| /* QLogic qed NIC Driver |
| * Copyright (c) 2015-2017 QLogic Corporation |
| * |
| * This software is available to you under a choice of one of two |
| * licenses. You may choose to be licensed under the terms of the GNU |
| * General Public License (GPL) Version 2, available from the file |
| * COPYING in the main directory of this source tree, or the |
| * OpenIB.org BSD license below: |
| * |
| * Redistribution and use in source and binary forms, with or |
| * without modification, are permitted provided that the following |
| * conditions are met: |
| * |
| * - Redistributions of source code must retain the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer. |
| * |
| * - Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and /or other materials |
| * provided with the distribution. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF |
| * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS |
| * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
| * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| * SOFTWARE. |
| */ |
| |
| #include <linux/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/io.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/list.h> |
| #include <linux/pci.h> |
| #include <linux/slab.h> |
| #include <linux/spinlock.h> |
| #include <linux/string.h> |
| #include "qed.h" |
| #include "qed_cxt.h" |
| #include "qed_dev_api.h" |
| #include "qed_hsi.h" |
| #include "qed_hw.h" |
| #include "qed_int.h" |
| #include "qed_iscsi.h" |
| #include "qed_mcp.h" |
| #include "qed_ooo.h" |
| #include "qed_reg_addr.h" |
| #include "qed_sp.h" |
| #include "qed_sriov.h" |
| #include "qed_rdma.h" |
| |
| /*************************************************************************** |
| * Structures & Definitions |
| ***************************************************************************/ |
| |
| #define SPQ_HIGH_PRI_RESERVE_DEFAULT (1) |
| |
| #define SPQ_BLOCK_DELAY_MAX_ITER (10) |
| #define SPQ_BLOCK_DELAY_US (10) |
| #define SPQ_BLOCK_SLEEP_MAX_ITER (1000) |
| #define SPQ_BLOCK_SLEEP_MS (5) |
| |
| /*************************************************************************** |
| * Blocking Imp. (BLOCK/EBLOCK mode) |
| ***************************************************************************/ |
| static void qed_spq_blocking_cb(struct qed_hwfn *p_hwfn, |
| void *cookie, |
| union event_ring_data *data, u8 fw_return_code) |
| { |
| struct qed_spq_comp_done *comp_done; |
| |
| comp_done = (struct qed_spq_comp_done *)cookie; |
| |
| comp_done->fw_return_code = fw_return_code; |
| |
| /* Make sure completion done is visible on waiting thread */ |
| smp_store_release(&comp_done->done, 0x1); |
| } |
| |
| static int __qed_spq_block(struct qed_hwfn *p_hwfn, |
| struct qed_spq_entry *p_ent, |
| u8 *p_fw_ret, bool sleep_between_iter) |
| { |
| struct qed_spq_comp_done *comp_done; |
| u32 iter_cnt; |
| |
| comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie; |
| iter_cnt = sleep_between_iter ? SPQ_BLOCK_SLEEP_MAX_ITER |
| : SPQ_BLOCK_DELAY_MAX_ITER; |
| |
| while (iter_cnt--) { |
| /* Validate we receive completion update */ |
| if (smp_load_acquire(&comp_done->done) == 1) { /* ^^^ */ |
| if (p_fw_ret) |
| *p_fw_ret = comp_done->fw_return_code; |
| return 0; |
| } |
| |
| if (sleep_between_iter) |
| msleep(SPQ_BLOCK_SLEEP_MS); |
| else |
| udelay(SPQ_BLOCK_DELAY_US); |
| } |
| |
| return -EBUSY; |
| } |
| |
| static int qed_spq_block(struct qed_hwfn *p_hwfn, |
| struct qed_spq_entry *p_ent, |
