| /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/gfp.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/pagevec.h> | 
 | #include "ctree.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "extent_io.h" | 
 |  | 
 | static u64 entry_end(struct btrfs_ordered_extent *entry) | 
 | { | 
 | 	if (entry->file_offset + entry->len < entry->file_offset) | 
 | 		return (u64)-1; | 
 | 	return entry->file_offset + entry->len; | 
 | } | 
 |  | 
 | /* returns NULL if the insertion worked, or it returns the node it did find | 
 |  * in the tree | 
 |  */ | 
 | static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, | 
 | 				   struct rb_node *node) | 
 | { | 
 | 	struct rb_node **p = &root->rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct btrfs_ordered_extent *entry; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); | 
 |  | 
 | 		if (file_offset < entry->file_offset) | 
 | 			p = &(*p)->rb_left; | 
 | 		else if (file_offset >= entry_end(entry)) | 
 | 			p = &(*p)->rb_right; | 
 | 		else | 
 | 			return parent; | 
 | 	} | 
 |  | 
 | 	rb_link_node(node, parent, p); | 
 | 	rb_insert_color(node, root); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * look for a given offset in the tree, and if it can't be found return the | 
 |  * first lesser offset | 
 |  */ | 
 | static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, | 
 | 				     struct rb_node **prev_ret) | 
 | { | 
 | 	struct rb_node *n = root->rb_node; | 
 | 	struct rb_node *prev = NULL; | 
 | 	struct rb_node *test; | 
 | 	struct btrfs_ordered_extent *entry; | 
 | 	struct btrfs_ordered_extent *prev_entry = NULL; | 
 |  | 
 | 	while (n) { | 
 | 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); | 
 | 		prev = n; | 
 | 		prev_entry = entry; | 
 |  | 
 | 		if (file_offset < entry->file_offset) | 
 | 			n = n->rb_left; | 
 | 		else if (file_offset >= entry_end(entry)) | 
 | 			n = n->rb_right; | 
 | 		else | 
 | 			return n; | 
 | 	} | 
 | 	if (!prev_ret) | 
 | 		return NULL; | 
 |  | 
 | 	while (prev && file_offset >= entry_end(prev_entry)) { | 
 | 		test = rb_next(prev); | 
 | 		if (!test) | 
 | 			break; | 
 | 		prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
 | 				      rb_node); | 
 | 		if (file_offset < entry_end(prev_entry)) | 
 | 			break; | 
 |  | 
 | 		prev = test; | 
 | 	} | 
 | 	if (prev) | 
 | 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent, | 
 | 				      rb_node); | 
 | 	while (prev && file_offset < entry_end(prev_entry)) { | 
 | 		test = rb_prev(prev); | 
 | 		if (!test) | 
 | 			break; | 
 | 		prev_entry = rb_entry(test, struct btrfs_ordered_extent, | 
 | 				      rb_node); | 
 | 		prev = test; | 
 | 	} | 
 | 	*prev_ret = prev; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to check if a given offset is inside a given entry | 
 |  */ | 
 | static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) | 
 | { | 
 | 	if (file_offset < entry->file_offset || | 
 | 	    entry->file_offset + entry->len <= file_offset) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * look find the first ordered struct that has this offset, otherwise | 
 |  * the first one less than this offset | 
 |  */ | 
 | static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, | 
 | 					  u64 file_offset) | 
 | { | 
 | 	struct rb_root *root = &tree->tree; | 
 | 	struct rb_node *prev; | 
 | 	struct rb_node *ret; | 
 | 	struct btrfs_ordered_extent *entry; | 
 |  | 
 | 	if (tree->last) { | 
 | 		entry = rb_entry(tree->last, struct btrfs_ordered_extent, | 
 | 				 rb_node); | 
 | 		if (offset_in_entry(entry, file_offset)) | 
 | 			return tree->last; | 
 | 	} | 
 | 	ret = __tree_search(root, file_offset, &prev); | 
 | 	if (!ret) | 
