| /* |
| * Copyright 2017 Advanced Micro Devices, Inc. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR |
| * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, |
| * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR |
| * OTHER DEALINGS IN THE SOFTWARE. |
| * |
| */ |
| #include "pp_debug.h" |
| #include "smumgr.h" |
| #include "smu_ucode_xfer_vi.h" |
| #include "vegam_smumgr.h" |
| #include "smu/smu_7_1_3_d.h" |
| #include "smu/smu_7_1_3_sh_mask.h" |
| #include "gmc/gmc_8_1_d.h" |
| #include "gmc/gmc_8_1_sh_mask.h" |
| #include "oss/oss_3_0_d.h" |
| #include "gca/gfx_8_0_d.h" |
| #include "bif/bif_5_0_d.h" |
| #include "bif/bif_5_0_sh_mask.h" |
| #include "ppatomctrl.h" |
| #include "cgs_common.h" |
| #include "smu7_ppsmc.h" |
| |
| #include "smu7_dyn_defaults.h" |
| |
| #include "smu7_hwmgr.h" |
| #include "hardwaremanager.h" |
| #include "atombios.h" |
| #include "pppcielanes.h" |
| |
| #include "dce/dce_11_2_d.h" |
| #include "dce/dce_11_2_sh_mask.h" |
| |
| #define PPVEGAM_TARGETACTIVITY_DFLT 50 |
| |
| #define VOLTAGE_VID_OFFSET_SCALE1 625 |
| #define VOLTAGE_VID_OFFSET_SCALE2 100 |
| #define POWERTUNE_DEFAULT_SET_MAX 1 |
| #define VDDC_VDDCI_DELTA 200 |
| #define MC_CG_ARB_FREQ_F1 0x0b |
| |
| #define STRAP_ASIC_RO_LSB 2168 |
| #define STRAP_ASIC_RO_MSB 2175 |
| |
| #define PPSMC_MSG_ApplyAvfsCksOffVoltage ((uint16_t) 0x415) |
| #define PPSMC_MSG_EnableModeSwitchRLCNotification ((uint16_t) 0x305) |
| |
| static const struct vegam_pt_defaults |
| vegam_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = { |
| /* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt, |
| * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT */ |
| { 1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000, |
| { 0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8, 0xC9, 0xC9, 0x2F, 0x4D, 0x61}, |
| { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 } }, |
| }; |
| |
| static const sclkFcwRange_t Range_Table[NUM_SCLK_RANGE] = { |
| {VCO_2_4, POSTDIV_DIV_BY_16, 75, 160, 112}, |
| {VCO_3_6, POSTDIV_DIV_BY_16, 112, 224, 160}, |
| {VCO_2_4, POSTDIV_DIV_BY_8, 75, 160, 112}, |
| {VCO_3_6, POSTDIV_DIV_BY_8, 112, 224, 160}, |
| {VCO_2_4, POSTDIV_DIV_BY_4, 75, 160, 112}, |
| {VCO_3_6, POSTDIV_DIV_BY_4, 112, 216, 160}, |
| {VCO_2_4, POSTDIV_DIV_BY_2, 75, 160, 108}, |
| {VCO_3_6, POSTDIV_DIV_BY_2, 112, 216, 160} }; |
| |
| static int vegam_smu_init(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data; |
| |
| smu_data = kzalloc(sizeof(struct vegam_smumgr), GFP_KERNEL); |
| if (smu_data == NULL) |
| return -ENOMEM; |
| |
| hwmgr->smu_backend = smu_data; |
| |
| if (smu7_init(hwmgr)) { |
| kfree(smu_data); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int vegam_start_smu_in_protection_mode(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| |
| /* Wait for smc boot up */ |
| /* PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(smumgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0) */ |
| |
| /* Assert reset */ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
| |
| result = smu7_upload_smu_firmware_image(hwmgr); |
| if (result != 0) |
| return result; |
| |
| /* Clear status */ |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixSMU_STATUS, 0); |
| |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
| |
| /* De-assert reset */ |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
| |
| |
| PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1); |
| |
| |
| /* Call Test SMU message with 0x20000 offset to trigger SMU start */ |
| smu7_send_msg_to_smc_offset(hwmgr); |
| |
| /* Wait done bit to be set */ |
| /* Check pass/failed indicator */ |
| |
| PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, SMU_STATUS, SMU_DONE, 0); |
| |
| if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMU_STATUS, SMU_PASS)) |
| PP_ASSERT_WITH_CODE(false, "SMU Firmware start failed!", return -1); |
| |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixFIRMWARE_FLAGS, 0); |
| |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 1); |
| |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
| |
| /* Wait for firmware to initialize */ |
| PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
| |
| return result; |
| } |
| |
| static int vegam_start_smu_in_non_protection_mode(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| |
| /* wait for smc boot up */ |
| PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND, RCU_UC_EVENTS, boot_seq_done, 0); |
| |
| /* Clear firmware interrupt enable flag */ |
| /* PHM_WRITE_VFPF_INDIRECT_FIELD(pSmuMgr, SMC_IND, SMC_SYSCON_MISC_CNTL, pre_fetcher_en, 1); */ |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixFIRMWARE_FLAGS, 0); |
| |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, |
| rst_reg, 1); |
| |
| result = smu7_upload_smu_firmware_image(hwmgr); |
| if (result != 0) |
| return result; |
| |
| /* Set smc instruct start point at 0x0 */ |
| smu7_program_jump_on_start(hwmgr); |
| |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0); |
| |
| PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, |
| SMC_SYSCON_RESET_CNTL, rst_reg, 0); |
| |
| /* Wait for firmware to initialize */ |
| |
| PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND, |
| FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1); |
| |
| return result; |
| } |
| |
| static int vegam_start_smu(struct pp_hwmgr *hwmgr) |
| { |
| int result = 0; |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| |
| /* Only start SMC if SMC RAM is not running */ |
| if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) { |
| smu_data->protected_mode = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_MODE)); |
| smu_data->smu7_data.security_hard_key = (uint8_t)(PHM_READ_VFPF_INDIRECT_FIELD( |
| hwmgr->device, CGS_IND_REG__SMC, SMU_FIRMWARE, SMU_SEL)); |
| |
| /* Check if SMU is running in protected mode */ |
| if (smu_data->protected_mode == 0) |
| result = vegam_start_smu_in_non_protection_mode(hwmgr); |
| else |
| result = vegam_start_smu_in_protection_mode(hwmgr); |
| |
| if (result != 0) |
| PP_ASSERT_WITH_CODE(0, "Failed to load SMU ucode.", return result); |
| } |
| |
| /* Setup SoftRegsStart here for register lookup in case DummyBackEnd is used and ProcessFirmwareHeader is not executed */ |
| smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + offsetof(SMU75_Firmware_Header, SoftRegisters), |
| &(smu_data->smu7_data.soft_regs_start), |
| 0x40000); |
| |
| result = smu7_request_smu_load_fw(hwmgr); |
| |
| return result; |
| } |
| |
| static int vegam_process_firmware_header(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t tmp; |
| int result; |
| bool error = false; |
| |
| result = smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, DpmTable), |
| &tmp, SMC_RAM_END); |
| |
| if (0 == result) |
| smu_data->smu7_data.dpm_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, SoftRegisters), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) { |
| data->soft_regs_start = tmp; |
| smu_data->smu7_data.soft_regs_start = tmp; |
| } |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, mcRegisterTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.mc_reg_table_start = tmp; |
| |
| result = smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, FanTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.fan_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, mcArbDramTimingTable), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| smu_data->smu7_data.arb_table_start = tmp; |