| u8 *p_fw_ret, bool skip_quick_poll) |
| { |
| struct qed_spq_comp_done *comp_done; |
| struct qed_ptt *p_ptt; |
| int rc; |
| |
| /* A relatively short polling period w/o sleeping, to allow the FW to |
| * complete the ramrod and thus possibly to avoid the following sleeps. |
| */ |
| if (!skip_quick_poll) { |
| rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, false); |
| if (!rc) |
| return 0; |
| } |
| |
| /* Move to polling with a sleeping period between iterations */ |
| rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, true); |
| if (!rc) |
| return 0; |
| |
| p_ptt = qed_ptt_acquire(p_hwfn); |
| if (!p_ptt) { |
| DP_NOTICE(p_hwfn, "ptt, failed to acquire\n"); |
| return -EAGAIN; |
| } |
| |
| DP_INFO(p_hwfn, "Ramrod is stuck, requesting MCP drain\n"); |
| rc = qed_mcp_drain(p_hwfn, p_ptt); |
| if (rc) { |
| DP_NOTICE(p_hwfn, "MCP drain failed\n"); |
| goto err; |
| } |
| |
| /* Retry after drain */ |
| rc = __qed_spq_block(p_hwfn, p_ent, p_fw_ret, true); |
| if (!rc) |
| goto out; |
| |
| comp_done = (struct qed_spq_comp_done *)p_ent->comp_cb.cookie; |
| if (comp_done->done == 1) |
| if (p_fw_ret) |
| *p_fw_ret = comp_done->fw_return_code; |
| out: |
| qed_ptt_release(p_hwfn, p_ptt); |
| return 0; |
| |
| err: |
| qed_ptt_release(p_hwfn, p_ptt); |
| DP_NOTICE(p_hwfn, |
| "Ramrod is stuck [CID %08x cmd %02x protocol %02x echo %04x]\n", |
| le32_to_cpu(p_ent->elem.hdr.cid), |
| p_ent->elem.hdr.cmd_id, |
| p_ent->elem.hdr.protocol_id, |
| le16_to_cpu(p_ent->elem.hdr.echo)); |
| |
| return -EBUSY; |
| } |
| |
| /*************************************************************************** |
| * SPQ entries inner API |
| ***************************************************************************/ |
| static int qed_spq_fill_entry(struct qed_hwfn *p_hwfn, |
| struct qed_spq_entry *p_ent) |
| { |
| p_ent->flags = 0; |
| |
| switch (p_ent->comp_mode) { |
| case QED_SPQ_MODE_EBLOCK: |
| case QED_SPQ_MODE_BLOCK: |
| p_ent->comp_cb.function = qed_spq_blocking_cb; |
| break; |
| case QED_SPQ_MODE_CB: |
| break; |
| default: |
| DP_NOTICE(p_hwfn, "Unknown SPQE completion mode %d\n", |
| p_ent->comp_mode); |
| return -EINVAL; |
| } |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, |
| "Ramrod header: [CID 0x%08x CMD 0x%02x protocol 0x%02x] Data pointer: [%08x:%08x] Completion Mode: %s\n", |
| p_ent->elem.hdr.cid, |
| p_ent->elem.hdr.cmd_id, |
| p_ent->elem.hdr.protocol_id, |
| p_ent->elem.data_ptr.hi, |
| p_ent->elem.data_ptr.lo, |
| D_TRINE(p_ent->comp_mode, QED_SPQ_MODE_EBLOCK, |
| QED_SPQ_MODE_BLOCK, "MODE_EBLOCK", "MODE_BLOCK", |
| "MODE_CB")); |
| |
| return 0; |
| } |
| |
| /*************************************************************************** |
| * HSI access |
| ***************************************************************************/ |
| static void qed_spq_hw_initialize(struct qed_hwfn *p_hwfn, |
| struct qed_spq *p_spq) |
| { |
| struct e4_core_conn_context *p_cxt; |
| struct qed_cxt_info cxt_info; |
| u16 physical_q; |
| int rc; |
| |
| cxt_info.iid = p_spq->cid; |
| |
| rc = qed_cxt_get_cid_info(p_hwfn, &cxt_info); |
| |
| if (rc < 0) { |
| DP_NOTICE(p_hwfn, "Cannot find context info for cid=%d\n", |
| p_spq->cid); |
| return; |
| } |
| |
| p_cxt = cxt_info.p_cxt; |
| |
| SET_FIELD(p_cxt->xstorm_ag_context.flags10, |
| E4_XSTORM_CORE_CONN_AG_CTX_DQ_CF_EN, 1); |
| SET_FIELD(p_cxt->xstorm_ag_context.flags1, |
| E4_XSTORM_CORE_CONN_AG_CTX_DQ_CF_ACTIVE, 1); |
| SET_FIELD(p_cxt->xstorm_ag_context.flags9, |