 | 		ret = prev; | 
 | 	if (ret) | 
 | 		tree->last = ret; | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* allocate and add a new ordered_extent into the per-inode tree. | 
 |  * file_offset is the logical offset in the file | 
 |  * | 
 |  * start is the disk block number of an extent already reserved in the | 
 |  * extent allocation tree | 
 |  * | 
 |  * len is the length of the extent | 
 |  * | 
 |  * This also sets the EXTENT_ORDERED bit on the range in the inode. | 
 |  * | 
 |  * The tree is given a single reference on the ordered extent that was | 
 |  * inserted. | 
 |  */ | 
 | int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, | 
 | 			     u64 start, u64 len, u64 disk_len, int type) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	entry = kzalloc(sizeof(*entry), GFP_NOFS); | 
 | 	if (!entry) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	mutex_lock(&tree->mutex); | 
 | 	entry->file_offset = file_offset; | 
 | 	entry->start = start; | 
 | 	entry->len = len; | 
 | 	entry->disk_len = disk_len; | 
 | 	entry->inode = inode; | 
 | 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) | 
 | 		set_bit(type, &entry->flags); | 
 |  | 
 | 	/* one ref for the tree */ | 
 | 	atomic_set(&entry->refs, 1); | 
 | 	init_waitqueue_head(&entry->wait); | 
 | 	INIT_LIST_HEAD(&entry->list); | 
 | 	INIT_LIST_HEAD(&entry->root_extent_list); | 
 |  | 
 | 	node = tree_insert(&tree->tree, file_offset, | 
 | 			   &entry->rb_node); | 
 | 	BUG_ON(node); | 
 |  | 
 | 	set_extent_ordered(&BTRFS_I(inode)->io_tree, file_offset, | 
 | 			   entry_end(entry) - 1, GFP_NOFS); | 
 |  | 
 | 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | 
 | 	list_add_tail(&entry->root_extent_list, | 
 | 		      &BTRFS_I(inode)->root->fs_info->ordered_extents); | 
 | 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | 
 |  | 
 | 	mutex_unlock(&tree->mutex); | 
 | 	BUG_ON(node); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted | 
 |  * when an ordered extent is finished.  If the list covers more than one | 
 |  * ordered extent, it is split across multiples. | 
 |  */ | 
 | int btrfs_add_ordered_sum(struct inode *inode, | 
 | 			  struct btrfs_ordered_extent *entry, | 
 | 			  struct btrfs_ordered_sum *sum) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	mutex_lock(&tree->mutex); | 
 | 	list_add_tail(&sum->list, &entry->list); | 
 | 	mutex_unlock(&tree->mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this is used to account for finished IO across a given range | 
 |  * of the file.  The IO should not span ordered extents.  If | 
 |  * a given ordered_extent is completely done, 1 is returned, otherwise | 
 |  * 0. | 
 |  * | 
 |  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used | 
 |  * to make sure this function only returns 1 once for a given ordered extent. | 
 |  */ | 
 | int btrfs_dec_test_ordered_pending(struct inode *inode, | 
 | 				   u64 file_offset, u64 io_size) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	int ret; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	mutex_lock(&tree->mutex); | 
 | 	clear_extent_ordered(io_tree, file_offset, file_offset + io_size - 1, | 
 | 			     GFP_NOFS); | 
 | 	node = tree_search(tree, file_offset); | 
 | 	if (!node) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 	if (!offset_in_entry(entry, file_offset)) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = test_range_bit(io_tree, entry->file_offset, | 
 | 			     entry->file_offset + entry->len - 1, | 
 | 			     EXTENT_ORDERED, 0); | 
 | 	if (ret == 0) | 
 | 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); | 
 | out: | 
 | 	mutex_unlock(&tree->mutex); | 
 | 	return ret == 0; | 