| |
| error |= (0 != result); |
| |
| result = smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, Version), |
| &tmp, SMC_RAM_END); |
| |
| if (!result) |
| hwmgr->microcode_version_info.SMC = tmp; |
| |
| error |= (0 != result); |
| |
| return error ? -1 : 0; |
| } |
| |
| static bool vegam_is_dpm_running(struct pp_hwmgr *hwmgr) |
| { |
| return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device, |
| CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON)) |
| ? true : false; |
| } |
| |
| static uint32_t vegam_get_mac_definition(uint32_t value) |
| { |
| switch (value) { |
| case SMU_MAX_LEVELS_GRAPHICS: |
| return SMU75_MAX_LEVELS_GRAPHICS; |
| case SMU_MAX_LEVELS_MEMORY: |
| return SMU75_MAX_LEVELS_MEMORY; |
| case SMU_MAX_LEVELS_LINK: |
| return SMU75_MAX_LEVELS_LINK; |
| case SMU_MAX_ENTRIES_SMIO: |
| return SMU75_MAX_ENTRIES_SMIO; |
| case SMU_MAX_LEVELS_VDDC: |
| return SMU75_MAX_LEVELS_VDDC; |
| case SMU_MAX_LEVELS_VDDGFX: |
| return SMU75_MAX_LEVELS_VDDGFX; |
| case SMU_MAX_LEVELS_VDDCI: |
| return SMU75_MAX_LEVELS_VDDCI; |
| case SMU_MAX_LEVELS_MVDD: |
| return SMU75_MAX_LEVELS_MVDD; |
| case SMU_UVD_MCLK_HANDSHAKE_DISABLE: |
| return SMU7_UVD_MCLK_HANDSHAKE_DISABLE | |
| SMU7_VCE_MCLK_HANDSHAKE_DISABLE; |
| } |
| |
| pr_warn("can't get the mac of %x\n", value); |
| return 0; |
| } |
| |
| static int vegam_update_uvd_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| smu_data->smc_state_table.UvdBootLevel = 0; |
| if (table_info->mm_dep_table->count > 0) |
| smu_data->smc_state_table.UvdBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + offsetof(SMU75_Discrete_DpmTable, |
| UvdBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0x00FFFFFF; |
| mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_UVDDPM) || |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_UVDDPM_SetEnabledMask, |
| (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel)); |
| return 0; |
| } |
| |
| static int vegam_update_vce_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| uint32_t mm_boot_level_offset, mm_boot_level_value; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StablePState)) |
| smu_data->smc_state_table.VceBootLevel = |
| (uint8_t) (table_info->mm_dep_table->count - 1); |
| else |
| smu_data->smc_state_table.VceBootLevel = 0; |
| |
| mm_boot_level_offset = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU75_Discrete_DpmTable, VceBootLevel); |
| mm_boot_level_offset /= 4; |
| mm_boot_level_offset *= 4; |
| mm_boot_level_value = cgs_read_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset); |
| mm_boot_level_value &= 0xFF00FFFF; |
| mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16; |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_StablePState)) |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_VCEDPM_SetEnabledMask, |
| (uint32_t)1 << smu_data->smc_state_table.VceBootLevel); |
| return 0; |
| } |
| |
| static int vegam_update_bif_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| int max_entry, i; |
| |
| max_entry = (SMU75_MAX_LEVELS_LINK < pcie_table->count) ? |
| SMU75_MAX_LEVELS_LINK : |
| pcie_table->count; |
| /* Setup BIF_SCLK levels */ |
| for (i = 0; i < max_entry; i++) |
| smu_data->bif_sclk_table[i] = pcie_table->entries[i].pcie_sclk; |
| return 0; |
| } |
| |
| static int vegam_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type) |
| { |
| switch (type) { |
| case SMU_UVD_TABLE: |
| vegam_update_uvd_smc_table(hwmgr); |
| break; |
| case SMU_VCE_TABLE: |
| vegam_update_vce_smc_table(hwmgr); |
| break; |
| case SMU_BIF_TABLE: |
| vegam_update_bif_smc_table(hwmgr); |
| break; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static void vegam_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| if (table_info && |
| table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX && |
| table_info->cac_dtp_table->usPowerTuneDataSetID) |
| smu_data->power_tune_defaults = |
| &vegam_power_tune_data_set_array |
| [table_info->cac_dtp_table->usPowerTuneDataSetID - 1]; |
| else |
| smu_data->power_tune_defaults = &vegam_power_tune_data_set_array[0]; |
| |
| } |
| |
| static int vegam_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr, |
| SMU75_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t count, level; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| count = data->mvdd_voltage_table.count; |
| if (count > SMU_MAX_SMIO_LEVELS) |
| count = SMU_MAX_SMIO_LEVELS; |
| for (level = 0; level < count; level++) { |
| table->SmioTable2.Pattern[level].Voltage = PP_HOST_TO_SMC_US( |
| data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE); |
| /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/ |
| table->SmioTable2.Pattern[level].Smio = |
| (uint8_t) level; |
| table->Smio[level] |= |
| data->mvdd_voltage_table.entries[level].smio_low; |
| } |
| table->SmioMask2 = data->mvdd_voltage_table.mask_low; |
| |
| table->MvddLevelCount = (uint32_t) PP_HOST_TO_SMC_UL(count); |
| } |
| |
| return 0; |
| } |
| |
| static int vegam_populate_smc_vddci_table(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_DpmTable *table) |
| { |
| uint32_t count, level; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| count = data->vddci_voltage_table.count; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| if (count > SMU_MAX_SMIO_LEVELS) |
| count = SMU_MAX_SMIO_LEVELS; |
| for (level = 0; level < count; ++level) { |
| table->SmioTable1.Pattern[level].Voltage = PP_HOST_TO_SMC_US( |
| data->vddci_voltage_table.entries[level].value * VOLTAGE_SCALE); |
| table->SmioTable1.Pattern[level].Smio = (uint8_t) level; |
| |
| table->Smio[level] |= data->vddci_voltage_table.entries[level].smio_low; |
| } |
| } |
| |
| table->SmioMask1 = data->vddci_voltage_table.mask_low; |
| |
| return 0; |
| } |
| |
| static int vegam_populate_cac_table(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_DpmTable *table) |
| { |
| uint32_t count; |
| uint8_t index; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_voltage_lookup_table *lookup_table = |
| table_info->vddc_lookup_table; |
| /* tables is already swapped, so in order to use the value from it, |
| * we need to swap it back. |
| * We are populating vddc CAC data to BapmVddc table |
| * in split and merged mode |
| */ |
| for (count = 0; count < lookup_table->count; count++) { |
| index = phm_get_voltage_index(lookup_table, |
| data->vddc_voltage_table.entries[count].value); |
| table->BapmVddcVidLoSidd[count] = |
| convert_to_vid(lookup_table->entries[index].us_cac_low); |
| table->BapmVddcVidHiSidd[count] = |
| convert_to_vid(lookup_table->entries[index].us_cac_mid); |
| table->BapmVddcVidHiSidd2[count] = |
| convert_to_vid(lookup_table->entries[index].us_cac_high); |
| } |
| |
| return 0; |
| } |
| |
| static int vegam_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_DpmTable *table) |
| { |
| vegam_populate_smc_vddci_table(hwmgr, table); |
| vegam_populate_smc_mvdd_table(hwmgr, table); |
| vegam_populate_cac_table(hwmgr, table); |
| |
| return 0; |
| } |
| |
| static int vegam_populate_ulv_level(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_Ulv *state) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| |
| state->CcPwrDynRm = 0; |
| state->CcPwrDynRm1 = 0; |
| |
| state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset; |