| E4_XSTORM_CORE_CONN_AG_CTX_CONSOLID_PROD_CF_EN, 1); |
| |
| /* QM physical queue */ |
| physical_q = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LB); |
| p_cxt->xstorm_ag_context.physical_q0 = cpu_to_le16(physical_q); |
| |
| p_cxt->xstorm_st_context.spq_base_lo = |
| DMA_LO_LE(p_spq->chain.p_phys_addr); |
| p_cxt->xstorm_st_context.spq_base_hi = |
| DMA_HI_LE(p_spq->chain.p_phys_addr); |
| |
| DMA_REGPAIR_LE(p_cxt->xstorm_st_context.consolid_base_addr, |
| p_hwfn->p_consq->chain.p_phys_addr); |
| } |
| |
| static int qed_spq_hw_post(struct qed_hwfn *p_hwfn, |
| struct qed_spq *p_spq, struct qed_spq_entry *p_ent) |
| { |
| struct qed_chain *p_chain = &p_hwfn->p_spq->chain; |
| u16 echo = qed_chain_get_prod_idx(p_chain); |
| struct slow_path_element *elem; |
| struct core_db_data db; |
| |
| p_ent->elem.hdr.echo = cpu_to_le16(echo); |
| elem = qed_chain_produce(p_chain); |
| if (!elem) { |
| DP_NOTICE(p_hwfn, "Failed to produce from SPQ chain\n"); |
| return -EINVAL; |
| } |
| |
| *elem = p_ent->elem; /* struct assignment */ |
| |
| /* send a doorbell on the slow hwfn session */ |
| memset(&db, 0, sizeof(db)); |
| SET_FIELD(db.params, CORE_DB_DATA_DEST, DB_DEST_XCM); |
| SET_FIELD(db.params, CORE_DB_DATA_AGG_CMD, DB_AGG_CMD_SET); |
| SET_FIELD(db.params, CORE_DB_DATA_AGG_VAL_SEL, |
| DQ_XCM_CORE_SPQ_PROD_CMD); |
| db.agg_flags = DQ_XCM_CORE_DQ_CF_CMD; |
| db.spq_prod = cpu_to_le16(qed_chain_get_prod_idx(p_chain)); |
| |
| /* make sure the SPQE is updated before the doorbell */ |
| wmb(); |
| |
| DOORBELL(p_hwfn, qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY), *(u32 *)&db); |
| |
| /* make sure doorbell is rang */ |
| wmb(); |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, |
| "Doorbelled [0x%08x, CID 0x%08x] with Flags: %02x agg_params: %02x, prod: %04x\n", |
| qed_db_addr(p_spq->cid, DQ_DEMS_LEGACY), |
| p_spq->cid, db.params, db.agg_flags, |
| qed_chain_get_prod_idx(p_chain)); |
| |
| return 0; |
| } |
| |
| /*************************************************************************** |
| * Asynchronous events |
| ***************************************************************************/ |
| static int |
| qed_async_event_completion(struct qed_hwfn *p_hwfn, |
| struct event_ring_entry *p_eqe) |
| { |
| qed_spq_async_comp_cb cb; |
| |
| if (!p_hwfn->p_spq || (p_eqe->protocol_id >= MAX_PROTOCOL_TYPE)) |
| return -EINVAL; |
| |
| cb = p_hwfn->p_spq->async_comp_cb[p_eqe->protocol_id]; |
| if (cb) { |
| return cb(p_hwfn, p_eqe->opcode, p_eqe->echo, |
| &p_eqe->data, p_eqe->fw_return_code); |
| } else { |
| DP_NOTICE(p_hwfn, |
| "Unknown Async completion for protocol: %d\n", |
| p_eqe->protocol_id); |
| return -EINVAL; |
| } |
| } |
| |
| int |
| qed_spq_register_async_cb(struct qed_hwfn *p_hwfn, |
| enum protocol_type protocol_id, |
| qed_spq_async_comp_cb cb) |
| { |
| if (!p_hwfn->p_spq || (protocol_id >= MAX_PROTOCOL_TYPE)) |
| return -EINVAL; |
| |
| p_hwfn->p_spq->async_comp_cb[protocol_id] = cb; |
| return 0; |
| } |
| |
| void |
| qed_spq_unregister_async_cb(struct qed_hwfn *p_hwfn, |
| enum protocol_type protocol_id) |
| { |
| if (!p_hwfn->p_spq || (protocol_id >= MAX_PROTOCOL_TYPE)) |
| return; |
| |
| p_hwfn->p_spq->async_comp_cb[protocol_id] = NULL; |
| } |
| |
| /*************************************************************************** |
| * EQ API |
| ***************************************************************************/ |
| void qed_eq_prod_update(struct qed_hwfn *p_hwfn, u16 prod) |
| { |
