| /* | 
 |  *	x86 SMP booting functions | 
 |  * | 
 |  *	(c) 1995 Alan Cox, Building #3 <alan@redhat.com> | 
 |  *	(c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com> | 
 |  * | 
 |  *	Much of the core SMP work is based on previous work by Thomas Radke, to | 
 |  *	whom a great many thanks are extended. | 
 |  * | 
 |  *	Thanks to Intel for making available several different Pentium, | 
 |  *	Pentium Pro and Pentium-II/Xeon MP machines. | 
 |  *	Original development of Linux SMP code supported by Caldera. | 
 |  * | 
 |  *	This code is released under the GNU General Public License version 2 or | 
 |  *	later. | 
 |  * | 
 |  *	Fixes | 
 |  *		Felix Koop	:	NR_CPUS used properly | 
 |  *		Jose Renau	:	Handle single CPU case. | 
 |  *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report. | 
 |  *		Greg Wright	:	Fix for kernel stacks panic. | 
 |  *		Erich Boleyn	:	MP v1.4 and additional changes. | 
 |  *	Matthias Sattler	:	Changes for 2.1 kernel map. | 
 |  *	Michel Lespinasse	:	Changes for 2.1 kernel map. | 
 |  *	Michael Chastain	:	Change trampoline.S to gnu as. | 
 |  *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine | 
 |  *		Ingo Molnar	:	Added APIC timers, based on code | 
 |  *					from Jose Renau | 
 |  *		Ingo Molnar	:	various cleanups and rewrites | 
 |  *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug. | 
 |  *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs | 
 |  *		Martin J. Bligh	: 	Added support for multi-quad systems | 
 |  *		Dave Jones	:	Report invalid combinations of Athlon CPUs. | 
 | *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process. */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/nmi.h> | 
 |  | 
 | #include <linux/delay.h> | 
 | #include <linux/mc146818rtc.h> | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/arch_hooks.h> | 
 | #include <asm/nmi.h> | 
 |  | 
 | #include <mach_apic.h> | 
 | #include <mach_wakecpu.h> | 
 | #include <smpboot_hooks.h> | 
 | #include <asm/vmi.h> | 
 | #include <asm/mtrr.h> | 
 |  | 
 | /* Set if we find a B stepping CPU */ | 
 | static int __devinitdata smp_b_stepping; | 
 |  | 
 | /* Number of siblings per CPU package */ | 
 | int smp_num_siblings = 1; | 
 | EXPORT_SYMBOL(smp_num_siblings); | 
 |  | 
 | /* Last level cache ID of each logical CPU */ | 
 | int cpu_llc_id[NR_CPUS] __cpuinitdata = {[0 ... NR_CPUS-1] = BAD_APICID}; | 
 |  | 
 | /* representing HT siblings of each logical CPU */ | 
 | cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly; | 
 | EXPORT_SYMBOL(cpu_sibling_map); | 
 |  | 
 | /* representing HT and core siblings of each logical CPU */ | 
 | cpumask_t cpu_core_map[NR_CPUS] __read_mostly; | 
 | EXPORT_SYMBOL(cpu_core_map); | 
 |  | 
 | /* bitmap of online cpus */ | 
 | cpumask_t cpu_online_map __read_mostly; | 
 | EXPORT_SYMBOL(cpu_online_map); | 
 |  | 
 | cpumask_t cpu_callin_map; | 
 | cpumask_t cpu_callout_map; | 
 | EXPORT_SYMBOL(cpu_callout_map); | 
 | cpumask_t cpu_possible_map; | 
 | EXPORT_SYMBOL(cpu_possible_map); | 
 | static cpumask_t smp_commenced_mask; | 
 |  | 
 | /* Per CPU bogomips and other parameters */ | 
 | struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned; | 
 | EXPORT_SYMBOL(cpu_data); | 
 |  | 
 | u8 x86_cpu_to_apicid[NR_CPUS] __read_mostly = | 
 | 			{ [0 ... NR_CPUS-1] = 0xff }; | 
 | EXPORT_SYMBOL(x86_cpu_to_apicid); | 
 |  | 
 | u8 apicid_2_node[MAX_APICID]; | 
 |  | 
 | /* | 
 |  * Trampoline 80x86 program as an array. | 
 |  */ | 
 |  | 
 | extern unsigned char trampoline_data []; | 
 | extern unsigned char trampoline_end  []; | 
 | static unsigned char *trampoline_base; | 
 | static int trampoline_exec; | 
 |  | 
 | static void map_cpu_to_logical_apicid(void); | 
 |  | 
 | /* State of each CPU. */ | 
 | DEFINE_PER_CPU(int, cpu_state) = { 0 }; | 
 |  | 
 | /* | 
 |  * Currently trivial. Write the real->protected mode | 
 |  * bootstrap into the page concerned. The caller | 
 |  * has made sure it's suitably aligned. | 
 |  */ | 
 |  | 
 | static unsigned long __devinit setup_trampoline(void) | 
 | { | 
 | 	memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); | 
 | 	return virt_to_phys(trampoline_base); | 
 | } | 
 |  | 
 | /* | 
 |  * We are called very early to get the low memory for the | 
 |  * SMP bootup trampoline page. | 
 |  */ | 
 | void __init smp_alloc_memory(void) | 
 | { | 
 | 	trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); | 
 | 	/* | 
 | 	 * Has to be in very low memory so we can execute | 
 | 	 * real-mode AP code. | 
 | 	 */ | 
 | 	if (__pa(trampoline_base) >= 0x9F000) | 
 | 		BUG(); | 
 | 	/* | 
 | 	 * Make the SMP trampoline executable: | 
 | 	 */ | 
 | 	trampoline_exec = set_kernel_exec((unsigned long)trampoline_base, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * The bootstrap kernel entry code has set these up. Save them for | 
 |  * a given CPU | 
 |  */ | 
 |  | 
 | void __cpuinit smp_store_cpu_info(int id) | 
 | { | 
 | 	struct cpuinfo_x86 *c = cpu_data + id; | 
 |  | 
 | 	*c = boot_cpu_data; | 
 | 	if (id!=0) | 