| state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset * |
| VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); |
| |
| state->VddcPhase = data->vddc_phase_shed_control ^ 0x3; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset); |
| |
| return 0; |
| } |
| |
| static int vegam_populate_ulv_state(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_DpmTable *table) |
| { |
| return vegam_populate_ulv_level(hwmgr, &table->Ulv); |
| } |
| |
| static int vegam_populate_smc_link_level(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = |
| (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct smu7_dpm_table *dpm_table = &data->dpm_table; |
| int i; |
| |
| /* Index (dpm_table->pcie_speed_table.count) |
| * is reserved for PCIE boot level. */ |
| for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) { |
| table->LinkLevel[i].PcieGenSpeed = |
| (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value; |
| table->LinkLevel[i].PcieLaneCount = (uint8_t)encode_pcie_lane_width( |
| dpm_table->pcie_speed_table.dpm_levels[i].param1); |
| table->LinkLevel[i].EnabledForActivity = 1; |
| table->LinkLevel[i].SPC = (uint8_t)(data->pcie_spc_cap & 0xff); |
| table->LinkLevel[i].DownThreshold = PP_HOST_TO_SMC_UL(5); |
| table->LinkLevel[i].UpThreshold = PP_HOST_TO_SMC_UL(30); |
| } |
| |
| smu_data->smc_state_table.LinkLevelCount = |
| (uint8_t)dpm_table->pcie_speed_table.count; |
| |
| /* To Do move to hwmgr */ |
| data->dpm_level_enable_mask.pcie_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table); |
| |
| return 0; |
| } |
| |
| static int vegam_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr, |
| struct phm_ppt_v1_clock_voltage_dependency_table *dep_table, |
| uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd) |
| { |
| uint32_t i; |
| uint16_t vddci; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| *voltage = *mvdd = 0; |
| |
| /* clock - voltage dependency table is empty table */ |
| if (dep_table->count == 0) |
| return -EINVAL; |
| |
| for (i = 0; i < dep_table->count; i++) { |
| /* find first sclk bigger than request */ |
| if (dep_table->entries[i].clk >= clock) { |
| *voltage |= (dep_table->entries[i].vddc * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else if (dep_table->entries[i].vddci) |
| *voltage |= (dep_table->entries[i].vddci * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else { |
| vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
| (dep_table->entries[i].vddc - |
| (uint16_t)VDDC_VDDCI_DELTA)); |
| *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| } |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
| *mvdd = data->vbios_boot_state.mvdd_bootup_value * |
| VOLTAGE_SCALE; |
| else if (dep_table->entries[i].mvdd) |
| *mvdd = (uint32_t) dep_table->entries[i].mvdd * |
| VOLTAGE_SCALE; |
| |
| *voltage |= 1 << PHASES_SHIFT; |
| return 0; |
| } |
| } |
| |
| /* sclk is bigger than max sclk in the dependence table */ |
| *voltage |= (dep_table->entries[i - 1].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| vddci = phm_find_closest_vddci(&(data->vddci_voltage_table), |
| (dep_table->entries[i - 1].vddc - |
| (uint16_t)VDDC_VDDCI_DELTA)); |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control) |
| *voltage |= (data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE) << VDDCI_SHIFT; |
| else if (dep_table->entries[i - 1].vddci) |
| *voltage |= (dep_table->entries[i - 1].vddci * |
| VOLTAGE_SCALE) << VDDC_SHIFT; |
| else |
| *voltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) |
| *mvdd = data->vbios_boot_state.mvdd_bootup_value * VOLTAGE_SCALE; |
| else if (dep_table->entries[i].mvdd) |
| *mvdd = (uint32_t) dep_table->entries[i - 1].mvdd * VOLTAGE_SCALE; |
| |
| return 0; |
| } |
| |
| static void vegam_get_sclk_range_table(struct pp_hwmgr *hwmgr, |
| SMU75_Discrete_DpmTable *table) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| uint32_t i, ref_clk; |
| |
| struct pp_atom_ctrl_sclk_range_table range_table_from_vbios = { { {0} } }; |
| |
| ref_clk = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
| |
| if (0 == atomctrl_get_smc_sclk_range_table(hwmgr, &range_table_from_vbios)) { |
| for (i = 0; i < NUM_SCLK_RANGE; i++) { |
| table->SclkFcwRangeTable[i].vco_setting = |
| range_table_from_vbios.entry[i].ucVco_setting; |
| table->SclkFcwRangeTable[i].postdiv = |
| range_table_from_vbios.entry[i].ucPostdiv; |
| table->SclkFcwRangeTable[i].fcw_pcc = |
| range_table_from_vbios.entry[i].usFcw_pcc; |
| |
| table->SclkFcwRangeTable[i].fcw_trans_upper = |
| range_table_from_vbios.entry[i].usFcw_trans_upper; |
| table->SclkFcwRangeTable[i].fcw_trans_lower = |
| range_table_from_vbios.entry[i].usRcw_trans_lower; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); |
| } |
| return; |
| } |
| |
| for (i = 0; i < NUM_SCLK_RANGE; i++) { |
| smu_data->range_table[i].trans_lower_frequency = |
| (ref_clk * Range_Table[i].fcw_trans_lower) >> Range_Table[i].postdiv; |
| smu_data->range_table[i].trans_upper_frequency = |
| (ref_clk * Range_Table[i].fcw_trans_upper) >> Range_Table[i].postdiv; |
| |
| table->SclkFcwRangeTable[i].vco_setting = Range_Table[i].vco_setting; |
| table->SclkFcwRangeTable[i].postdiv = Range_Table[i].postdiv; |
| table->SclkFcwRangeTable[i].fcw_pcc = Range_Table[i].fcw_pcc; |
| |
| table->SclkFcwRangeTable[i].fcw_trans_upper = Range_Table[i].fcw_trans_upper; |
| table->SclkFcwRangeTable[i].fcw_trans_lower = Range_Table[i].fcw_trans_lower; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_pcc); |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_upper); |
| CONVERT_FROM_HOST_TO_SMC_US(table->SclkFcwRangeTable[i].fcw_trans_lower); |
| } |
| } |
| |
| static int vegam_calculate_sclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t clock, SMU_SclkSetting *sclk_setting) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| const SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| struct pp_atomctrl_clock_dividers_ai dividers; |
| uint32_t ref_clock; |
| uint32_t pcc_target_percent, pcc_target_freq, ss_target_percent, ss_target_freq; |
| uint8_t i; |
| int result; |
| uint64_t temp; |
| |
| sclk_setting->SclkFrequency = clock; |
| /* get the engine clock dividers for this clock value */ |
| result = atomctrl_get_engine_pll_dividers_ai(hwmgr, clock, ÷rs); |
| if (result == 0) { |
| sclk_setting->Fcw_int = dividers.usSclk_fcw_int; |
| sclk_setting->Fcw_frac = dividers.usSclk_fcw_frac; |
| sclk_setting->Pcc_fcw_int = dividers.usPcc_fcw_int; |
| sclk_setting->PllRange = dividers.ucSclkPllRange; |
| sclk_setting->Sclk_slew_rate = 0x400; |
| sclk_setting->Pcc_up_slew_rate = dividers.usPcc_fcw_slew_frac; |
| sclk_setting->Pcc_down_slew_rate = 0xffff; |
| sclk_setting->SSc_En = dividers.ucSscEnable; |
| sclk_setting->Fcw1_int = dividers.usSsc_fcw1_int; |
| sclk_setting->Fcw1_frac = dividers.usSsc_fcw1_frac; |
| sclk_setting->Sclk_ss_slew_rate = dividers.usSsc_fcw_slew_frac; |
| return result; |
| } |
| |
| ref_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev); |
| |
| for (i = 0; i < NUM_SCLK_RANGE; i++) { |
| if (clock > smu_data->range_table[i].trans_lower_frequency |
| && clock <= smu_data->range_table[i].trans_upper_frequency) { |
| sclk_setting->PllRange = i; |
| break; |
| } |
| } |
| |
| sclk_setting->Fcw_int = (uint16_t) |
| ((clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
| ref_clock); |