| u32 addr = GTT_BAR0_MAP_REG_USDM_RAM + |
| USTORM_EQE_CONS_OFFSET(p_hwfn->rel_pf_id); |
| |
| REG_WR16(p_hwfn, addr, prod); |
| |
| /* keep prod updates ordered */ |
| mmiowb(); |
| } |
| |
| int qed_eq_completion(struct qed_hwfn *p_hwfn, void *cookie) |
| { |
| struct qed_eq *p_eq = cookie; |
| struct qed_chain *p_chain = &p_eq->chain; |
| int rc = 0; |
| |
| /* take a snapshot of the FW consumer */ |
| u16 fw_cons_idx = le16_to_cpu(*p_eq->p_fw_cons); |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "fw_cons_idx %x\n", fw_cons_idx); |
| |
| /* Need to guarantee the fw_cons index we use points to a usuable |
| * element (to comply with our chain), so our macros would comply |
| */ |
| if ((fw_cons_idx & qed_chain_get_usable_per_page(p_chain)) == |
| qed_chain_get_usable_per_page(p_chain)) |
| fw_cons_idx += qed_chain_get_unusable_per_page(p_chain); |
| |
| /* Complete current segment of eq entries */ |
| while (fw_cons_idx != qed_chain_get_cons_idx(p_chain)) { |
| struct event_ring_entry *p_eqe = qed_chain_consume(p_chain); |
| |
| if (!p_eqe) { |
| rc = -EINVAL; |
| break; |
| } |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, |
| "op %x prot %x res0 %x echo %x fwret %x flags %x\n", |
| p_eqe->opcode, |
| p_eqe->protocol_id, |
| p_eqe->reserved0, |
| le16_to_cpu(p_eqe->echo), |
| p_eqe->fw_return_code, |
| p_eqe->flags); |
| |
| if (GET_FIELD(p_eqe->flags, EVENT_RING_ENTRY_ASYNC)) { |
| if (qed_async_event_completion(p_hwfn, p_eqe)) |
| rc = -EINVAL; |
| } else if (qed_spq_completion(p_hwfn, |
| p_eqe->echo, |
| p_eqe->fw_return_code, |
| &p_eqe->data)) { |
| rc = -EINVAL; |
| } |
| |
| qed_chain_recycle_consumed(p_chain); |
| } |
| |
| qed_eq_prod_update(p_hwfn, qed_chain_get_prod_idx(p_chain)); |
| |
| return rc; |
| } |
| |
| int qed_eq_alloc(struct qed_hwfn *p_hwfn, u16 num_elem) |
| { |
| struct qed_eq *p_eq; |
| |
| /* Allocate EQ struct */ |
| p_eq = kzalloc(sizeof(*p_eq), GFP_KERNEL); |
| if (!p_eq) |
| return -ENOMEM; |
| |
| /* Allocate and initialize EQ chain*/ |
| if (qed_chain_alloc(p_hwfn->cdev, |
| QED_CHAIN_USE_TO_PRODUCE, |
| QED_CHAIN_MODE_PBL, |
| QED_CHAIN_CNT_TYPE_U16, |
| num_elem, |
| sizeof(union event_ring_element), |
| &p_eq->chain, NULL)) |
| goto eq_allocate_fail; |
| |
| /* register EQ completion on the SP SB */ |
| qed_int_register_cb(p_hwfn, qed_eq_completion, |
| p_eq, &p_eq->eq_sb_index, &p_eq->p_fw_cons); |
| |
| p_hwfn->p_eq = p_eq; |
| return 0; |
| |
| eq_allocate_fail: |
| kfree(p_eq); |
| return -ENOMEM; |
| } |
| |
| void qed_eq_setup(struct qed_hwfn *p_hwfn) |
| { |
| qed_chain_reset(&p_hwfn->p_eq->chain); |
| } |
| |
| void qed_eq_free(struct qed_hwfn *p_hwfn) |
| { |
| if (!p_hwfn->p_eq) |
| return; |
| |
| qed_chain_free(p_hwfn->cdev, &p_hwfn->p_eq->chain); |
| |
| kfree(p_hwfn->p_eq); |
| p_hwfn->p_eq = NULL; |
| } |
| |
| /*************************************************************************** |
| * CQE API - manipulate EQ functionality |
| ***************************************************************************/ |
| static int qed_cqe_completion(struct qed_hwfn *p_hwfn, |
| struct eth_slow_path_rx_cqe *cqe, |
| enum protocol_type protocol) |
| { |
| if (IS_VF(p_hwfn->cdev)) |
| return 0; |
| |
| /* @@@tmp - it's possible we'll eventually want to handle some |
| * actual commands that can arrive here, but for now this is only |
| * used to complete the ramrod using the echo value on the cqe |
| */ |
| return qed_spq_completion(p_hwfn, cqe->echo, 0, NULL); |
| } |
| |