 | } | 
 |  | 
 | /* | 
 |  * used to drop a reference on an ordered extent.  This will free | 
 |  * the extent if the last reference is dropped | 
 |  */ | 
 | int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) | 
 | { | 
 | 	struct list_head *cur; | 
 | 	struct btrfs_ordered_sum *sum; | 
 |  | 
 | 	if (atomic_dec_and_test(&entry->refs)) { | 
 | 		while (!list_empty(&entry->list)) { | 
 | 			cur = entry->list.next; | 
 | 			sum = list_entry(cur, struct btrfs_ordered_sum, list); | 
 | 			list_del(&sum->list); | 
 | 			kfree(sum); | 
 | 		} | 
 | 		kfree(entry); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * remove an ordered extent from the tree.  No references are dropped | 
 |  * but, anyone waiting on this extent is woken up. | 
 |  */ | 
 | int btrfs_remove_ordered_extent(struct inode *inode, | 
 | 				struct btrfs_ordered_extent *entry) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	mutex_lock(&tree->mutex); | 
 | 	node = &entry->rb_node; | 
 | 	rb_erase(node, &tree->tree); | 
 | 	tree->last = NULL; | 
 | 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); | 
 |  | 
 | 	spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | 
 | 	list_del_init(&entry->root_extent_list); | 
 |  | 
 | 	/* | 
 | 	 * we have no more ordered extents for this inode and | 
 | 	 * no dirty pages.  We can safely remove it from the | 
 | 	 * list of ordered extents | 
 | 	 */ | 
 | 	if (RB_EMPTY_ROOT(&tree->tree) && | 
 | 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { | 
 | 		list_del_init(&BTRFS_I(inode)->ordered_operations); | 
 | 	} | 
 | 	spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock); | 
 |  | 
 | 	mutex_unlock(&tree->mutex); | 
 | 	wake_up(&entry->wait); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * wait for all the ordered extents in a root.  This is done when balancing | 
 |  * space between drives. | 
 |  */ | 
 | int btrfs_wait_ordered_extents(struct btrfs_root *root, int nocow_only) | 
 | { | 
 | 	struct list_head splice; | 
 | 	struct list_head *cur; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct inode *inode; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	spin_lock(&root->fs_info->ordered_extent_lock); | 
 | 	list_splice_init(&root->fs_info->ordered_extents, &splice); | 
 | 	while (!list_empty(&splice)) { | 
 | 		cur = splice.next; | 
 | 		ordered = list_entry(cur, struct btrfs_ordered_extent, | 
 | 				     root_extent_list); | 
 | 		if (nocow_only && | 
 | 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) && | 
 | 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) { | 
 | 			list_move(&ordered->root_extent_list, | 
 | 				  &root->fs_info->ordered_extents); | 
 | 			cond_resched_lock(&root->fs_info->ordered_extent_lock); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		list_del_init(&ordered->root_extent_list); | 
 | 		atomic_inc(&ordered->refs); | 
 |  | 
 | 		/* | 
 | 		 * the inode may be getting freed (in sys_unlink path). | 
 | 		 */ | 
 | 		inode = igrab(ordered->inode); | 
 |  | 
 | 		spin_unlock(&root->fs_info->ordered_extent_lock); | 
 |  | 
 | 		if (inode) { | 
 | 			btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 			iput(inode); | 
 | 		} else { | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 		} | 
 |  | 
 | 		spin_lock(&root->fs_info->ordered_extent_lock); | 
 | 	} | 
 | 	spin_unlock(&root->fs_info->ordered_extent_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this is used during transaction commit to write all the inodes | 
 |  * added to the ordered operation list.  These files must be fully on | 
 |  * disk before the transaction commits. | 
 |  * | 
 |  * we have two modes here, one is to just start the IO via filemap_flush | 