 | 		identify_secondary_cpu(c); | 
 | 	/* | 
 | 	 * Mask B, Pentium, but not Pentium MMX | 
 | 	 */ | 
 | 	if (c->x86_vendor == X86_VENDOR_INTEL && | 
 | 	    c->x86 == 5 && | 
 | 	    c->x86_mask >= 1 && c->x86_mask <= 4 && | 
 | 	    c->x86_model <= 3) | 
 | 		/* | 
 | 		 * Remember we have B step Pentia with bugs | 
 | 		 */ | 
 | 		smp_b_stepping = 1; | 
 |  | 
 | 	/* | 
 | 	 * Certain Athlons might work (for various values of 'work') in SMP | 
 | 	 * but they are not certified as MP capable. | 
 | 	 */ | 
 | 	if ((c->x86_vendor == X86_VENDOR_AMD) && (c->x86 == 6)) { | 
 |  | 
 | 		if (num_possible_cpus() == 1) | 
 | 			goto valid_k7; | 
 |  | 
 | 		/* Athlon 660/661 is valid. */	 | 
 | 		if ((c->x86_model==6) && ((c->x86_mask==0) || (c->x86_mask==1))) | 
 | 			goto valid_k7; | 
 |  | 
 | 		/* Duron 670 is valid */ | 
 | 		if ((c->x86_model==7) && (c->x86_mask==0)) | 
 | 			goto valid_k7; | 
 |  | 
 | 		/* | 
 | 		 * Athlon 662, Duron 671, and Athlon >model 7 have capability bit. | 
 | 		 * It's worth noting that the A5 stepping (662) of some Athlon XP's | 
 | 		 * have the MP bit set. | 
 | 		 * See http://www.heise.de/newsticker/data/jow-18.10.01-000 for more. | 
 | 		 */ | 
 | 		if (((c->x86_model==6) && (c->x86_mask>=2)) || | 
 | 		    ((c->x86_model==7) && (c->x86_mask>=1)) || | 
 | 		     (c->x86_model> 7)) | 
 | 			if (cpu_has_mp) | 
 | 				goto valid_k7; | 
 |  | 
 | 		/* If we get here, it's not a certified SMP capable AMD system. */ | 
 | 		add_taint(TAINT_UNSAFE_SMP); | 
 | 	} | 
 |  | 
 | valid_k7: | 
 | 	; | 
 | } | 
 |  | 
 | extern void calibrate_delay(void); | 
 |  | 
 | static atomic_t init_deasserted; | 
 |  | 
 | static void __cpuinit smp_callin(void) | 
 | { | 
 | 	int cpuid, phys_id; | 
 | 	unsigned long timeout; | 
 |  | 
 | 	/* | 
 | 	 * If waken up by an INIT in an 82489DX configuration | 
 | 	 * we may get here before an INIT-deassert IPI reaches | 
 | 	 * our local APIC.  We have to wait for the IPI or we'll | 
 | 	 * lock up on an APIC access. | 
 | 	 */ | 
 | 	wait_for_init_deassert(&init_deasserted); | 
 |  | 
 | 	/* | 
 | 	 * (This works even if the APIC is not enabled.) | 
 | 	 */ | 
 | 	phys_id = GET_APIC_ID(apic_read(APIC_ID)); | 
 | 	cpuid = smp_processor_id(); | 
 | 	if (cpu_isset(cpuid, cpu_callin_map)) { | 
 | 		printk("huh, phys CPU#%d, CPU#%d already present??\n", | 
 | 					phys_id, cpuid); | 
 | 		BUG(); | 
 | 	} | 
 | 	Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); | 
 |  | 
 | 	/* | 
 | 	 * STARTUP IPIs are fragile beasts as they might sometimes | 
 | 	 * trigger some glue motherboard logic. Complete APIC bus | 
 | 	 * silence for 1 second, this overestimates the time the | 
 | 	 * boot CPU is spending to send the up to 2 STARTUP IPIs | 
 | 	 * by a factor of two. This should be enough. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Waiting 2s total for startup (udelay is not yet working) | 
 | 	 */ | 
 | 	timeout = jiffies + 2*HZ; | 
 | 	while (time_before(jiffies, timeout)) { | 
 | 		/* | 
 | 		 * Has the boot CPU finished it's STARTUP sequence? | 
 | 		 */ | 
 | 		if (cpu_isset(cpuid, cpu_callout_map)) | 
 | 			break; | 
 | 		rep_nop(); | 
 | 	} | 
 |  | 
 | 	if (!time_before(jiffies, timeout)) { | 
 | 		printk("BUG: CPU%d started up but did not get a callout!\n", | 
 | 			cpuid); | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the boot CPU has finished the init stage and is spinning | 
 | 	 * on callin_map until we finish. We are free to set up this | 
 | 	 * CPU, first the APIC. (this is probably redundant on most | 
 | 	 * boards) | 
 | 	 */ | 
 |  | 
 | 	Dprintk("CALLIN, before setup_local_APIC().\n"); | 
 | 	smp_callin_clear_local_apic(); | 
 | 	setup_local_APIC(); | 
 | 	map_cpu_to_logical_apicid(); | 
 |  | 
 | 	/* | 
 | 	 * Get our bogomips. | 
 | 	 */ | 
 | 	calibrate_delay(); | 
 | 	Dprintk("Stack at about %p\n",&cpuid); | 
 |  | 
 | 	/* | 
 | 	 * Save our processor parameters | 
 | 	 */ | 
 | 	smp_store_cpu_info(cpuid); | 
 |  | 
 | 	/* | 
 | 	 * Allow the master to continue. | 
 | 	 */ | 
 | 	cpu_set(cpuid, cpu_callin_map); | 
 | } | 
 |  | 
 | static int cpucount; | 
 |  | 
 | /* maps the cpu to the sched domain representing multi-core */ | 
 | cpumask_t cpu_coregroup_map(int cpu) | 
 | { | 
 | 	struct cpuinfo_x86 *c = cpu_data + cpu; | 
 | 	/* | 
 | 	 * For perf, we return last level cache shared map. | 
 | 	 * And for power savings, we return cpu_core_map | 
 | 	 */ | 
 | 	if (sched_mc_power_savings || sched_smt_power_savings) | 
 | 		return cpu_core_map[cpu]; | 
 | 	else | 
 | 		return c->llc_shared_map; | 
 | } | 
 |  | 
 | /* representing cpus for which sibling maps can be computed */ | 
 | static cpumask_t cpu_sibling_setup_map; | 
 |  | 
 | void __cpuinit set_cpu_sibling_map(int cpu) | 
 | { | 
 | 	int i; | 
 | 	struct cpuinfo_x86 *c = cpu_data; | 
 |  | 
 | 	cpu_set(cpu, cpu_sibling_setup_map); | 
 |  | 
 | 	if (smp_num_siblings > 1) { | 
 | 		for_each_cpu_mask(i, cpu_sibling_setup_map) { | 
 | 			if (c[cpu].phys_proc_id == c[i].phys_proc_id && | 
 | 			    c[cpu].cpu_core_id == c[i].cpu_core_id) { | 