| int qed_eth_cqe_completion(struct qed_hwfn *p_hwfn, |
| struct eth_slow_path_rx_cqe *cqe) |
| { |
| int rc; |
| |
| rc = qed_cqe_completion(p_hwfn, cqe, PROTOCOLID_ETH); |
| if (rc) |
| DP_NOTICE(p_hwfn, |
| "Failed to handle RXQ CQE [cmd 0x%02x]\n", |
| cqe->ramrod_cmd_id); |
| |
| return rc; |
| } |
| |
| /*************************************************************************** |
| * Slow hwfn Queue (spq) |
| ***************************************************************************/ |
| void qed_spq_setup(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_spq *p_spq = p_hwfn->p_spq; |
| struct qed_spq_entry *p_virt = NULL; |
| dma_addr_t p_phys = 0; |
| u32 i, capacity; |
| |
| INIT_LIST_HEAD(&p_spq->pending); |
| INIT_LIST_HEAD(&p_spq->completion_pending); |
| INIT_LIST_HEAD(&p_spq->free_pool); |
| INIT_LIST_HEAD(&p_spq->unlimited_pending); |
| spin_lock_init(&p_spq->lock); |
| |
| /* SPQ empty pool */ |
| p_phys = p_spq->p_phys + offsetof(struct qed_spq_entry, ramrod); |
| p_virt = p_spq->p_virt; |
| |
| capacity = qed_chain_get_capacity(&p_spq->chain); |
| for (i = 0; i < capacity; i++) { |
| DMA_REGPAIR_LE(p_virt->elem.data_ptr, p_phys); |
| |
| list_add_tail(&p_virt->list, &p_spq->free_pool); |
| |
| p_virt++; |
| p_phys += sizeof(struct qed_spq_entry); |
| } |
| |
| /* Statistics */ |
| p_spq->normal_count = 0; |
| p_spq->comp_count = 0; |
| p_spq->comp_sent_count = 0; |
| p_spq->unlimited_pending_count = 0; |
| |
| bitmap_zero(p_spq->p_comp_bitmap, SPQ_RING_SIZE); |
| p_spq->comp_bitmap_idx = 0; |
| |
| /* SPQ cid, cannot fail */ |
| qed_cxt_acquire_cid(p_hwfn, PROTOCOLID_CORE, &p_spq->cid); |
| qed_spq_hw_initialize(p_hwfn, p_spq); |
| |
| /* reset the chain itself */ |
| qed_chain_reset(&p_spq->chain); |
| } |
| |
| int qed_spq_alloc(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_spq_entry *p_virt = NULL; |
| struct qed_spq *p_spq = NULL; |
| dma_addr_t p_phys = 0; |
| u32 capacity; |
| |
| /* SPQ struct */ |
| p_spq = kzalloc(sizeof(struct qed_spq), GFP_KERNEL); |
| if (!p_spq) |
| return -ENOMEM; |
| |
| /* SPQ ring */ |
| if (qed_chain_alloc(p_hwfn->cdev, |
| QED_CHAIN_USE_TO_PRODUCE, |
| QED_CHAIN_MODE_SINGLE, |
| QED_CHAIN_CNT_TYPE_U16, |
| 0, /* N/A when the mode is SINGLE */ |
| sizeof(struct slow_path_element), |
| &p_spq->chain, NULL)) |
| goto spq_allocate_fail; |
| |
| /* allocate and fill the SPQ elements (incl. ramrod data list) */ |
| capacity = qed_chain_get_capacity(&p_spq->chain); |
| p_virt = dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| capacity * sizeof(struct qed_spq_entry), |
| &p_phys, GFP_KERNEL); |
| if (!p_virt) |
| goto spq_allocate_fail; |
| |
| p_spq->p_virt = p_virt; |
| p_spq->p_phys = p_phys; |
| p_hwfn->p_spq = p_spq; |
| |
| return 0; |
| |
| spq_allocate_fail: |
| qed_chain_free(p_hwfn->cdev, &p_spq->chain); |
| kfree(p_spq); |
| return -ENOMEM; |
| } |
| |
| void qed_spq_free(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_spq *p_spq = p_hwfn->p_spq; |
| u32 capacity; |
| |
| if (!p_spq) |
| return; |
| |
| if (p_spq->p_virt) { |
| capacity = qed_chain_get_capacity(&p_spq->chain); |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| capacity * |
| sizeof(struct qed_spq_entry), |
| p_spq->p_virt, p_spq->p_phys); |
| } |
| |
| qed_chain_free(p_hwfn->cdev, &p_spq->chain); |
| kfree(p_spq); |
| p_hwfn->p_spq = NULL; |
| } |
| |
| int qed_spq_get_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry **pp_ent) |
| { |
| struct qed_spq *p_spq = p_hwfn->p_spq; |