| temp = clock << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
| temp <<= 0x10; |
| do_div(temp, ref_clock); |
| sclk_setting->Fcw_frac = temp & 0xffff; |
| |
| pcc_target_percent = 10; /* Hardcode 10% for now. */ |
| pcc_target_freq = clock - (clock * pcc_target_percent / 100); |
| sclk_setting->Pcc_fcw_int = (uint16_t) |
| ((pcc_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
| ref_clock); |
| |
| ss_target_percent = 2; /* Hardcode 2% for now. */ |
| sclk_setting->SSc_En = 0; |
| if (ss_target_percent) { |
| sclk_setting->SSc_En = 1; |
| ss_target_freq = clock - (clock * ss_target_percent / 100); |
| sclk_setting->Fcw1_int = (uint16_t) |
| ((ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv) / |
| ref_clock); |
| temp = ss_target_freq << table->SclkFcwRangeTable[sclk_setting->PllRange].postdiv; |
| temp <<= 0x10; |
| do_div(temp, ref_clock); |
| sclk_setting->Fcw1_frac = temp & 0xffff; |
| } |
| |
| return 0; |
| } |
| |
| static uint8_t vegam_get_sleep_divider_id_from_clock(uint32_t clock, |
| uint32_t clock_insr) |
| { |
| uint8_t i; |
| uint32_t temp; |
| uint32_t min = max(clock_insr, (uint32_t)SMU7_MINIMUM_ENGINE_CLOCK); |
| |
| PP_ASSERT_WITH_CODE((clock >= min), |
| "Engine clock can't satisfy stutter requirement!", |
| return 0); |
| for (i = 31; ; i--) { |
| temp = clock / (i + 1); |
| |
| if (temp >= min || i == 0) |
| break; |
| } |
| return i; |
| } |
| |
| static int vegam_populate_single_graphic_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU75_Discrete_GraphicsLevel *level) |
| { |
| int result; |
| /* PP_Clocks minClocks; */ |
| uint32_t mvdd; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| SMU_SclkSetting curr_sclk_setting = { 0 }; |
| |
| result = vegam_calculate_sclk_params(hwmgr, clock, &curr_sclk_setting); |
| |
| /* populate graphics levels */ |
| result = vegam_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_sclk, clock, |
| &level->MinVoltage, &mvdd); |
| |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find VDDC voltage value for " |
| "VDDC engine clock dependency table", |
| return result); |
| level->ActivityLevel = (uint16_t)(SclkDPMTuning_VEGAM >> DPMTuning_Activity_Shift); |
| |
| level->CcPwrDynRm = 0; |
| level->CcPwrDynRm1 = 0; |
| level->EnabledForActivity = 0; |
| level->EnabledForThrottle = 1; |
| level->VoltageDownHyst = 0; |
| level->PowerThrottle = 0; |
| data->display_timing.min_clock_in_sr = hwmgr->display_config->min_core_set_clock_in_sr; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep)) |
| level->DeepSleepDivId = vegam_get_sleep_divider_id_from_clock(clock, |
| hwmgr->display_config->min_core_set_clock_in_sr); |
| |
| level->SclkSetting = curr_sclk_setting; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(level->MinVoltage); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1); |
| CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(level->SclkSetting.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_up_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Pcc_down_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_int); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Fcw1_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(level->SclkSetting.Sclk_ss_slew_rate); |
| return 0; |
| } |
| |
| static int vegam_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_pcie_table *pcie_table = table_info->pcie_table; |
| uint8_t pcie_entry_cnt = (uint8_t) hw_data->dpm_table.pcie_speed_table.count; |
| int result = 0; |
| uint32_t array = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU75_Discrete_DpmTable, GraphicsLevel); |
| uint32_t array_size = sizeof(struct SMU75_Discrete_GraphicsLevel) * |
| SMU75_MAX_LEVELS_GRAPHICS; |
| struct SMU75_Discrete_GraphicsLevel *levels = |
| smu_data->smc_state_table.GraphicsLevel; |
| uint32_t i, max_entry; |
| uint8_t hightest_pcie_level_enabled = 0, |
| lowest_pcie_level_enabled = 0, |
| mid_pcie_level_enabled = 0, |
| count = 0; |
| |
| vegam_get_sclk_range_table(hwmgr, &(smu_data->smc_state_table)); |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) { |
| |
| result = vegam_populate_single_graphic_level(hwmgr, |
| dpm_table->sclk_table.dpm_levels[i].value, |
| &(smu_data->smc_state_table.GraphicsLevel[i])); |
| if (result) |
| return result; |
| |
| levels[i].UpHyst = (uint8_t) |
| (SclkDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift); |
| levels[i].DownHyst = (uint8_t) |
| (SclkDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift); |
| /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */ |
| if (i > 1) |
| levels[i].DeepSleepDivId = 0; |
| } |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SPLLShutdownSupport)) |
| smu_data->smc_state_table.GraphicsLevel[0].SclkSetting.SSc_En = 0; |
| |
| smu_data->smc_state_table.GraphicsDpmLevelCount = |
| (uint8_t)dpm_table->sclk_table.count; |
| hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table); |
| |
| for (i = 0; i < dpm_table->sclk_table.count; i++) |
| levels[i].EnabledForActivity = |
| (hw_data->dpm_level_enable_mask.sclk_dpm_enable_mask >> i) & 0x1; |
| |
| if (pcie_table != NULL) { |
| PP_ASSERT_WITH_CODE((1 <= pcie_entry_cnt), |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -EINVAL); |
| max_entry = pcie_entry_cnt - 1; |
| for (i = 0; i < dpm_table->sclk_table.count; i++) |
| levels[i].pcieDpmLevel = |
| (uint8_t) ((i < max_entry) ? i : max_entry); |
| } else { |
| while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (hightest_pcie_level_enabled + 1))) != 0)) |
| hightest_pcie_level_enabled++; |
| |
| while (hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask && |
| ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << lowest_pcie_level_enabled)) == 0)) |
| lowest_pcie_level_enabled++; |
| |
| while ((count < hightest_pcie_level_enabled) && |
| ((hw_data->dpm_level_enable_mask.pcie_dpm_enable_mask & |
| (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) |
| count++; |
| |
| mid_pcie_level_enabled = (lowest_pcie_level_enabled + 1 + count) < |
| hightest_pcie_level_enabled ? |
| (lowest_pcie_level_enabled + 1 + count) : |
| hightest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to hightest_pcie_level_enabled */ |
| for (i = 2; i < dpm_table->sclk_table.count; i++) |
| levels[i].pcieDpmLevel = hightest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to lowest_pcie_level_enabled */ |
| levels[0].pcieDpmLevel = lowest_pcie_level_enabled; |
| |
| /* set pcieDpmLevel to mid_pcie_level_enabled */ |
| levels[1].pcieDpmLevel = mid_pcie_level_enabled; |
| } |
| /* level count will send to smc once at init smc table and never change */ |
| result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
| (uint32_t)array_size, SMC_RAM_END); |
| |
| return result; |
| } |
| |
| static int vegam_calculate_mclk_params(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level) |
| { |
| struct pp_atomctrl_memory_clock_param_ai mpll_param; |
| |
| PP_ASSERT_WITH_CODE(!atomctrl_get_memory_pll_dividers_ai(hwmgr, |
| clock, &mpll_param), |
| "Failed to retrieve memory pll parameter.", |
| return -EINVAL); |
| |
| mem_level->MclkFrequency = (uint32_t)mpll_param.ulClock; |
| mem_level->Fcw_int = (uint16_t)mpll_param.ulMclk_fcw_int; |
| mem_level->Fcw_frac = (uint16_t)mpll_param.ulMclk_fcw_frac; |
| mem_level->Postdiv = (uint8_t)mpll_param.ulPostDiv; |
| |
| return 0; |
| } |
| |
| static int vegam_populate_single_memory_level(struct pp_hwmgr *hwmgr, |