 | 				cpu_set(i, cpu_sibling_map[cpu]); | 
 | 				cpu_set(cpu, cpu_sibling_map[i]); | 
 | 				cpu_set(i, cpu_core_map[cpu]); | 
 | 				cpu_set(cpu, cpu_core_map[i]); | 
 | 				cpu_set(i, c[cpu].llc_shared_map); | 
 | 				cpu_set(cpu, c[i].llc_shared_map); | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		cpu_set(cpu, cpu_sibling_map[cpu]); | 
 | 	} | 
 |  | 
 | 	cpu_set(cpu, c[cpu].llc_shared_map); | 
 |  | 
 | 	if (current_cpu_data.x86_max_cores == 1) { | 
 | 		cpu_core_map[cpu] = cpu_sibling_map[cpu]; | 
 | 		c[cpu].booted_cores = 1; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for_each_cpu_mask(i, cpu_sibling_setup_map) { | 
 | 		if (cpu_llc_id[cpu] != BAD_APICID && | 
 | 		    cpu_llc_id[cpu] == cpu_llc_id[i]) { | 
 | 			cpu_set(i, c[cpu].llc_shared_map); | 
 | 			cpu_set(cpu, c[i].llc_shared_map); | 
 | 		} | 
 | 		if (c[cpu].phys_proc_id == c[i].phys_proc_id) { | 
 | 			cpu_set(i, cpu_core_map[cpu]); | 
 | 			cpu_set(cpu, cpu_core_map[i]); | 
 | 			/* | 
 | 			 *  Does this new cpu bringup a new core? | 
 | 			 */ | 
 | 			if (cpus_weight(cpu_sibling_map[cpu]) == 1) { | 
 | 				/* | 
 | 				 * for each core in package, increment | 
 | 				 * the booted_cores for this new cpu | 
 | 				 */ | 
 | 				if (first_cpu(cpu_sibling_map[i]) == i) | 
 | 					c[cpu].booted_cores++; | 
 | 				/* | 
 | 				 * increment the core count for all | 
 | 				 * the other cpus in this package | 
 | 				 */ | 
 | 				if (i != cpu) | 
 | 					c[i].booted_cores++; | 
 | 			} else if (i != cpu && !c[cpu].booted_cores) | 
 | 				c[cpu].booted_cores = c[i].booted_cores; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Activate a secondary processor. | 
 |  */ | 
 | static void __cpuinit start_secondary(void *unused) | 
 | { | 
 | 	/* | 
 | 	 * Don't put *anything* before cpu_init(), SMP booting is too | 
 | 	 * fragile that we want to limit the things done here to the | 
 | 	 * most necessary things. | 
 | 	 */ | 
 | #ifdef CONFIG_VMI | 
 | 	vmi_bringup(); | 
 | #endif | 
 | 	cpu_init(); | 
 | 	preempt_disable(); | 
 | 	smp_callin(); | 
 | 	while (!cpu_isset(smp_processor_id(), smp_commenced_mask)) | 
 | 		rep_nop(); | 
 | 	/* | 
 | 	 * Check TSC synchronization with the BP: | 
 | 	 */ | 
 | 	check_tsc_sync_target(); | 
 |  | 
 | 	setup_secondary_clock(); | 
 | 	if (nmi_watchdog == NMI_IO_APIC) { | 
 | 		disable_8259A_irq(0); | 
 | 		enable_NMI_through_LVT0(NULL); | 
 | 		enable_8259A_irq(0); | 
 | 	} | 
 | 	/* | 
 | 	 * low-memory mappings have been cleared, flush them from | 
 | 	 * the local TLBs too. | 
 | 	 */ | 
 | 	local_flush_tlb(); | 
 |  | 
 | 	/* This must be done before setting cpu_online_map */ | 
 | 	set_cpu_sibling_map(raw_smp_processor_id()); | 
 | 	wmb(); | 
 |  | 
 | 	/* | 
 | 	 * We need to hold call_lock, so there is no inconsistency | 
 | 	 * between the time smp_call_function() determines number of | 
 | 	 * IPI receipients, and the time when the determination is made | 
 | 	 * for which cpus receive the IPI. Holding this | 
 | 	 * lock helps us to not include this cpu in a currently in progress | 
 | 	 * smp_call_function(). | 
 | 	 */ | 
 | 	lock_ipi_call_lock(); | 
 | 	cpu_set(smp_processor_id(), cpu_online_map); | 
 | 	unlock_ipi_call_lock(); | 
 | 	per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE; | 
 |  | 
 | 	/* We can take interrupts now: we're officially "up". */ | 
 | 	local_irq_enable(); | 
 |  | 
 | 	wmb(); | 
 | 	cpu_idle(); | 
 | } | 
 |  | 
 | /* | 
 |  * Everything has been set up for the secondary | 
 |  * CPUs - they just need to reload everything | 
 |  * from the task structure | 
 |  * This function must not return. | 
 |  */ | 
 | void __devinit initialize_secondary(void) | 
 | { | 
 | 	/* | 
 | 	 * We don't actually need to load the full TSS, | 
 | 	 * basically just the stack pointer and the eip. | 
 | 	 */ | 
 |  | 
 | 	asm volatile( | 
 | 		"movl %0,%%esp\n\t" | 
 | 		"jmp *%1" | 
 | 		: | 
 | 		:"m" (current->thread.esp),"m" (current->thread.eip)); | 
 | } | 
 |  | 
 | /* Static state in head.S used to set up a CPU */ | 
 | extern struct { | 
 | 	void * esp; | 
 | 	unsigned short ss; | 
 | } stack_start; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | /* which logical CPUs are on which nodes */ | 
 | cpumask_t node_2_cpu_mask[MAX_NUMNODES] __read_mostly = | 
 | 				{ [0 ... MAX_NUMNODES-1] = CPU_MASK_NONE }; | 
 | EXPORT_SYMBOL(node_2_cpu_mask); | 
 | /* which node each logical CPU is on */ | 
 | int cpu_2_node[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = 0 }; | 
 | EXPORT_SYMBOL(cpu_2_node); | 
 |  | 
 | /* set up a mapping between cpu and node. */ | 
 | static inline void map_cpu_to_node(int cpu, int node) | 
 | { | 
 | 	printk("Mapping cpu %d to node %d\n", cpu, node); | 
 | 	cpu_set(cpu, node_2_cpu_mask[node]); | 
 | 	cpu_2_node[cpu] = node; | 
 | } | 
 |  | 
 | /* undo a mapping between cpu and node. */ | 
 | static inline void unmap_cpu_to_node(int cpu) | 
 | { | 
 | 	int node; | 
 |  | 
 | 	printk("Unmapping cpu %d from all nodes\n", cpu); | 