 |  * and the other is to wait for all the io.  When we wait, we have an | 
 |  * extra check to make sure the ordered operation list really is empty | 
 |  * before we return | 
 |  */ | 
 | int btrfs_run_ordered_operations(struct btrfs_root *root, int wait) | 
 | { | 
 | 	struct btrfs_inode *btrfs_inode; | 
 | 	struct inode *inode; | 
 | 	struct list_head splice; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	mutex_lock(&root->fs_info->ordered_operations_mutex); | 
 | 	spin_lock(&root->fs_info->ordered_extent_lock); | 
 | again: | 
 | 	list_splice_init(&root->fs_info->ordered_operations, &splice); | 
 |  | 
 | 	while (!list_empty(&splice)) { | 
 | 		btrfs_inode = list_entry(splice.next, struct btrfs_inode, | 
 | 				   ordered_operations); | 
 |  | 
 | 		inode = &btrfs_inode->vfs_inode; | 
 |  | 
 | 		list_del_init(&btrfs_inode->ordered_operations); | 
 |  | 
 | 		/* | 
 | 		 * the inode may be getting freed (in sys_unlink path). | 
 | 		 */ | 
 | 		inode = igrab(inode); | 
 |  | 
 | 		if (!wait && inode) { | 
 | 			list_add_tail(&BTRFS_I(inode)->ordered_operations, | 
 | 			      &root->fs_info->ordered_operations); | 
 | 		} | 
 | 		spin_unlock(&root->fs_info->ordered_extent_lock); | 
 |  | 
 | 		if (inode) { | 
 | 			if (wait) | 
 | 				btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
 | 			else | 
 | 				filemap_flush(inode->i_mapping); | 
 | 			iput(inode); | 
 | 		} | 
 |  | 
 | 		cond_resched(); | 
 | 		spin_lock(&root->fs_info->ordered_extent_lock); | 
 | 	} | 
 | 	if (wait && !list_empty(&root->fs_info->ordered_operations)) | 
 | 		goto again; | 
 |  | 
 | 	spin_unlock(&root->fs_info->ordered_extent_lock); | 
 | 	mutex_unlock(&root->fs_info->ordered_operations_mutex); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Used to start IO or wait for a given ordered extent to finish. | 
 |  * | 
 |  * If wait is one, this effectively waits on page writeback for all the pages | 
 |  * in the extent, and it waits on the io completion code to insert | 
 |  * metadata into the btree corresponding to the extent | 
 |  */ | 
 | void btrfs_start_ordered_extent(struct inode *inode, | 
 | 				       struct btrfs_ordered_extent *entry, | 
 | 				       int wait) | 
 | { | 
 | 	u64 start = entry->file_offset; | 
 | 	u64 end = start + entry->len - 1; | 
 |  | 
 | 	/* | 
 | 	 * pages in the range can be dirty, clean or writeback.  We | 
 | 	 * start IO on any dirty ones so the wait doesn't stall waiting | 
 | 	 * for pdflush to find them | 
 | 	 */ | 
 | 	btrfs_fdatawrite_range(inode->i_mapping, start, end, WB_SYNC_ALL); | 
 | 	if (wait) { | 
 | 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, | 
 | 						 &entry->flags)); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Used to wait on ordered extents across a large range of bytes. | 
 |  */ | 
 | int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) | 
 | { | 
 | 	u64 end; | 
 | 	u64 orig_end; | 
 | 	u64 wait_end; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 |  | 
 | 	if (start + len < start) { | 
 | 		orig_end = INT_LIMIT(loff_t); | 
 | 	} else { | 
 | 		orig_end = start + len - 1; | 
 | 		if (orig_end > INT_LIMIT(loff_t)) | 
 | 			orig_end = INT_LIMIT(loff_t); | 
 | 	} | 
 | 	wait_end = orig_end; | 
 | again: | 
 | 	/* start IO across the range first to instantiate any delalloc | 
 | 	 * extents | 
 | 	 */ | 
 | 	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_NONE); | 
 |  | 
 | 	/* The compression code will leave pages locked but return from | 
 | 	 * writepage without setting the page writeback.  Starting again | 
 | 	 * with WB_SYNC_ALL will end up waiting for the IO to actually start. | 