| struct qed_spq_entry *p_ent = NULL; |
| int rc = 0; |
| |
| spin_lock_bh(&p_spq->lock); |
| |
| if (list_empty(&p_spq->free_pool)) { |
| p_ent = kzalloc(sizeof(*p_ent), GFP_ATOMIC); |
| if (!p_ent) { |
| DP_NOTICE(p_hwfn, |
| "Failed to allocate an SPQ entry for a pending ramrod\n"); |
| rc = -ENOMEM; |
| goto out_unlock; |
| } |
| p_ent->queue = &p_spq->unlimited_pending; |
| } else { |
| p_ent = list_first_entry(&p_spq->free_pool, |
| struct qed_spq_entry, list); |
| list_del(&p_ent->list); |
| p_ent->queue = &p_spq->pending; |
| } |
| |
| *pp_ent = p_ent; |
| |
| out_unlock: |
| spin_unlock_bh(&p_spq->lock); |
| return rc; |
| } |
| |
| /* Locked variant; Should be called while the SPQ lock is taken */ |
| static void __qed_spq_return_entry(struct qed_hwfn *p_hwfn, |
| struct qed_spq_entry *p_ent) |
| { |
| list_add_tail(&p_ent->list, &p_hwfn->p_spq->free_pool); |
| } |
| |
| void qed_spq_return_entry(struct qed_hwfn *p_hwfn, struct qed_spq_entry *p_ent) |
| { |
| spin_lock_bh(&p_hwfn->p_spq->lock); |
| __qed_spq_return_entry(p_hwfn, p_ent); |
| spin_unlock_bh(&p_hwfn->p_spq->lock); |
| } |
| |
| /** |
| * @brief qed_spq_add_entry - adds a new entry to the pending |
| * list. Should be used while lock is being held. |
| * |
| * Addes an entry to the pending list is there is room (en empty |
| * element is available in the free_pool), or else places the |
| * entry in the unlimited_pending pool. |
| * |
| * @param p_hwfn |
| * @param p_ent |
| * @param priority |
| * |
| * @return int |
| */ |
| static int qed_spq_add_entry(struct qed_hwfn *p_hwfn, |
| struct qed_spq_entry *p_ent, |
| enum spq_priority priority) |
| { |
| struct qed_spq *p_spq = p_hwfn->p_spq; |
| |
| if (p_ent->queue == &p_spq->unlimited_pending) { |
| |
| if (list_empty(&p_spq->free_pool)) { |
| list_add_tail(&p_ent->list, &p_spq->unlimited_pending); |
| p_spq->unlimited_pending_count++; |
| |
| return 0; |
| } else { |
| struct qed_spq_entry *p_en2; |
| |
| p_en2 = list_first_entry(&p_spq->free_pool, |
| struct qed_spq_entry, list); |
| list_del(&p_en2->list); |
| |
| /* Copy the ring element physical pointer to the new |
| * entry, since we are about to override the entire ring |
| * entry and don't want to lose the pointer. |
| */ |
| p_ent->elem.data_ptr = p_en2->elem.data_ptr; |
| |
| *p_en2 = *p_ent; |
| |
| /* EBLOCK responsible to free the allocated p_ent */ |
| if (p_ent->comp_mode != QED_SPQ_MODE_EBLOCK) |
| kfree(p_ent); |
| |
| p_ent = p_en2; |
| } |
| } |
| |
| /* entry is to be placed in 'pending' queue */ |
| switch (priority) { |
| case QED_SPQ_PRIORITY_NORMAL: |
| list_add_tail(&p_ent->list, &p_spq->pending); |
| p_spq->normal_count++; |
| break; |
| case QED_SPQ_PRIORITY_HIGH: |
| list_add(&p_ent->list, &p_spq->pending); |
| p_spq->high_count++; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| /*************************************************************************** |
| * Accessor |
| ***************************************************************************/ |
| u32 qed_spq_get_cid(struct qed_hwfn *p_hwfn) |
| { |
| if (!p_hwfn->p_spq) |
| return 0xffffffff; /* illegal */ |
| return p_hwfn->p_spq->cid; |
| } |
| |
| /*************************************************************************** |
| * Posting new Ramrods |
| ***************************************************************************/ |
| static int qed_spq_post_list(struct qed_hwfn *p_hwfn, |
| struct list_head *head, u32 keep_reserve) |
| { |