 | 	for (node = 0; node < MAX_NUMNODES; node ++) | 
 | 		cpu_clear(cpu, node_2_cpu_mask[node]); | 
 | 	cpu_2_node[cpu] = 0; | 
 | } | 
 | #else /* !CONFIG_NUMA */ | 
 |  | 
 | #define map_cpu_to_node(cpu, node)	({}) | 
 | #define unmap_cpu_to_node(cpu)	({}) | 
 |  | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | u8 cpu_2_logical_apicid[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID }; | 
 |  | 
 | static void map_cpu_to_logical_apicid(void) | 
 | { | 
 | 	int cpu = smp_processor_id(); | 
 | 	int apicid = logical_smp_processor_id(); | 
 | 	int node = apicid_to_node(apicid); | 
 |  | 
 | 	if (!node_online(node)) | 
 | 		node = first_online_node; | 
 |  | 
 | 	cpu_2_logical_apicid[cpu] = apicid; | 
 | 	map_cpu_to_node(cpu, node); | 
 | } | 
 |  | 
 | static void unmap_cpu_to_logical_apicid(int cpu) | 
 | { | 
 | 	cpu_2_logical_apicid[cpu] = BAD_APICID; | 
 | 	unmap_cpu_to_node(cpu); | 
 | } | 
 |  | 
 | static inline void __inquire_remote_apic(int apicid) | 
 | { | 
 | 	int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; | 
 | 	char *names[] = { "ID", "VERSION", "SPIV" }; | 
 | 	int timeout; | 
 | 	unsigned long status; | 
 |  | 
 | 	printk("Inquiring remote APIC #%d...\n", apicid); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(regs); i++) { | 
 | 		printk("... APIC #%d %s: ", apicid, names[i]); | 
 |  | 
 | 		/* | 
 | 		 * Wait for idle. | 
 | 		 */ | 
 | 		status = safe_apic_wait_icr_idle(); | 
 | 		if (status) | 
 | 			printk("a previous APIC delivery may have failed\n"); | 
 |  | 
 | 		apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); | 
 | 		apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); | 
 |  | 
 | 		timeout = 0; | 
 | 		do { | 
 | 			udelay(100); | 
 | 			status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; | 
 | 		} while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); | 
 |  | 
 | 		switch (status) { | 
 | 		case APIC_ICR_RR_VALID: | 
 | 			status = apic_read(APIC_RRR); | 
 | 			printk("%lx\n", status); | 
 | 			break; | 
 | 		default: | 
 | 			printk("failed\n"); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef WAKE_SECONDARY_VIA_NMI | 
 | /*  | 
 |  * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal | 
 |  * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this | 
 |  * won't ... remember to clear down the APIC, etc later. | 
 |  */ | 
 | static int __devinit | 
 | wakeup_secondary_cpu(int logical_apicid, unsigned long start_eip) | 
 | { | 
 | 	unsigned long send_status, accept_status = 0; | 
 | 	int maxlvt; | 
 |  | 
 | 	/* Target chip */ | 
 | 	apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(logical_apicid)); | 
 |  | 
 | 	/* Boot on the stack */ | 
 | 	/* Kick the second */ | 
 | 	apic_write_around(APIC_ICR, APIC_DM_NMI | APIC_DEST_LOGICAL); | 
 |  | 
 | 	Dprintk("Waiting for send to finish...\n"); | 
 | 	send_status = safe_apic_wait_icr_idle(); | 
 |  | 
 | 	/* | 
 | 	 * Give the other CPU some time to accept the IPI. | 
 | 	 */ | 
 | 	udelay(200); | 
 | 	/* | 
 | 	 * Due to the Pentium erratum 3AP. | 
 | 	 */ | 
 | 	maxlvt = lapic_get_maxlvt(); | 
 | 	if (maxlvt > 3) { | 
 | 		apic_read_around(APIC_SPIV); | 
 | 		apic_write(APIC_ESR, 0); | 
 | 	} | 
 | 	accept_status = (apic_read(APIC_ESR) & 0xEF); | 
 | 	Dprintk("NMI sent.\n"); | 
 |  | 
 | 	if (send_status) | 
 | 		printk("APIC never delivered???\n"); | 
 | 	if (accept_status) | 
 | 		printk("APIC delivery error (%lx).\n", accept_status); | 
 |  | 
 | 	return (send_status | accept_status); | 
 | } | 
 | #endif	/* WAKE_SECONDARY_VIA_NMI */ | 
 |  | 
 | #ifdef WAKE_SECONDARY_VIA_INIT | 
 | static int __devinit | 
 | wakeup_secondary_cpu(int phys_apicid, unsigned long start_eip) | 
 | { | 
 | 	unsigned long send_status, accept_status = 0; | 
 | 	int maxlvt, num_starts, j; | 
 |  | 
 | 	/* | 
 | 	 * Be paranoid about clearing APIC errors. | 
 | 	 */ | 
 | 	if (APIC_INTEGRATED(apic_version[phys_apicid])) { | 
 | 		apic_read_around(APIC_SPIV); | 
 | 		apic_write(APIC_ESR, 0); | 
 | 		apic_read(APIC_ESR); | 
 | 	} | 
 |  | 
 | 	Dprintk("Asserting INIT.\n"); | 
 |  | 
 | 	/* | 
 | 	 * Turn INIT on target chip | 
 | 	 */ | 
 | 	apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
 |  | 
 | 	/* | 
 | 	 * Send IPI | 
 | 	 */ | 
 | 	apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT | 
 | 				| APIC_DM_INIT); | 
 |  | 
 | 	Dprintk("Waiting for send to finish...\n"); | 
 | 	send_status = safe_apic_wait_icr_idle(); | 
 |  | 
 | 	mdelay(10); | 
 |  | 
 | 	Dprintk("Deasserting INIT.\n"); | 
 |  | 
 | 	/* Target chip */ | 
 | 	apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
 |  | 
 | 	/* Send IPI */ | 
 | 	apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); | 
 |  | 
 | 	Dprintk("Waiting for send to finish...\n"); | 
 | 	send_status = safe_apic_wait_icr_idle(); | 
 |  | 
 | 	atomic_set(&init_deasserted, 1); | 
 |  | 
 | 	/* | 
 | 	 * Should we send STARTUP IPIs ? | 
 | 	 * | 
 | 	 * Determine this based on the APIC version. | 
 | 	 * If we don't have an integrated APIC, don't send the STARTUP IPIs. | 
 | 	 */ | 