 | 	 */ | 
 | 	btrfs_fdatawrite_range(inode->i_mapping, start, orig_end, WB_SYNC_ALL); | 
 |  | 
 | 	btrfs_wait_on_page_writeback_range(inode->i_mapping, | 
 | 					   start >> PAGE_CACHE_SHIFT, | 
 | 					   orig_end >> PAGE_CACHE_SHIFT); | 
 |  | 
 | 	end = orig_end; | 
 | 	while (1) { | 
 | 		ordered = btrfs_lookup_first_ordered_extent(inode, end); | 
 | 		if (!ordered) | 
 | 			break; | 
 | 		if (ordered->file_offset > orig_end) { | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 			break; | 
 | 		} | 
 | 		if (ordered->file_offset + ordered->len < start) { | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 			break; | 
 | 		} | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		end = ordered->file_offset; | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		if (end == 0 || end == start) | 
 | 			break; | 
 | 		end--; | 
 | 	} | 
 | 	if (test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end, | 
 | 			   EXTENT_ORDERED | EXTENT_DELALLOC, 0)) { | 
 | 		schedule_timeout(1); | 
 | 		goto again; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * find an ordered extent corresponding to file_offset.  return NULL if | 
 |  * nothing is found, otherwise take a reference on the extent and return it | 
 |  */ | 
 | struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, | 
 | 							 u64 file_offset) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry = NULL; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	mutex_lock(&tree->mutex); | 
 | 	node = tree_search(tree, file_offset); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 	if (!offset_in_entry(entry, file_offset)) | 
 | 		entry = NULL; | 
 | 	if (entry) | 
 | 		atomic_inc(&entry->refs); | 
 | out: | 
 | 	mutex_unlock(&tree->mutex); | 
 | 	return entry; | 
 | } | 
 |  | 
 | /* | 
 |  * lookup and return any extent before 'file_offset'.  NULL is returned | 
 |  * if none is found | 
 |  */ | 
 | struct btrfs_ordered_extent * | 
 | btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *entry = NULL; | 
 |  | 
 | 	tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	mutex_lock(&tree->mutex); | 
 | 	node = tree_search(tree, file_offset); | 
 | 	if (!node) | 
 | 		goto out; | 
 |  | 
 | 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 	atomic_inc(&entry->refs); | 
 | out: | 
 | 	mutex_unlock(&tree->mutex); | 
 | 	return entry; | 
 | } | 
 |  | 
 | /* | 
 |  * After an extent is done, call this to conditionally update the on disk | 
 |  * i_size.  i_size is updated to cover any fully written part of the file. | 
 |  */ | 
 | int btrfs_ordered_update_i_size(struct inode *inode, | 
 | 				struct btrfs_ordered_extent *ordered) | 
 | { | 
 | 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	u64 disk_i_size; | 
 | 	u64 new_i_size; | 
 | 	u64 i_size_test; | 
 | 	struct rb_node *node; | 
 | 	struct btrfs_ordered_extent *test; | 
 |  | 
 | 	mutex_lock(&tree->mutex); | 
 | 	disk_i_size = BTRFS_I(inode)->disk_i_size; | 
 |  | 
 | 	/* | 
 | 	 * if the disk i_size is already at the inode->i_size, or | 
 | 	 * this ordered extent is inside the disk i_size, we're done | 
 | 	 */ | 
 | 	if (disk_i_size >= inode->i_size || | 
 | 	    ordered->file_offset + ordered->len <= disk_i_size) { | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * we can't update the disk_isize if there are delalloc bytes | 
 | 	 * between disk_i_size and  this ordered extent | 
 | 	 */ | 
 | 	if (test_range_bit(io_tree, disk_i_size, | 
 | 			   ordered->file_offset + ordered->len - 1, | 
 | 			   EXTENT_DELALLOC, 0)) { | 
 | 		goto out; | 
 | 	} | 
 | 	/* | 
 | 	 * walk backward from this ordered extent to disk_i_size. | 
 | 	 * if we find an ordered extent then we can't update disk i_size | 