| struct qed_spq *p_spq = p_hwfn->p_spq; |
| int rc; |
| |
| while (qed_chain_get_elem_left(&p_spq->chain) > keep_reserve && |
| !list_empty(head)) { |
| struct qed_spq_entry *p_ent = |
| list_first_entry(head, struct qed_spq_entry, list); |
| list_del(&p_ent->list); |
| list_add_tail(&p_ent->list, &p_spq->completion_pending); |
| p_spq->comp_sent_count++; |
| |
| rc = qed_spq_hw_post(p_hwfn, p_spq, p_ent); |
| if (rc) { |
| list_del(&p_ent->list); |
| __qed_spq_return_entry(p_hwfn, p_ent); |
| return rc; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int qed_spq_pend_post(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_spq *p_spq = p_hwfn->p_spq; |
| struct qed_spq_entry *p_ent = NULL; |
| |
| while (!list_empty(&p_spq->free_pool)) { |
| if (list_empty(&p_spq->unlimited_pending)) |
| break; |
| |
| p_ent = list_first_entry(&p_spq->unlimited_pending, |
| struct qed_spq_entry, list); |
| if (!p_ent) |
| return -EINVAL; |
| |
| list_del(&p_ent->list); |
| |
| qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority); |
| } |
| |
| return qed_spq_post_list(p_hwfn, &p_spq->pending, |
| SPQ_HIGH_PRI_RESERVE_DEFAULT); |
| } |
| |
| int qed_spq_post(struct qed_hwfn *p_hwfn, |
| struct qed_spq_entry *p_ent, u8 *fw_return_code) |
| { |
| int rc = 0; |
| struct qed_spq *p_spq = p_hwfn ? p_hwfn->p_spq : NULL; |
| bool b_ret_ent = true; |
| bool eblock; |
| |
| if (!p_hwfn) |
| return -EINVAL; |
| |
| if (!p_ent) { |
| DP_NOTICE(p_hwfn, "Got a NULL pointer\n"); |
| return -EINVAL; |
| } |
| |
| /* Complete the entry */ |
| rc = qed_spq_fill_entry(p_hwfn, p_ent); |
| |
| spin_lock_bh(&p_spq->lock); |
| |
| /* Check return value after LOCK is taken for cleaner error flow */ |
| if (rc) |
| goto spq_post_fail; |
| |
| /* Check if entry is in block mode before qed_spq_add_entry, |
| * which might kfree p_ent. |
| */ |
| eblock = (p_ent->comp_mode == QED_SPQ_MODE_EBLOCK); |
| |
| /* Add the request to the pending queue */ |
| rc = qed_spq_add_entry(p_hwfn, p_ent, p_ent->priority); |
| if (rc) |
| goto spq_post_fail; |
| |
| rc = qed_spq_pend_post(p_hwfn); |
| if (rc) { |
| /* Since it's possible that pending failed for a different |
| * entry [although unlikely], the failed entry was already |
| * dealt with; No need to return it here. |
| */ |
| b_ret_ent = false; |
| goto spq_post_fail; |
| } |
| |
| spin_unlock_bh(&p_spq->lock); |
| |
| if (eblock) { |
| /* For entries in QED BLOCK mode, the completion code cannot |
| * perform the necessary cleanup - if it did, we couldn't |
| * access p_ent here to see whether it's successful or not. |
| * Thus, after gaining the answer perform the cleanup here. |
| */ |
| rc = qed_spq_block(p_hwfn, p_ent, fw_return_code, |
| p_ent->queue == &p_spq->unlimited_pending); |
| |
| if (p_ent->queue == &p_spq->unlimited_pending) { |
| /* This is an allocated p_ent which does not need to |
| * return to pool. |
| */ |
| kfree(p_ent); |
| return rc; |
| } |
| |
| if (rc) |
| goto spq_post_fail2; |
| |
| /* return to pool */ |
| qed_spq_return_entry(p_hwfn, p_ent); |
| } |
| return rc; |
| |
| spq_post_fail2: |
| spin_lock_bh(&p_spq->lock); |
| list_del(&p_ent->list); |
| qed_chain_return_produced(&p_spq->chain); |
| |
| spq_post_fail: |
| /* return to the free pool */ |
| if (b_ret_ent) |
| __qed_spq_return_entry(p_hwfn, p_ent); |
| spin_unlock_bh(&p_spq->lock); |
| |
| return rc; |
| } |
| |
| int qed_spq_completion(struct qed_hwfn *p_hwfn, |
| __le16 echo, |
| u8 fw_return_code, |
| union event_ring_data *p_data) |
| { |