 | 	if (APIC_INTEGRATED(apic_version[phys_apicid])) | 
 | 		num_starts = 2; | 
 | 	else | 
 | 		num_starts = 0; | 
 |  | 
 | 	/* | 
 | 	 * Paravirt / VMI wants a startup IPI hook here to set up the | 
 | 	 * target processor state. | 
 | 	 */ | 
 | 	startup_ipi_hook(phys_apicid, (unsigned long) start_secondary, | 
 | 		         (unsigned long) stack_start.esp); | 
 |  | 
 | 	/* | 
 | 	 * Run STARTUP IPI loop. | 
 | 	 */ | 
 | 	Dprintk("#startup loops: %d.\n", num_starts); | 
 |  | 
 | 	maxlvt = lapic_get_maxlvt(); | 
 |  | 
 | 	for (j = 1; j <= num_starts; j++) { | 
 | 		Dprintk("Sending STARTUP #%d.\n",j); | 
 | 		apic_read_around(APIC_SPIV); | 
 | 		apic_write(APIC_ESR, 0); | 
 | 		apic_read(APIC_ESR); | 
 | 		Dprintk("After apic_write.\n"); | 
 |  | 
 | 		/* | 
 | 		 * STARTUP IPI | 
 | 		 */ | 
 |  | 
 | 		/* Target chip */ | 
 | 		apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid)); | 
 |  | 
 | 		/* Boot on the stack */ | 
 | 		/* Kick the second */ | 
 | 		apic_write_around(APIC_ICR, APIC_DM_STARTUP | 
 | 					| (start_eip >> 12)); | 
 |  | 
 | 		/* | 
 | 		 * Give the other CPU some time to accept the IPI. | 
 | 		 */ | 
 | 		udelay(300); | 
 |  | 
 | 		Dprintk("Startup point 1.\n"); | 
 |  | 
 | 		Dprintk("Waiting for send to finish...\n"); | 
 | 		send_status = safe_apic_wait_icr_idle(); | 
 |  | 
 | 		/* | 
 | 		 * Give the other CPU some time to accept the IPI. | 
 | 		 */ | 
 | 		udelay(200); | 
 | 		/* | 
 | 		 * Due to the Pentium erratum 3AP. | 
 | 		 */ | 
 | 		if (maxlvt > 3) { | 
 | 			apic_read_around(APIC_SPIV); | 
 | 			apic_write(APIC_ESR, 0); | 
 | 		} | 
 | 		accept_status = (apic_read(APIC_ESR) & 0xEF); | 
 | 		if (send_status || accept_status) | 
 | 			break; | 
 | 	} | 
 | 	Dprintk("After Startup.\n"); | 
 |  | 
 | 	if (send_status) | 
 | 		printk("APIC never delivered???\n"); | 
 | 	if (accept_status) | 
 | 		printk("APIC delivery error (%lx).\n", accept_status); | 
 |  | 
 | 	return (send_status | accept_status); | 
 | } | 
 | #endif	/* WAKE_SECONDARY_VIA_INIT */ | 
 |  | 
 | extern cpumask_t cpu_initialized; | 
 | static inline int alloc_cpu_id(void) | 
 | { | 
 | 	cpumask_t	tmp_map; | 
 | 	int cpu; | 
 | 	cpus_complement(tmp_map, cpu_present_map); | 
 | 	cpu = first_cpu(tmp_map); | 
 | 	if (cpu >= NR_CPUS) | 
 | 		return -ENODEV; | 
 | 	return cpu; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | static struct task_struct * __devinitdata cpu_idle_tasks[NR_CPUS]; | 
 | static inline struct task_struct * alloc_idle_task(int cpu) | 
 | { | 
 | 	struct task_struct *idle; | 
 |  | 
 | 	if ((idle = cpu_idle_tasks[cpu]) != NULL) { | 
 | 		/* initialize thread_struct.  we really want to avoid destroy | 
 | 		 * idle tread | 
 | 		 */ | 
 | 		idle->thread.esp = (unsigned long)task_pt_regs(idle); | 
 | 		init_idle(idle, cpu); | 
 | 		return idle; | 
 | 	} | 
 | 	idle = fork_idle(cpu); | 
 |  | 
 | 	if (!IS_ERR(idle)) | 
 | 		cpu_idle_tasks[cpu] = idle; | 
 | 	return idle; | 
 | } | 
 | #else | 
 | #define alloc_idle_task(cpu) fork_idle(cpu) | 
 | #endif | 
 |  | 
 | static int __cpuinit do_boot_cpu(int apicid, int cpu) | 
 | /* | 
 |  * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad | 
 |  * (ie clustered apic addressing mode), this is a LOGICAL apic ID. | 
 |  * Returns zero if CPU booted OK, else error code from wakeup_secondary_cpu. | 
 |  */ | 
 | { | 
 | 	struct task_struct *idle; | 
 | 	unsigned long boot_error; | 
 | 	int timeout; | 
 | 	unsigned long start_eip; | 
 | 	unsigned short nmi_high = 0, nmi_low = 0; | 
 |  | 
 | 	/* | 
 | 	 * Save current MTRR state in case it was changed since early boot | 
 | 	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync: | 
 | 	 */ | 
 | 	mtrr_save_state(); | 
 |  | 
 | 	/* | 
 | 	 * We can't use kernel_thread since we must avoid to | 
 | 	 * reschedule the child. | 
 | 	 */ | 
 | 	idle = alloc_idle_task(cpu); | 
 | 	if (IS_ERR(idle)) | 
 | 		panic("failed fork for CPU %d", cpu); | 
 |  | 
 | 	init_gdt(cpu); | 
 |  	per_cpu(current_task, cpu) = idle; | 
 | 	early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu); | 
 |  | 
 | 	idle->thread.eip = (unsigned long) start_secondary; | 
 | 	/* start_eip had better be page-aligned! */ | 
 | 	start_eip = setup_trampoline(); | 
 |  | 
 | 	++cpucount; | 
 | 	alternatives_smp_switch(1); | 
 |  | 
 | 	/* So we see what's up   */ | 
 | 	printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip); | 
 | 	/* Stack for startup_32 can be just as for start_secondary onwards */ | 
 | 	stack_start.esp = (void *) idle->thread.esp; | 
 |  | 
 | 	irq_ctx_init(cpu); | 
 |  | 
 | 	x86_cpu_to_apicid[cpu] = apicid; | 
 | 	/* | 
 | 	 * This grunge runs the startup process for | 
 | 	 * the targeted processor. | 
 | 	 */ | 
 |  | 
 | 	atomic_set(&init_deasserted, 0); | 
 |  | 
 | 	Dprintk("Setting warm reset code and vector.\n"); | 
 |  | 
 | 	store_NMI_vector(&nmi_high, &nmi_low); | 
 |  | 
 | 	smpboot_setup_warm_reset_vector(start_eip); | 
 |  | 
 | 	/* | 
 | 	 * Starting actual IPI sequence... | 
 | 	 */ | 