| uint32_t clock, struct SMU75_Discrete_MemoryLevel *mem_level) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| int result = 0; |
| uint32_t mclk_stutter_mode_threshold = 60000; |
| |
| |
| if (table_info->vdd_dep_on_mclk) { |
| result = vegam_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_mclk, clock, |
| &mem_level->MinVoltage, &mem_level->MinMvdd); |
| PP_ASSERT_WITH_CODE(!result, |
| "can not find MinVddc voltage value from memory " |
| "VDDC voltage dependency table", return result); |
| } |
| |
| result = vegam_calculate_mclk_params(hwmgr, clock, mem_level); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to calculate mclk params.", |
| return -EINVAL); |
| |
| mem_level->EnabledForThrottle = 1; |
| mem_level->EnabledForActivity = 0; |
| mem_level->VoltageDownHyst = 0; |
| mem_level->ActivityLevel = (uint16_t) |
| (MemoryDPMTuning_VEGAM >> DPMTuning_Activity_Shift); |
| mem_level->StutterEnable = false; |
| mem_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW; |
| |
| data->display_timing.num_existing_displays = hwmgr->display_config->num_display; |
| data->display_timing.vrefresh = hwmgr->display_config->vrefresh; |
| |
| if (mclk_stutter_mode_threshold && |
| (clock <= mclk_stutter_mode_threshold) && |
| (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, |
| STUTTER_ENABLE) & 0x1)) |
| mem_level->StutterEnable = true; |
| |
| if (!result) { |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinMvdd); |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(mem_level->Fcw_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(mem_level->ActivityLevel); |
| CONVERT_FROM_HOST_TO_SMC_UL(mem_level->MinVoltage); |
| } |
| |
| return result; |
| } |
| |
| static int vegam_populate_all_memory_levels(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct smu7_dpm_table *dpm_table = &hw_data->dpm_table; |
| int result; |
| /* populate MCLK dpm table to SMU7 */ |
| uint32_t array = smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU75_Discrete_DpmTable, MemoryLevel); |
| uint32_t array_size = sizeof(SMU75_Discrete_MemoryLevel) * |
| SMU75_MAX_LEVELS_MEMORY; |
| struct SMU75_Discrete_MemoryLevel *levels = |
| smu_data->smc_state_table.MemoryLevel; |
| uint32_t i; |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) { |
| PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value), |
| "can not populate memory level as memory clock is zero", |
| return -EINVAL); |
| result = vegam_populate_single_memory_level(hwmgr, |
| dpm_table->mclk_table.dpm_levels[i].value, |
| &levels[i]); |
| |
| if (result) |
| return result; |
| |
| levels[i].UpHyst = (uint8_t) |
| (MemoryDPMTuning_VEGAM >> DPMTuning_Uphyst_Shift); |
| levels[i].DownHyst = (uint8_t) |
| (MemoryDPMTuning_VEGAM >> DPMTuning_Downhyst_Shift); |
| } |
| |
| smu_data->smc_state_table.MemoryDpmLevelCount = |
| (uint8_t)dpm_table->mclk_table.count; |
| hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask = |
| phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table); |
| |
| for (i = 0; i < dpm_table->mclk_table.count; i++) |
| levels[i].EnabledForActivity = |
| (hw_data->dpm_level_enable_mask.mclk_dpm_enable_mask >> i) & 0x1; |
| |
| levels[dpm_table->mclk_table.count - 1].DisplayWatermark = |
| PPSMC_DISPLAY_WATERMARK_HIGH; |
| |
| /* level count will send to smc once at init smc table and never change */ |
| result = smu7_copy_bytes_to_smc(hwmgr, array, (uint8_t *)levels, |
| (uint32_t)array_size, SMC_RAM_END); |
| |
| return result; |
| } |
| |
| static int vegam_populate_mvdd_value(struct pp_hwmgr *hwmgr, |
| uint32_t mclk, SMIO_Pattern *smio_pat) |
| { |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint32_t i = 0; |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) { |
| /* find mvdd value which clock is more than request */ |
| for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) { |
| if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) { |
| smio_pat->Voltage = data->mvdd_voltage_table.entries[i].value; |
| break; |
| } |
| } |
| PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count, |
| "MVDD Voltage is outside the supported range.", |
| return -EINVAL); |
| } else |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int vegam_populate_smc_acpi_level(struct pp_hwmgr *hwmgr, |
| SMU75_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| uint32_t sclk_frequency; |
| const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| SMIO_Pattern vol_level; |
| uint32_t mvdd; |
| uint16_t us_mvdd; |
| |
| table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC; |
| |
| /* Get MinVoltage and Frequency from DPM0, |
| * already converted to SMC_UL */ |
| sclk_frequency = data->vbios_boot_state.sclk_bootup_value; |
| result = vegam_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_sclk, |
| sclk_frequency, |
| &table->ACPILevel.MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE(!result, |
| "Cannot find ACPI VDDC voltage value " |
| "in Clock Dependency Table", |
| ); |
| |
| result = vegam_calculate_sclk_params(hwmgr, sclk_frequency, |
| &(table->ACPILevel.SclkSetting)); |
| PP_ASSERT_WITH_CODE(!result, |
| "Error retrieving Engine Clock dividers from VBIOS.", |
| return result); |
| |
| table->ACPILevel.DeepSleepDivId = 0; |
| table->ACPILevel.CcPwrDynRm = 0; |
| table->ACPILevel.CcPwrDynRm1 = 0; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.MinVoltage); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkSetting.SclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_fcw_int); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_up_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Pcc_down_slew_rate); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_int); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Fcw1_frac); |
| CONVERT_FROM_HOST_TO_SMC_US(table->ACPILevel.SclkSetting.Sclk_ss_slew_rate); |
| |
| |
| /* Get MinVoltage and Frequency from DPM0, already converted to SMC_UL */ |
| table->MemoryACPILevel.MclkFrequency = data->vbios_boot_state.mclk_bootup_value; |
| result = vegam_get_dependency_volt_by_clk(hwmgr, |
| table_info->vdd_dep_on_mclk, |
| table->MemoryACPILevel.MclkFrequency, |
| &table->MemoryACPILevel.MinVoltage, &mvdd); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "Cannot find ACPI VDDCI voltage value " |
| "in Clock Dependency Table", |
| ); |
| |
| us_mvdd = 0; |
| if ((SMU7_VOLTAGE_CONTROL_NONE == data->mvdd_control) || |
| (data->mclk_dpm_key_disabled)) |
| us_mvdd = data->vbios_boot_state.mvdd_bootup_value; |
| else { |
| if (!vegam_populate_mvdd_value(hwmgr, |
| data->dpm_table.mclk_table.dpm_levels[0].value, |
| &vol_level)) |
| us_mvdd = vol_level.Voltage; |
| } |
| |
| if (!vegam_populate_mvdd_value(hwmgr, 0, &vol_level)) |
| table->MemoryACPILevel.MinMvdd = PP_HOST_TO_SMC_UL(vol_level.Voltage); |
| else |
| table->MemoryACPILevel.MinMvdd = 0; |
| |
| table->MemoryACPILevel.StutterEnable = false; |
| |
| table->MemoryACPILevel.EnabledForThrottle = 0; |
| table->MemoryACPILevel.EnabledForActivity = 0; |
| table->MemoryACPILevel.UpHyst = 0; |
| table->MemoryACPILevel.DownHyst = 100; |
| table->MemoryACPILevel.VoltageDownHyst = 0; |
| table->MemoryACPILevel.ActivityLevel = |
| PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage); |
| |
| return result; |
| } |
| |
| static int vegam_populate_smc_vce_level(struct pp_hwmgr *hwmgr, |