 | 	 * yet | 
 | 	 */ | 
 | 	node = &ordered->rb_node; | 
 | 	while (1) { | 
 | 		node = rb_prev(node); | 
 | 		if (!node) | 
 | 			break; | 
 | 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 		if (test->file_offset + test->len <= disk_i_size) | 
 | 			break; | 
 | 		if (test->file_offset >= inode->i_size) | 
 | 			break; | 
 | 		if (test->file_offset >= disk_i_size) | 
 | 			goto out; | 
 | 	} | 
 | 	new_i_size = min_t(u64, entry_end(ordered), i_size_read(inode)); | 
 |  | 
 | 	/* | 
 | 	 * at this point, we know we can safely update i_size to at least | 
 | 	 * the offset from this ordered extent.  But, we need to | 
 | 	 * walk forward and see if ios from higher up in the file have | 
 | 	 * finished. | 
 | 	 */ | 
 | 	node = rb_next(&ordered->rb_node); | 
 | 	i_size_test = 0; | 
 | 	if (node) { | 
 | 		/* | 
 | 		 * do we have an area where IO might have finished | 
 | 		 * between our ordered extent and the next one. | 
 | 		 */ | 
 | 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node); | 
 | 		if (test->file_offset > entry_end(ordered)) | 
 | 			i_size_test = test->file_offset; | 
 | 	} else { | 
 | 		i_size_test = i_size_read(inode); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * i_size_test is the end of a region after this ordered | 
 | 	 * extent where there are no ordered extents.  As long as there | 
 | 	 * are no delalloc bytes in this area, it is safe to update | 
 | 	 * disk_i_size to the end of the region. | 
 | 	 */ | 
 | 	if (i_size_test > entry_end(ordered) && | 
 | 	    !test_range_bit(io_tree, entry_end(ordered), i_size_test - 1, | 
 | 			   EXTENT_DELALLOC, 0)) { | 
 | 		new_i_size = min_t(u64, i_size_test, i_size_read(inode)); | 
 | 	} | 
 | 	BTRFS_I(inode)->disk_i_size = new_i_size; | 
 | out: | 
 | 	mutex_unlock(&tree->mutex); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * search the ordered extents for one corresponding to 'offset' and | 
 |  * try to find a checksum.  This is used because we allow pages to | 
 |  * be reclaimed before their checksum is actually put into the btree | 
 |  */ | 
 | int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, | 
 | 			   u32 *sum) | 
 | { | 
 | 	struct btrfs_ordered_sum *ordered_sum; | 
 | 	struct btrfs_sector_sum *sector_sums; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; | 
 | 	unsigned long num_sectors; | 
 | 	unsigned long i; | 
 | 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize; | 
 | 	int ret = 1; | 
 |  | 
 | 	ordered = btrfs_lookup_ordered_extent(inode, offset); | 
 | 	if (!ordered) | 
 | 		return 1; | 
 |  | 
 | 	mutex_lock(&tree->mutex); | 
 | 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { | 
 | 		if (disk_bytenr >= ordered_sum->bytenr) { | 
 | 			num_sectors = ordered_sum->len / sectorsize; | 
 | 			sector_sums = ordered_sum->sums; | 
 | 			for (i = 0; i < num_sectors; i++) { | 
 | 				if (sector_sums[i].bytenr == disk_bytenr) { | 
 | 					*sum = sector_sums[i].sum; | 
 | 					ret = 0; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	mutex_unlock(&tree->mutex); | 
 | 	btrfs_put_ordered_extent(ordered); | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * taken from mm/filemap.c because it isn't exported | 
 |  * | 
 |  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range | 
 |  * @mapping:	address space structure to write | 
 |  * @start:	offset in bytes where the range starts | 
 |  * @end:	offset in bytes where the range ends (inclusive) | 
 |  * @sync_mode:	enable synchronous operation | 
 |  * | 
 |  * Start writeback against all of a mapping's dirty pages that lie | 
 |  * within the byte offsets <start, end> inclusive. | 
 |  * | 