 | 	boot_error = wakeup_secondary_cpu(apicid, start_eip); | 
 |  | 
 | 	if (!boot_error) { | 
 | 		/* | 
 | 		 * allow APs to start initializing. | 
 | 		 */ | 
 | 		Dprintk("Before Callout %d.\n", cpu); | 
 | 		cpu_set(cpu, cpu_callout_map); | 
 | 		Dprintk("After Callout %d.\n", cpu); | 
 |  | 
 | 		/* | 
 | 		 * Wait 5s total for a response | 
 | 		 */ | 
 | 		for (timeout = 0; timeout < 50000; timeout++) { | 
 | 			if (cpu_isset(cpu, cpu_callin_map)) | 
 | 				break;	/* It has booted */ | 
 | 			udelay(100); | 
 | 		} | 
 |  | 
 | 		if (cpu_isset(cpu, cpu_callin_map)) { | 
 | 			/* number CPUs logically, starting from 1 (BSP is 0) */ | 
 | 			Dprintk("OK.\n"); | 
 | 			printk("CPU%d: ", cpu); | 
 | 			print_cpu_info(&cpu_data[cpu]); | 
 | 			Dprintk("CPU has booted.\n"); | 
 | 		} else { | 
 | 			boot_error= 1; | 
 | 			if (*((volatile unsigned char *)trampoline_base) | 
 | 					== 0xA5) | 
 | 				/* trampoline started but...? */ | 
 | 				printk("Stuck ??\n"); | 
 | 			else | 
 | 				/* trampoline code not run */ | 
 | 				printk("Not responding.\n"); | 
 | 			inquire_remote_apic(apicid); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (boot_error) { | 
 | 		/* Try to put things back the way they were before ... */ | 
 | 		unmap_cpu_to_logical_apicid(cpu); | 
 | 		cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */ | 
 | 		cpu_clear(cpu, cpu_initialized); /* was set by cpu_init() */ | 
 | 		cpucount--; | 
 | 	} else { | 
 | 		x86_cpu_to_apicid[cpu] = apicid; | 
 | 		cpu_set(cpu, cpu_present_map); | 
 | 	} | 
 |  | 
 | 	/* mark "stuck" area as not stuck */ | 
 | 	*((volatile unsigned long *)trampoline_base) = 0; | 
 |  | 
 | 	return boot_error; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | void cpu_exit_clear(void) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	idle_task_exit(); | 
 |  | 
 | 	cpucount --; | 
 | 	cpu_uninit(); | 
 | 	irq_ctx_exit(cpu); | 
 |  | 
 | 	cpu_clear(cpu, cpu_callout_map); | 
 | 	cpu_clear(cpu, cpu_callin_map); | 
 |  | 
 | 	cpu_clear(cpu, smp_commenced_mask); | 
 | 	unmap_cpu_to_logical_apicid(cpu); | 
 | } | 
 |  | 
 | struct warm_boot_cpu_info { | 
 | 	struct completion *complete; | 
 | 	struct work_struct task; | 
 | 	int apicid; | 
 | 	int cpu; | 
 | }; | 
 |  | 
 | static void __cpuinit do_warm_boot_cpu(struct work_struct *work) | 
 | { | 
 | 	struct warm_boot_cpu_info *info = | 
 | 		container_of(work, struct warm_boot_cpu_info, task); | 
 | 	do_boot_cpu(info->apicid, info->cpu); | 
 | 	complete(info->complete); | 
 | } | 
 |  | 
 | static int __cpuinit __smp_prepare_cpu(int cpu) | 
 | { | 
 | 	DECLARE_COMPLETION_ONSTACK(done); | 
 | 	struct warm_boot_cpu_info info; | 
 | 	int	apicid, ret; | 
 |  | 
 | 	apicid = x86_cpu_to_apicid[cpu]; | 
 | 	if (apicid == BAD_APICID) { | 
 | 		ret = -ENODEV; | 
 | 		goto exit; | 
 | 	} | 
 |  | 
 | 	info.complete = &done; | 
 | 	info.apicid = apicid; | 
 | 	info.cpu = cpu; | 
 | 	INIT_WORK(&info.task, do_warm_boot_cpu); | 
 |  | 
 | 	/* init low mem mapping */ | 
 | 	clone_pgd_range(swapper_pg_dir, swapper_pg_dir + USER_PGD_PTRS, | 
 | 			min_t(unsigned long, KERNEL_PGD_PTRS, USER_PGD_PTRS)); | 
 | 	flush_tlb_all(); | 
 | 	schedule_work(&info.task); | 
 | 	wait_for_completion(&done); | 
 |  | 
 | 	zap_low_mappings(); | 
 | 	ret = 0; | 
 | exit: | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Cycle through the processors sending APIC IPIs to boot each. | 
 |  */ | 
 |  | 
 | static int boot_cpu_logical_apicid; | 
 | /* Where the IO area was mapped on multiquad, always 0 otherwise */ | 
 | void *xquad_portio; | 
 | #ifdef CONFIG_X86_NUMAQ | 
 | EXPORT_SYMBOL(xquad_portio); | 
 | #endif | 
 |  | 
 | static void __init smp_boot_cpus(unsigned int max_cpus) | 
 | { | 
 | 	int apicid, cpu, bit, kicked; | 
 | 	unsigned long bogosum = 0; | 
 |  | 
 | 	/* | 
 | 	 * Setup boot CPU information | 
 | 	 */ | 
 | 	smp_store_cpu_info(0); /* Final full version of the data */ | 
 | 	printk("CPU%d: ", 0); | 
 | 	print_cpu_info(&cpu_data[0]); | 
 |  | 
 | 	boot_cpu_physical_apicid = GET_APIC_ID(apic_read(APIC_ID)); | 
 | 	boot_cpu_logical_apicid = logical_smp_processor_id(); | 
 | 	x86_cpu_to_apicid[0] = boot_cpu_physical_apicid; | 
 |  | 
 | 	current_thread_info()->cpu = 0; | 
 |  | 
 | 	set_cpu_sibling_map(0); | 
 |  | 
 | 	/* | 
 | 	 * If we couldn't find an SMP configuration at boot time, | 
 | 	 * get out of here now! | 
 | 	 */ | 
 | 	if (!smp_found_config && !acpi_lapic) { | 
 | 		printk(KERN_NOTICE "SMP motherboard not detected.\n"); | 
 | 		smpboot_clear_io_apic_irqs(); | 
 | 		phys_cpu_present_map = physid_mask_of_physid(0); | 
 | 		if (APIC_init_uniprocessor()) | 
 | 			printk(KERN_NOTICE "Local APIC not detected." | 
 | 					   " Using dummy APIC emulation.\n"); | 
 | 		map_cpu_to_logical_apicid(); | 
 | 		cpu_set(0, cpu_sibling_map[0]); | 
 | 		cpu_set(0, cpu_core_map[0]); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Should not be necessary because the MP table should list the boot | 
 | 	 * CPU too, but we do it for the sake of robustness anyway. | 