| SMU75_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t vddci; |
| |
| table->VceLevelCount = (uint8_t)(mm_table->count); |
| table->VceBootLevel = 0; |
| |
| for (count = 0; count < table->VceLevelCount; count++) { |
| table->VceLevel[count].Frequency = mm_table->entries[count].eclk; |
| table->VceLevel[count].MinVoltage = 0; |
| table->VceLevel[count].MinVoltage |= |
| (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
| vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
| vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; |
| else |
| vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| |
| |
| table->VceLevel[count].MinVoltage |= |
| (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->VceLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /*retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->VceLevel[count].Frequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for VCE engine clock", |
| return result); |
| |
| table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].MinVoltage); |
| } |
| return result; |
| } |
| |
| static int vegam_populate_memory_timing_parameters(struct pp_hwmgr *hwmgr, |
| int32_t eng_clock, int32_t mem_clock, |
| SMU75_Discrete_MCArbDramTimingTableEntry *arb_regs) |
| { |
| uint32_t dram_timing; |
| uint32_t dram_timing2; |
| uint32_t burst_time; |
| uint32_t rfsh_rate; |
| uint32_t misc3; |
| |
| int result; |
| |
| result = atomctrl_set_engine_dram_timings_rv770(hwmgr, |
| eng_clock, mem_clock); |
| PP_ASSERT_WITH_CODE(result == 0, |
| "Error calling VBIOS to set DRAM_TIMING.", |
| return result); |
| |
| dram_timing = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING); |
| dram_timing2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2); |
| burst_time = cgs_read_register(hwmgr->device, mmMC_ARB_BURST_TIME); |
| rfsh_rate = cgs_read_register(hwmgr->device, mmMC_ARB_RFSH_RATE); |
| misc3 = cgs_read_register(hwmgr->device, mmMC_ARB_MISC3); |
| |
| arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dram_timing); |
| arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dram_timing2); |
| arb_regs->McArbBurstTime = PP_HOST_TO_SMC_UL(burst_time); |
| arb_regs->McArbRfshRate = PP_HOST_TO_SMC_UL(rfsh_rate); |
| arb_regs->McArbMisc3 = PP_HOST_TO_SMC_UL(misc3); |
| |
| return 0; |
| } |
| |
| static int vegam_program_memory_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct SMU75_Discrete_MCArbDramTimingTable arb_regs; |
| uint32_t i, j; |
| int result = 0; |
| |
| memset(&arb_regs, 0, sizeof(SMU75_Discrete_MCArbDramTimingTable)); |
| |
| for (i = 0; i < hw_data->dpm_table.sclk_table.count; i++) { |
| for (j = 0; j < hw_data->dpm_table.mclk_table.count; j++) { |
| result = vegam_populate_memory_timing_parameters(hwmgr, |
| hw_data->dpm_table.sclk_table.dpm_levels[i].value, |
| hw_data->dpm_table.mclk_table.dpm_levels[j].value, |
| &arb_regs.entries[i][j]); |
| if (result) |
| return result; |
| } |
| } |
| |
| result = smu7_copy_bytes_to_smc( |
| hwmgr, |
| smu_data->smu7_data.arb_table_start, |
| (uint8_t *)&arb_regs, |
| sizeof(SMU75_Discrete_MCArbDramTimingTable), |
| SMC_RAM_END); |
| return result; |
| } |
| |
| static int vegam_populate_smc_uvd_level(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_DpmTable *table) |
| { |
| int result = -EINVAL; |
| uint8_t count; |
| struct pp_atomctrl_clock_dividers_vi dividers; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = |
| table_info->mm_dep_table; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| uint32_t vddci; |
| |
| table->UvdLevelCount = (uint8_t)(mm_table->count); |
| table->UvdBootLevel = 0; |
| |
| for (count = 0; count < table->UvdLevelCount; count++) { |
| table->UvdLevel[count].MinVoltage = 0; |
| table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk; |
| table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk; |
| table->UvdLevel[count].MinVoltage |= |
| (mm_table->entries[count].vddc * VOLTAGE_SCALE) << VDDC_SHIFT; |
| |
| if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) |
| vddci = (uint32_t)phm_find_closest_vddci(&(data->vddci_voltage_table), |
| mm_table->entries[count].vddc - VDDC_VDDCI_DELTA); |
| else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) |
| vddci = mm_table->entries[count].vddc - VDDC_VDDCI_DELTA; |
| else |
| vddci = (data->vbios_boot_state.vddci_bootup_value * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| |
| table->UvdLevel[count].MinVoltage |= (vddci * VOLTAGE_SCALE) << VDDCI_SHIFT; |
| table->UvdLevel[count].MinVoltage |= 1 << PHASES_SHIFT; |
| |
| /* retrieve divider value for VBIOS */ |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].VclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Vclk clock", return result); |
| |
| table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| table->UvdLevel[count].DclkFrequency, ÷rs); |
| PP_ASSERT_WITH_CODE((0 == result), |
| "can not find divide id for Dclk clock", return result); |
| |
| table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].MinVoltage); |
| } |
| |
| return result; |
| } |
| |
| static int vegam_populate_smc_boot_level(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_DpmTable *table) |
| { |
| int result = 0; |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| table->GraphicsBootLevel = 0; |
| table->MemoryBootLevel = 0; |
| |
| /* find boot level from dpm table */ |
| result = phm_find_boot_level(&(data->dpm_table.sclk_table), |
| data->vbios_boot_state.sclk_bootup_value, |
| (uint32_t *)&(table->GraphicsBootLevel)); |
| |
| result = phm_find_boot_level(&(data->dpm_table.mclk_table), |
| data->vbios_boot_state.mclk_bootup_value, |
| (uint32_t *)&(table->MemoryBootLevel)); |
| |
| table->BootVddc = data->vbios_boot_state.vddc_bootup_value * |
| VOLTAGE_SCALE; |
| table->BootVddci = data->vbios_boot_state.vddci_bootup_value * |
| VOLTAGE_SCALE; |
| table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value * |
| VOLTAGE_SCALE; |
| |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootVddc); |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootVddci); |
| CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd); |
| |
| return 0; |
| } |
| |
| static int vegam_populate_smc_initial_state(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint8_t count, level; |
| |
| count = (uint8_t)(table_info->vdd_dep_on_sclk->count); |
| |
| for (level = 0; level < count; level++) { |
| if (table_info->vdd_dep_on_sclk->entries[level].clk >= |
| hw_data->vbios_boot_state.sclk_bootup_value) { |
| smu_data->smc_state_table.GraphicsBootLevel = level; |
| break; |
| } |
| } |
| |
| count = (uint8_t)(table_info->vdd_dep_on_mclk->count); |
| for (level = 0; level < count; level++) { |
| if (table_info->vdd_dep_on_mclk->entries[level].clk >= |
| hw_data->vbios_boot_state.mclk_bootup_value) { |
| smu_data->smc_state_table.MemoryBootLevel = level; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static uint16_t scale_fan_gain_settings(uint16_t raw_setting) |
| { |
| uint32_t tmp; |
| tmp = raw_setting * 4096 / 100; |
| return (uint16_t)tmp; |
| } |
| |
| static int vegam_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| |
| const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
| SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table; |
| struct pp_advance_fan_control_parameters *fan_table = |
| &hwmgr->thermal_controller.advanceFanControlParameters; |
| int i, j, k; |
| const uint16_t *pdef1; |