| struct qed_spq *p_spq; |
| struct qed_spq_entry *p_ent = NULL; |
| struct qed_spq_entry *tmp; |
| struct qed_spq_entry *found = NULL; |
| int rc; |
| |
| if (!p_hwfn) |
| return -EINVAL; |
| |
| p_spq = p_hwfn->p_spq; |
| if (!p_spq) |
| return -EINVAL; |
| |
| spin_lock_bh(&p_spq->lock); |
| list_for_each_entry_safe(p_ent, tmp, &p_spq->completion_pending, list) { |
| if (p_ent->elem.hdr.echo == echo) { |
| u16 pos = le16_to_cpu(echo) % SPQ_RING_SIZE; |
| |
| list_del(&p_ent->list); |
| |
| /* Avoid overriding of SPQ entries when getting |
| * out-of-order completions, by marking the completions |
| * in a bitmap and increasing the chain consumer only |
| * for the first successive completed entries. |
| */ |
| __set_bit(pos, p_spq->p_comp_bitmap); |
| |
| while (test_bit(p_spq->comp_bitmap_idx, |
| p_spq->p_comp_bitmap)) { |
| __clear_bit(p_spq->comp_bitmap_idx, |
| p_spq->p_comp_bitmap); |
| p_spq->comp_bitmap_idx++; |
| qed_chain_return_produced(&p_spq->chain); |
| } |
| |
| p_spq->comp_count++; |
| found = p_ent; |
| break; |
| } |
| |
| /* This is relatively uncommon - depends on scenarios |
| * which have mutliple per-PF sent ramrods. |
| */ |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, |
| "Got completion for echo %04x - doesn't match echo %04x in completion pending list\n", |
| le16_to_cpu(echo), |
| le16_to_cpu(p_ent->elem.hdr.echo)); |
| } |
| |
| /* Release lock before callback, as callback may post |
| * an additional ramrod. |
| */ |
| spin_unlock_bh(&p_spq->lock); |
| |
| if (!found) { |
| DP_NOTICE(p_hwfn, |
| "Failed to find an entry this EQE [echo %04x] completes\n", |
| le16_to_cpu(echo)); |
| return -EEXIST; |
| } |
| |
| DP_VERBOSE(p_hwfn, QED_MSG_SPQ, |
| "Complete EQE [echo %04x]: func %p cookie %p)\n", |
| le16_to_cpu(echo), |
| p_ent->comp_cb.function, p_ent->comp_cb.cookie); |
| if (found->comp_cb.function) |
| found->comp_cb.function(p_hwfn, found->comp_cb.cookie, p_data, |
| fw_return_code); |
| else |
| DP_VERBOSE(p_hwfn, |
| QED_MSG_SPQ, |
| "Got a completion without a callback function\n"); |
| |
| if ((found->comp_mode != QED_SPQ_MODE_EBLOCK) || |
| (found->queue == &p_spq->unlimited_pending)) |
| /* EBLOCK is responsible for returning its own entry into the |
| * free list, unless it originally added the entry into the |
| * unlimited pending list. |
| */ |
| qed_spq_return_entry(p_hwfn, found); |
| |
| /* Attempt to post pending requests */ |
| spin_lock_bh(&p_spq->lock); |
| rc = qed_spq_pend_post(p_hwfn); |
| spin_unlock_bh(&p_spq->lock); |
| |
| return rc; |
| } |
| |
| int qed_consq_alloc(struct qed_hwfn *p_hwfn) |
| { |
| struct qed_consq *p_consq; |
| |
| /* Allocate ConsQ struct */ |
| p_consq = kzalloc(sizeof(*p_consq), GFP_KERNEL); |
| if (!p_consq) |
| return -ENOMEM; |
| |
| /* Allocate and initialize EQ chain*/ |
| if (qed_chain_alloc(p_hwfn->cdev, |
| QED_CHAIN_USE_TO_PRODUCE, |
| QED_CHAIN_MODE_PBL, |
| QED_CHAIN_CNT_TYPE_U16, |
| QED_CHAIN_PAGE_SIZE / 0x80, |
| 0x80, &p_consq->chain, NULL)) |
| goto consq_allocate_fail; |
| |
| p_hwfn->p_consq = p_consq; |
| return 0; |
| |
| consq_allocate_fail: |
| kfree(p_consq); |
| return -ENOMEM; |
| } |
| |
| void qed_consq_setup(struct qed_hwfn *p_hwfn) |
| { |
| qed_chain_reset(&p_hwfn->p_consq->chain); |
| } |
| |
| void qed_consq_free(struct qed_hwfn *p_hwfn) |
| { |
| if (!p_hwfn->p_consq) |
| return; |
| |
| qed_chain_free(p_hwfn->cdev, &p_hwfn->p_consq->chain); |
| |
| kfree(p_hwfn->p_consq); |
| p_hwfn->p_consq = NULL; |
| } |