 | 	 * Makes no sense to do this check in clustered apic mode, so skip it | 
 | 	 */ | 
 | 	if (!check_phys_apicid_present(boot_cpu_physical_apicid)) { | 
 | 		printk("weird, boot CPU (#%d) not listed by the BIOS.\n", | 
 | 				boot_cpu_physical_apicid); | 
 | 		physid_set(hard_smp_processor_id(), phys_cpu_present_map); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we couldn't find a local APIC, then get out of here now! | 
 | 	 */ | 
 | 	if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) && !cpu_has_apic) { | 
 | 		printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n", | 
 | 			boot_cpu_physical_apicid); | 
 | 		printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n"); | 
 | 		smpboot_clear_io_apic_irqs(); | 
 | 		phys_cpu_present_map = physid_mask_of_physid(0); | 
 | 		cpu_set(0, cpu_sibling_map[0]); | 
 | 		cpu_set(0, cpu_core_map[0]); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	verify_local_APIC(); | 
 |  | 
 | 	/* | 
 | 	 * If SMP should be disabled, then really disable it! | 
 | 	 */ | 
 | 	if (!max_cpus) { | 
 | 		smp_found_config = 0; | 
 | 		printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); | 
 | 		smpboot_clear_io_apic_irqs(); | 
 | 		phys_cpu_present_map = physid_mask_of_physid(0); | 
 | 		cpu_set(0, cpu_sibling_map[0]); | 
 | 		cpu_set(0, cpu_core_map[0]); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	connect_bsp_APIC(); | 
 | 	setup_local_APIC(); | 
 | 	map_cpu_to_logical_apicid(); | 
 |  | 
 |  | 
 | 	setup_portio_remap(); | 
 |  | 
 | 	/* | 
 | 	 * Scan the CPU present map and fire up the other CPUs via do_boot_cpu | 
 | 	 * | 
 | 	 * In clustered apic mode, phys_cpu_present_map is a constructed thus: | 
 | 	 * bits 0-3 are quad0, 4-7 are quad1, etc. A perverse twist on the  | 
 | 	 * clustered apic ID. | 
 | 	 */ | 
 | 	Dprintk("CPU present map: %lx\n", physids_coerce(phys_cpu_present_map)); | 
 |  | 
 | 	kicked = 1; | 
 | 	for (bit = 0; kicked < NR_CPUS && bit < MAX_APICS; bit++) { | 
 | 		apicid = cpu_present_to_apicid(bit); | 
 | 		/* | 
 | 		 * Don't even attempt to start the boot CPU! | 
 | 		 */ | 
 | 		if ((apicid == boot_cpu_apicid) || (apicid == BAD_APICID)) | 
 | 			continue; | 
 |  | 
 | 		if (!check_apicid_present(bit)) | 
 | 			continue; | 
 | 		if (max_cpus <= cpucount+1) | 
 | 			continue; | 
 |  | 
 | 		if (((cpu = alloc_cpu_id()) <= 0) || do_boot_cpu(apicid, cpu)) | 
 | 			printk("CPU #%d not responding - cannot use it.\n", | 
 | 								apicid); | 
 | 		else | 
 | 			++kicked; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Cleanup possible dangling ends... | 
 | 	 */ | 
 | 	smpboot_restore_warm_reset_vector(); | 
 |  | 
 | 	/* | 
 | 	 * Allow the user to impress friends. | 
 | 	 */ | 
 | 	Dprintk("Before bogomips.\n"); | 
 | 	for (cpu = 0; cpu < NR_CPUS; cpu++) | 
 | 		if (cpu_isset(cpu, cpu_callout_map)) | 
 | 			bogosum += cpu_data[cpu].loops_per_jiffy; | 
 | 	printk(KERN_INFO | 
 | 		"Total of %d processors activated (%lu.%02lu BogoMIPS).\n", | 
 | 		cpucount+1, | 
 | 		bogosum/(500000/HZ), | 
 | 		(bogosum/(5000/HZ))%100); | 
 | 	 | 
 | 	Dprintk("Before bogocount - setting activated=1.\n"); | 
 |  | 
 | 	if (smp_b_stepping) | 
 | 		printk(KERN_WARNING "WARNING: SMP operation may be unreliable with B stepping processors.\n"); | 
 |  | 
 | 	/* | 
 | 	 * Don't taint if we are running SMP kernel on a single non-MP | 
 | 	 * approved Athlon | 
 | 	 */ | 
 | 	if (tainted & TAINT_UNSAFE_SMP) { | 
 | 		if (cpucount) | 
 | 			printk (KERN_INFO "WARNING: This combination of AMD processors is not suitable for SMP.\n"); | 
 | 		else | 
 | 			tainted &= ~TAINT_UNSAFE_SMP; | 
 | 	} | 
 |  | 
 | 	Dprintk("Boot done.\n"); | 
 |  | 
 | 	/* | 
 | 	 * construct cpu_sibling_map[], so that we can tell sibling CPUs | 
 | 	 * efficiently. | 
 | 	 */ | 
 | 	for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
 | 		cpus_clear(cpu_sibling_map[cpu]); | 
 | 		cpus_clear(cpu_core_map[cpu]); | 
 | 	} | 
 |  | 
 | 	cpu_set(0, cpu_sibling_map[0]); | 
 | 	cpu_set(0, cpu_core_map[0]); | 
 |  | 
 | 	smpboot_setup_io_apic(); | 
 |  | 
 | 	setup_boot_clock(); | 
 | } | 
 |  | 
 | /* These are wrappers to interface to the new boot process.  Someone | 
 |    who understands all this stuff should rewrite it properly. --RR 15/Jul/02 */ | 
 | void __init native_smp_prepare_cpus(unsigned int max_cpus) | 
 | { | 
 | 	smp_commenced_mask = cpumask_of_cpu(0); | 
 | 	cpu_callin_map = cpumask_of_cpu(0); | 
 | 	mb(); | 
 | 	smp_boot_cpus(max_cpus); | 
 | } | 
 |  | 
 | void __init native_smp_prepare_boot_cpu(void) | 
 | { | 
 | 	unsigned int cpu = smp_processor_id(); | 
 |  | 
 | 	init_gdt(cpu); | 
 | 	switch_to_new_gdt(); | 
 |  | 
 | 	cpu_set(cpu, cpu_online_map); | 
 | 	cpu_set(cpu, cpu_callout_map); | 
 | 	cpu_set(cpu, cpu_present_map); | 
 | 	cpu_set(cpu, cpu_possible_map); | 
 | 	__get_cpu_var(cpu_state) = CPU_ONLINE; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | void remove_siblinginfo(int cpu) | 
 | { | 
 | 	int sibling; | 
 | 	struct cpuinfo_x86 *c = cpu_data; | 
 |  | 
 | 	for_each_cpu_mask(sibling, cpu_core_map[cpu]) { | 