| const uint16_t *pdef2; |
| |
| table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); |
| table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 128)); |
| |
| PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255, |
| "Target Operating Temp is out of Range!", |
| ); |
| |
| table->TemperatureLimitEdge = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTargetOperatingTemp * 256); |
| table->TemperatureLimitHotspot = PP_HOST_TO_SMC_US( |
| cac_dtp_table->usTemperatureLimitHotspot * 256); |
| table->FanGainEdge = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainEdge)); |
| table->FanGainHotspot = PP_HOST_TO_SMC_US( |
| scale_fan_gain_settings(fan_table->usFanGainHotspot)); |
| |
| pdef1 = defaults->BAPMTI_R; |
| pdef2 = defaults->BAPMTI_RC; |
| |
| for (i = 0; i < SMU75_DTE_ITERATIONS; i++) { |
| for (j = 0; j < SMU75_DTE_SOURCES; j++) { |
| for (k = 0; k < SMU75_DTE_SINKS; k++) { |
| table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*pdef1); |
| table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*pdef2); |
| pdef1++; |
| pdef2++; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int vegam_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t ro, efuse, volt_without_cks, volt_with_cks, value, max, min; |
| struct vegam_smumgr *smu_data = |
| (struct vegam_smumgr *)(hwmgr->smu_backend); |
| |
| uint8_t i, stretch_amount, stretch_amount2, volt_offset = 0; |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| uint32_t mask = (1 << ((STRAP_ASIC_RO_MSB - STRAP_ASIC_RO_LSB) + 1)) - 1; |
| |
| stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount; |
| |
| atomctrl_read_efuse(hwmgr, STRAP_ASIC_RO_LSB, STRAP_ASIC_RO_MSB, |
| mask, &efuse); |
| |
| min = 1200; |
| max = 2500; |
| |
| ro = efuse * (max - min) / 255 + min; |
| |
| /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */ |
| for (i = 0; i < sclk_table->count; i++) { |
| smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |= |
| sclk_table->entries[i].cks_enable << i; |
| volt_without_cks = (uint32_t)((2753594000U + (sclk_table->entries[i].clk/100) * |
| 136418 - (ro - 70) * 1000000) / |
| (2424180 - (sclk_table->entries[i].clk/100) * 1132925/1000)); |
| volt_with_cks = (uint32_t)((2797202000U + sclk_table->entries[i].clk/100 * |
| 3232 - (ro - 65) * 1000000) / |
| (2522480 - sclk_table->entries[i].clk/100 * 115764/100)); |
| |
| if (volt_without_cks >= volt_with_cks) |
| volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks + |
| sclk_table->entries[i].cks_voffset) * 100 + 624) / 625); |
| |
| smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset; |
| } |
| |
| smu_data->smc_state_table.LdoRefSel = |
| (table_info->cac_dtp_table->ucCKS_LDO_REFSEL != 0) ? |
| table_info->cac_dtp_table->ucCKS_LDO_REFSEL : 5; |
| /* Populate CKS Lookup Table */ |
| if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5) |
| stretch_amount2 = 0; |
| else if (stretch_amount == 3 || stretch_amount == 4) |
| stretch_amount2 = 1; |
| else { |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher); |
| PP_ASSERT_WITH_CODE(false, |
| "Stretch Amount in PPTable not supported\n", |
| return -EINVAL); |
| } |
| |
| value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL); |
| value &= 0xFFFFFFFE; |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, ixPWR_CKS_CNTL, value); |
| |
| return 0; |
| } |
| |
| static bool vegam_is_hw_avfs_present(struct pp_hwmgr *hwmgr) |
| { |
| uint32_t efuse; |
| |
| efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixSMU_EFUSE_0 + (49 * 4)); |
| efuse &= 0x00000001; |
| |
| if (efuse) |
| return true; |
| |
| return false; |
| } |
| |
| static int vegam_populate_avfs_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| |
| SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| int result = 0; |
| struct pp_atom_ctrl__avfs_parameters avfs_params = {0}; |
| AVFS_meanNsigma_t AVFS_meanNsigma = { {0} }; |
| AVFS_Sclk_Offset_t AVFS_SclkOffset = { {0} }; |
| uint32_t tmp, i; |
| |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)hwmgr->pptable; |
| struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table = |
| table_info->vdd_dep_on_sclk; |
| |
| if (!hwmgr->avfs_supported) |
| return 0; |
| |
| result = atomctrl_get_avfs_information(hwmgr, &avfs_params); |
| |
| if (0 == result) { |
| table->BTCGB_VDROOP_TABLE[0].a0 = |
| PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a0); |
| table->BTCGB_VDROOP_TABLE[0].a1 = |
| PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a1); |
| table->BTCGB_VDROOP_TABLE[0].a2 = |
| PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSON_a2); |
| table->BTCGB_VDROOP_TABLE[1].a0 = |
| PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a0); |
| table->BTCGB_VDROOP_TABLE[1].a1 = |
| PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a1); |
| table->BTCGB_VDROOP_TABLE[1].a2 = |
| PP_HOST_TO_SMC_UL(avfs_params.ulGB_VDROOP_TABLE_CKSOFF_a2); |
| table->AVFSGB_FUSE_TABLE[0].m1 = |
| PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_m1); |
| table->AVFSGB_FUSE_TABLE[0].m2 = |
| PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSON_m2); |
| table->AVFSGB_FUSE_TABLE[0].b = |
| PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSON_b); |
| table->AVFSGB_FUSE_TABLE[0].m1_shift = 24; |
| table->AVFSGB_FUSE_TABLE[0].m2_shift = 12; |
| table->AVFSGB_FUSE_TABLE[1].m1 = |
| PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_m1); |
| table->AVFSGB_FUSE_TABLE[1].m2 = |
| PP_HOST_TO_SMC_US(avfs_params.usAVFSGB_FUSE_TABLE_CKSOFF_m2); |
| table->AVFSGB_FUSE_TABLE[1].b = |
| PP_HOST_TO_SMC_UL(avfs_params.ulAVFSGB_FUSE_TABLE_CKSOFF_b); |
| table->AVFSGB_FUSE_TABLE[1].m1_shift = 24; |
| table->AVFSGB_FUSE_TABLE[1].m2_shift = 12; |
| table->MaxVoltage = PP_HOST_TO_SMC_US(avfs_params.usMaxVoltage_0_25mv); |
| AVFS_meanNsigma.Aconstant[0] = |
| PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant0); |
| AVFS_meanNsigma.Aconstant[1] = |
| PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant1); |
| AVFS_meanNsigma.Aconstant[2] = |
| PP_HOST_TO_SMC_UL(avfs_params.ulAVFS_meanNsigma_Acontant2); |
| AVFS_meanNsigma.DC_tol_sigma = |
| PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_DC_tol_sigma); |
| AVFS_meanNsigma.Platform_mean = |
| PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_mean); |
| AVFS_meanNsigma.PSM_Age_CompFactor = |
| PP_HOST_TO_SMC_US(avfs_params.usPSM_Age_ComFactor); |
| AVFS_meanNsigma.Platform_sigma = |
| PP_HOST_TO_SMC_US(avfs_params.usAVFS_meanNsigma_Platform_sigma); |
| |
| for (i = 0; i < sclk_table->count; i++) { |
| AVFS_meanNsigma.Static_Voltage_Offset[i] = |
| (uint8_t)(sclk_table->entries[i].cks_voffset * 100 / 625); |
| AVFS_SclkOffset.Sclk_Offset[i] = |
| PP_HOST_TO_SMC_US((uint16_t) |
| (sclk_table->entries[i].sclk_offset) / 100); |
| } |
| |
| result = smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, AvfsMeanNSigma), |
| &tmp, SMC_RAM_END); |
| smu7_copy_bytes_to_smc(hwmgr, |
| tmp, |
| (uint8_t *)&AVFS_meanNsigma, |
| sizeof(AVFS_meanNsigma_t), |
| SMC_RAM_END); |
| |
| result = smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, AvfsSclkOffsetTable), |
| &tmp, SMC_RAM_END); |
| smu7_copy_bytes_to_smc(hwmgr, |
| tmp, |
| (uint8_t *)&AVFS_SclkOffset, |
| sizeof(AVFS_Sclk_Offset_t), |
| SMC_RAM_END); |
| |
| data->avfs_vdroop_override_setting = |
| (avfs_params.ucEnableGB_VDROOP_TABLE_CKSON << BTCGB0_Vdroop_Enable_SHIFT) | |