 |  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as | 
 |  * opposed to a regular memory cleansing writeback.  The difference between | 
 |  * these two operations is that if a dirty page/buffer is encountered, it must | 
 |  * be waited upon, and not just skipped over. | 
 |  */ | 
 | int btrfs_fdatawrite_range(struct address_space *mapping, loff_t start, | 
 | 			   loff_t end, int sync_mode) | 
 | { | 
 | 	struct writeback_control wbc = { | 
 | 		.sync_mode = sync_mode, | 
 | 		.nr_to_write = mapping->nrpages * 2, | 
 | 		.range_start = start, | 
 | 		.range_end = end, | 
 | 		.for_writepages = 1, | 
 | 	}; | 
 | 	return btrfs_writepages(mapping, &wbc); | 
 | } | 
 |  | 
 | /** | 
 |  * taken from mm/filemap.c because it isn't exported | 
 |  * | 
 |  * wait_on_page_writeback_range - wait for writeback to complete | 
 |  * @mapping:	target address_space | 
 |  * @start:	beginning page index | 
 |  * @end:	ending page index | 
 |  * | 
 |  * Wait for writeback to complete against pages indexed by start->end | 
 |  * inclusive | 
 |  */ | 
 | int btrfs_wait_on_page_writeback_range(struct address_space *mapping, | 
 | 				       pgoff_t start, pgoff_t end) | 
 | { | 
 | 	struct pagevec pvec; | 
 | 	int nr_pages; | 
 | 	int ret = 0; | 
 | 	pgoff_t index; | 
 |  | 
 | 	if (end < start) | 
 | 		return 0; | 
 |  | 
 | 	pagevec_init(&pvec, 0); | 
 | 	index = start; | 
 | 	while ((index <= end) && | 
 | 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, | 
 | 			PAGECACHE_TAG_WRITEBACK, | 
 | 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { | 
 | 		unsigned i; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* until radix tree lookup accepts end_index */ | 
 | 			if (page->index > end) | 
 | 				continue; | 
 |  | 
 | 			wait_on_page_writeback(page); | 
 | 			if (PageError(page)) | 
 | 				ret = -EIO; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	/* Check for outstanding write errors */ | 
 | 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) | 
 | 		ret = -ENOSPC; | 
 | 	if (test_and_clear_bit(AS_EIO, &mapping->flags)) | 
 | 		ret = -EIO; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * add a given inode to the list of inodes that must be fully on | 
 |  * disk before a transaction commit finishes. | 
 |  * | 
 |  * This basically gives us the ext3 style data=ordered mode, and it is mostly | 
 |  * used to make sure renamed files are fully on disk. | 
 |  * | 
 |  * It is a noop if the inode is already fully on disk. | 
 |  * | 
 |  * If trans is not null, we'll do a friendly check for a transaction that | 
 |  * is already flushing things and force the IO down ourselves. | 
 |  */ | 
 | int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct inode *inode) | 
 | { | 
 | 	u64 last_mod; | 
 |  | 
 | 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); | 
 |  | 
 | 	/* | 
 | 	 * if this file hasn't been changed since the last transaction | 
 | 	 * commit, we can safely return without doing anything | 
 | 	 */ | 
 | 	if (last_mod < root->fs_info->last_trans_committed) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * the transaction is already committing.  Just start the IO and | 
 | 	 * don't bother with all of this list nonsense | 
 | 	 */ | 
 | 	if (trans && root->fs_info->running_transaction->blocked) { | 
 | 		btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	spin_lock(&root->fs_info->ordered_extent_lock); | 
 | 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) { | 
 | 		list_add_tail(&BTRFS_I(inode)->ordered_operations, | 
 | 			      &root->fs_info->ordered_operations); | 
 | 	} | 
 | 	spin_unlock(&root->fs_info->ordered_extent_lock); | 
 |  | 
 | 	return 0; | 
 | } |