 | 		cpu_clear(cpu, cpu_core_map[sibling]); | 
 | 		/* | 
 | 		 * last thread sibling in this cpu core going down | 
 | 		 */ | 
 | 		if (cpus_weight(cpu_sibling_map[cpu]) == 1) | 
 | 			c[sibling].booted_cores--; | 
 | 	} | 
 | 			 | 
 | 	for_each_cpu_mask(sibling, cpu_sibling_map[cpu]) | 
 | 		cpu_clear(cpu, cpu_sibling_map[sibling]); | 
 | 	cpus_clear(cpu_sibling_map[cpu]); | 
 | 	cpus_clear(cpu_core_map[cpu]); | 
 | 	c[cpu].phys_proc_id = 0; | 
 | 	c[cpu].cpu_core_id = 0; | 
 | 	cpu_clear(cpu, cpu_sibling_setup_map); | 
 | } | 
 |  | 
 | int __cpu_disable(void) | 
 | { | 
 | 	cpumask_t map = cpu_online_map; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	/* | 
 | 	 * Perhaps use cpufreq to drop frequency, but that could go | 
 | 	 * into generic code. | 
 |  	 * | 
 | 	 * We won't take down the boot processor on i386 due to some | 
 | 	 * interrupts only being able to be serviced by the BSP. | 
 | 	 * Especially so if we're not using an IOAPIC	-zwane | 
 | 	 */ | 
 | 	if (cpu == 0) | 
 | 		return -EBUSY; | 
 | 	if (nmi_watchdog == NMI_LOCAL_APIC) | 
 | 		stop_apic_nmi_watchdog(NULL); | 
 | 	clear_local_APIC(); | 
 | 	/* Allow any queued timer interrupts to get serviced */ | 
 | 	local_irq_enable(); | 
 | 	mdelay(1); | 
 | 	local_irq_disable(); | 
 |  | 
 | 	remove_siblinginfo(cpu); | 
 |  | 
 | 	cpu_clear(cpu, map); | 
 | 	fixup_irqs(map); | 
 | 	/* It's now safe to remove this processor from the online map */ | 
 | 	cpu_clear(cpu, cpu_online_map); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __cpu_die(unsigned int cpu) | 
 | { | 
 | 	/* We don't do anything here: idle task is faking death itself. */ | 
 | 	unsigned int i; | 
 |  | 
 | 	for (i = 0; i < 10; i++) { | 
 | 		/* They ack this in play_dead by setting CPU_DEAD */ | 
 | 		if (per_cpu(cpu_state, cpu) == CPU_DEAD) { | 
 | 			printk ("CPU %d is now offline\n", cpu); | 
 | 			if (1 == num_online_cpus()) | 
 | 				alternatives_smp_switch(0); | 
 | 			return; | 
 | 		} | 
 | 		msleep(100); | 
 | 	} | 
 |  	printk(KERN_ERR "CPU %u didn't die...\n", cpu); | 
 | } | 
 | #else /* ... !CONFIG_HOTPLUG_CPU */ | 
 | int __cpu_disable(void) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 |  | 
 | void __cpu_die(unsigned int cpu) | 
 | { | 
 | 	/* We said "no" in __cpu_disable */ | 
 | 	BUG(); | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | int __cpuinit native_cpu_up(unsigned int cpu) | 
 | { | 
 | 	unsigned long flags; | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * We do warm boot only on cpus that had booted earlier | 
 | 	 * Otherwise cold boot is all handled from smp_boot_cpus(). | 
 | 	 * cpu_callin_map is set during AP kickstart process. Its reset | 
 | 	 * when a cpu is taken offline from cpu_exit_clear(). | 
 | 	 */ | 
 | 	if (!cpu_isset(cpu, cpu_callin_map)) | 
 | 		ret = __smp_prepare_cpu(cpu); | 
 |  | 
 | 	if (ret) | 
 | 		return -EIO; | 
 | #endif | 
 |  | 
 | 	/* In case one didn't come up */ | 
 | 	if (!cpu_isset(cpu, cpu_callin_map)) { | 
 | 		printk(KERN_DEBUG "skipping cpu%d, didn't come online\n", cpu); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	per_cpu(cpu_state, cpu) = CPU_UP_PREPARE; | 
 | 	/* Unleash the CPU! */ | 
 | 	cpu_set(cpu, smp_commenced_mask); | 
 |  | 
 | 	/* | 
 | 	 * Check TSC synchronization with the AP (keep irqs disabled | 
 | 	 * while doing so): | 
 | 	 */ | 
 | 	local_irq_save(flags); | 
 | 	check_tsc_sync_source(cpu); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	while (!cpu_isset(cpu, cpu_online_map)) { | 
 | 		cpu_relax(); | 
 | 		touch_nmi_watchdog(); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __init native_smp_cpus_done(unsigned int max_cpus) | 
 | { | 
 | #ifdef CONFIG_X86_IO_APIC | 
 | 	setup_ioapic_dest(); | 
 | #endif | 
 | 	zap_low_mappings(); | 
 | #ifndef CONFIG_HOTPLUG_CPU | 
 | 	/* | 
 | 	 * Disable executability of the SMP trampoline: | 
 | 	 */ | 
 | 	set_kernel_exec((unsigned long)trampoline_base, trampoline_exec); | 
 | #endif | 
 | } | 
 |  | 
 | void __init smp_intr_init(void) | 
 | { | 
 | 	/* | 
 | 	 * IRQ0 must be given a fixed assignment and initialized, | 
 | 	 * because it's used before the IO-APIC is set up. | 
 | 	 */ | 
 | 	set_intr_gate(FIRST_DEVICE_VECTOR, interrupt[0]); | 
 |  | 
 | 	/* | 
 | 	 * The reschedule interrupt is a CPU-to-CPU reschedule-helper | 
 | 	 * IPI, driven by wakeup. | 
 | 	 */ | 
 | 	set_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt); | 
 |  | 
 | 	/* IPI for invalidation */ | 
 | 	set_intr_gate(INVALIDATE_TLB_VECTOR, invalidate_interrupt); | 
 |  | 
 | 	/* IPI for generic function call */ | 
 | 	set_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt); | 
 | } | 
 |  | 
 | /* | 
 |  * If the BIOS enumerates physical processors before logical, | 
 |  * maxcpus=N at enumeration-time can be used to disable HT. | 
 |  */ | 
 | static int __init parse_maxcpus(char *arg) | 
 | { | 
 | 	extern unsigned int maxcpus; | 
 |  | 
 | 	maxcpus = simple_strtoul(arg, NULL, 0); | 
 | 	return 0; | 
 | } | 
 | early_param("maxcpus", parse_maxcpus); |