 
|  | #endif | 
|  | return init_new_context_ldt(tsk, mm); | 
|  | } | 
|  | static inline void destroy_context(struct mm_struct *mm) | 
|  | { | 
|  | destroy_context_ldt(mm); | 
|  | } | 
|  |  | 
|  | extern void switch_mm(struct mm_struct *prev, struct mm_struct *next, | 
|  | struct task_struct *tsk); | 
|  |  | 
|  | extern void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next, | 
|  | struct task_struct *tsk); | 
|  | #define switch_mm_irqs_off switch_mm_irqs_off | 
|  |  | 
|  | #define activate_mm(prev, next)			\ | 
|  | do {						\ | 
|  | paravirt_activate_mm((prev), (next));	\ | 
|  | switch_mm((prev), (next), NULL);	\ | 
|  | } while (0); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | #define deactivate_mm(tsk, mm)			\ | 
|  | do {						\ | 
|  | lazy_load_gs(0);			\ | 
|  | } while (0) | 
|  | #else | 
|  | #define deactivate_mm(tsk, mm)			\ | 
|  | do {						\ | 
|  | load_gs_index(0);			\ | 
|  | loadsegment(fs, 0);			\ | 
|  | } while (0) | 
|  | #endif | 
|  |  | 
|  | static inline void arch_dup_mmap(struct mm_struct *oldmm, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | paravirt_arch_dup_mmap(oldmm, mm); | 
|  | } | 
|  |  | 
|  | static inline void arch_exit_mmap(struct mm_struct *mm) | 
|  | { | 
|  | paravirt_arch_exit_mmap(mm); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static inline bool is_64bit_mm(struct mm_struct *mm) | 
|  | { | 
|  | return	!IS_ENABLED(CONFIG_IA32_EMULATION) || | 
|  | !(mm->context.ia32_compat == TIF_IA32); | 
|  | } | 
|  | #else | 
|  | static inline bool is_64bit_mm(struct mm_struct *mm) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void arch_bprm_mm_init(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma) | 
|  | { | 
|  | mpx_mm_init(mm); | 
|  | } | 
|  |  | 
|  | static inline void arch_unmap(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long start, unsigned long end) | 
|  | { | 
|  | /* | 
|  | * mpx_notify_unmap() goes and reads a rarely-hot | 
|  | * cacheline in the mm_struct.  That can be expensive | 
|  | * enough to be seen in profiles. | 
|  | * | 
|  | * The mpx_notify_unmap() call and its contents have been | 
|  | * observed to affect munmap() performance on hardware | 
|  | * where MPX is not present. | 
|  | * | 
|  | * The unlikely() optimizes for the fast case: no MPX | 
|  | * in the CPU, or no MPX use in the process.  Even if | 
|  | * we get this wrong (in the unlikely event that MPX | 
|  | * is widely enabled on some system) the overhead of | 
|  | * MPX itself (reading bounds tables) is expected to | 
|  | * overwhelm the overhead of getting this unlikely() | 
|  | * consistently wrong. | 
|  | */ | 
|  | if (unlikely(cpu_feature_enabled(X86_FEATURE_MPX))) | 
|  | mpx_notify_unmap(mm, vma, start, end); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS | 
|  | static inline int vma_pkey(struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned long vma_pkey_mask = VM_PKEY_BIT0 | VM_PKEY_BIT1 | | 
|  | VM_PKEY_BIT2 | VM_PKEY_BIT3; | 
|  |  | 
|  | return (vma->vm_flags & vma_pkey_mask) >> VM_PKEY_SHIFT; | 
|  | } | 
|  | #else | 
|  | static inline int vma_pkey(struct vm_area_struct *vma) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We only want to enforce protection keys on the current process | 
|  | * because we effectively have no access to PKRU for other | 
|  | * processes or any way to tell *which * PKRU in a threaded | 
|  | * process we could use. | 
|  | * | 
|  | * So do not enforce things if the VMA is not from the current | 
|  | * mm, or if we are in a kernel thread. | 
|  | */ | 
|  | static inline bool vma_is_foreign(struct vm_area_struct *vma) | 
|  | { | 
|  | if (!current->mm) | 
|  | return true; | 
|  | /* | 
|  | * Should PKRU be enforced on the access to this VMA?  If | 
|  | * the VMA is from another process, then PKRU has no | 
|  | * relevance and should not be enforced. | 
|  | */ | 
|  | if (current->mm != vma->vm_mm) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline bool arch_vma_access_permitted(struct vm_area_struct *vma, | 
|  | bool write, bool execute, bool foreign) | 
|  | { | 
|  | /* pkeys never affect instruction fetches */ | 
|  | if (execute) | 
|  | return true; | 
|  | /* allow access if the VMA is not one from this process */ | 
|  | if (foreign || vma_is_foreign(vma)) | 
|  | return true; | 
|  | return __pkru_allows_pkey(vma_pkey(vma), write); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If PCID is on, ASID-aware code paths put the ASID+1 into the PCID | 
|  | * bits.  This serves two purposes.  It prevents a nasty situation in | 
|  | * which PCID-unaware code saves CR3, loads some other value (with PCID | 
|  | * == 0), and then restores CR3, thus corrupting the TLB for ASID 0 if | 
|  | * the saved ASID was nonzero.  It also means that any bugs involving | 
|  | * loading a PCID-enabled CR3 with CR4.PCIDE off will trigger | 
|  | * deterministically. | 
|  | */ | 
|  |  | 
|  | static inline unsigned long build_cr3(struct mm_struct *mm, u16 asid) | 
|  | { | 
|  | if (static_cpu_has(X86_FEATURE_PCID)) { | 
|  | VM_WARN_ON_ONCE(asid > 4094); | 
|  | return __sme_pa(mm->pgd) | (asid + 1); | 
|  | } else { | 
|  | VM_WARN_ON_ONCE(asid != 0); | 
|  | return __sme_pa(mm->pgd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline unsigned long build_cr3_noflush(struct mm_struct *mm, u16 asid) | 
|  | { | 
|  | VM_WARN_ON_ONCE(asid > 4094); | 
|  | return __sme_pa(mm->pgd) | (asid + 1) | CR3_NOFLUSH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This can be used from process context to figure out what the value of | 
|  | * CR3 is without needing to do a (slow) __read_cr3(). | 
|  | * | 
|  | * It's intended to be used for code like KVM that sneakily changes CR3 | 
|  | * and needs to restore it.  It needs to be used very carefully. | 
|  | */ | 
|  | static inline unsigned long __get_current_cr3_fast(void) | 
|  | { | 
|  | unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm), | 
|  | this_cpu_read(cpu_tlbstate.loaded_mm_asid)); | 
|  |  | 
|  | /* For now, be very restrictive about when this can be called. */ | 
|  | VM_WARN_ON(in_nmi() || preemptible()); | 
|  |  | 
|  | VM_BUG_ON(cr3 != __read_cr3()); | 
|  | return cr3; | 
|  | } | 
|  |  | 
|  | #endif /* _ASM_X86_MMU_CONTEXT_H */ |