| (avfs_params.ucEnableGB_VDROOP_TABLE_CKSOFF << BTCGB1_Vdroop_Enable_SHIFT) | |
| (avfs_params.ucEnableGB_FUSE_TABLE_CKSON << AVFSGB0_Vdroop_Enable_SHIFT) | |
| (avfs_params.ucEnableGB_FUSE_TABLE_CKSOFF << AVFSGB1_Vdroop_Enable_SHIFT); |
| data->apply_avfs_cks_off_voltage = |
| (avfs_params.ucEnableApplyAVFS_CKS_OFF_Voltage == 1) ? true : false; |
| } |
| return result; |
| } |
| |
| static int vegam_populate_vr_config(struct pp_hwmgr *hwmgr, |
| struct SMU75_Discrete_DpmTable *table) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = |
| (struct vegam_smumgr *)(hwmgr->smu_backend); |
| uint16_t config; |
| |
| config = VR_MERGED_WITH_VDDC; |
| table->VRConfig |= (config << VRCONF_VDDGFX_SHIFT); |
| |
| /* Set Vddc Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) { |
| config = VR_SVI2_PLANE_1; |
| table->VRConfig |= config; |
| } else { |
| PP_ASSERT_WITH_CODE(false, |
| "VDDC should be on SVI2 control in merged mode!", |
| ); |
| } |
| /* Set Vddci Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) { |
| config = VR_SVI2_PLANE_2; /* only in merged mode */ |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) { |
| config = VR_SMIO_PATTERN_1; |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } else { |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig |= (config << VRCONF_VDDCI_SHIFT); |
| } |
| /* Set Mvdd Voltage Controller */ |
| if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control) { |
| if (config != VR_SVI2_PLANE_2) { |
| config = VR_SVI2_PLANE_2; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, |
| smu_data->smu7_data.soft_regs_start + |
| offsetof(SMU75_SoftRegisters, AllowMvddSwitch), |
| 0x1); |
| } else { |
| PP_ASSERT_WITH_CODE(false, |
| "SVI2 Plane 2 is already taken, set MVDD as Static",); |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig = (config << VRCONF_MVDD_SHIFT); |
| } |
| } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) { |
| config = VR_SMIO_PATTERN_2; |
| table->VRConfig = (config << VRCONF_MVDD_SHIFT); |
| cgs_write_ind_register(hwmgr->device, |
| CGS_IND_REG__SMC, |
| smu_data->smu7_data.soft_regs_start + |
| offsetof(SMU75_SoftRegisters, AllowMvddSwitch), |
| 0x1); |
| } else { |
| config = VR_STATIC_VOLTAGE; |
| table->VRConfig |= (config << VRCONF_MVDD_SHIFT); |
| } |
| |
| return 0; |
| } |
| |
| static int vegam_populate_svi_load_line(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| smu_data->power_tune_table.SviLoadLineEn = defaults->SviLoadLineEn; |
| smu_data->power_tune_table.SviLoadLineVddC = defaults->SviLoadLineVddC; |
| smu_data->power_tune_table.SviLoadLineTrimVddC = 3; |
| smu_data->power_tune_table.SviLoadLineOffsetVddC = 0; |
| |
| return 0; |
| } |
| |
| static int vegam_populate_tdc_limit(struct pp_hwmgr *hwmgr) |
| { |
| uint16_t tdc_limit; |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
| |
| tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 128); |
| smu_data->power_tune_table.TDC_VDDC_PkgLimit = |
| CONVERT_FROM_HOST_TO_SMC_US(tdc_limit); |
| smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc = |
| defaults->TDC_VDDC_ThrottleReleaseLimitPerc; |
| smu_data->power_tune_table.TDC_MAWt = defaults->TDC_MAWt; |
| |
| return 0; |
| } |
| |
| static int vegam_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| const struct vegam_pt_defaults *defaults = smu_data->power_tune_defaults; |
| uint32_t temp; |
| |
| if (smu7_read_smc_sram_dword(hwmgr, |
| fuse_table_offset + |
| offsetof(SMU75_Discrete_PmFuses, TdcWaterfallCtl), |
| (uint32_t *)&temp, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!", |
| return -EINVAL); |
| else { |
| smu_data->power_tune_table.TdcWaterfallCtl = defaults->TdcWaterfallCtl; |
| smu_data->power_tune_table.LPMLTemperatureMin = |
| (uint8_t)((temp >> 16) & 0xff); |
| smu_data->power_tune_table.LPMLTemperatureMax = |
| (uint8_t)((temp >> 8) & 0xff); |
| smu_data->power_tune_table.Reserved = (uint8_t)(temp & 0xff); |
| } |
| return 0; |
| } |
| |
| static int vegam_populate_temperature_scaler(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| |
| /* Currently not used. Set all to zero. */ |
| for (i = 0; i < 16; i++) |
| smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0; |
| |
| return 0; |
| } |
| |
| static int vegam_populate_fuzzy_fan(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| |
| /* TO DO move to hwmgr */ |
| if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15)) |
| || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity) |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity = |
| hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity; |
| |
| smu_data->power_tune_table.FuzzyFan_PwmSetDelta = PP_HOST_TO_SMC_US( |
| hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity); |
| return 0; |
| } |
| |
| static int vegam_populate_gnb_lpml(struct pp_hwmgr *hwmgr) |
| { |
| int i; |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| |
| /* Currently not used. Set all to zero. */ |
| for (i = 0; i < 16; i++) |
| smu_data->power_tune_table.GnbLPML[i] = 0; |
| |
| return 0; |
| } |
| |
| static int vegam_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd; |
| uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd; |
| struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table; |
| |
| hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256); |
| lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256); |
| |
| smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(hi_sidd); |
| smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd = |
| CONVERT_FROM_HOST_TO_SMC_US(lo_sidd); |
| |
| return 0; |
| } |
| |
| static int vegam_populate_pm_fuses(struct pp_hwmgr *hwmgr) |
| { |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| uint32_t pm_fuse_table_offset; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_PowerContainment)) { |
| if (smu7_read_smc_sram_dword(hwmgr, |
| SMU7_FIRMWARE_HEADER_LOCATION + |
| offsetof(SMU75_Firmware_Header, PmFuseTable), |
| &pm_fuse_table_offset, SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to get pm_fuse_table_offset Failed!", |
| return -EINVAL); |
| |
| if (vegam_populate_svi_load_line(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate SviLoadLine Failed!", |
| return -EINVAL); |
| |
| if (vegam_populate_tdc_limit(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate TDCLimit Failed!", return -EINVAL); |
| |
| if (vegam_populate_dw8(hwmgr, pm_fuse_table_offset)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate TdcWaterfallCtl, " |
| "LPMLTemperature Min and Max Failed!", |
| return -EINVAL); |
| |
| if (0 != vegam_populate_temperature_scaler(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate LPMLTemperatureScaler Failed!", |
| return -EINVAL); |
| |
| if (vegam_populate_fuzzy_fan(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate Fuzzy Fan Control parameters Failed!", |
| return -EINVAL); |
| |
| if (vegam_populate_gnb_lpml(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate GnbLPML Failed!", |
| return -EINVAL); |
| |
| if (vegam_populate_bapm_vddc_base_leakage_sidd(hwmgr)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to populate BapmVddCBaseLeakage Hi and Lo " |
| "Sidd Failed!", return -EINVAL); |
| |
| if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset, |
| (uint8_t *)&smu_data->power_tune_table, |
| (sizeof(struct SMU75_Discrete_PmFuses) - PMFUSES_AVFSSIZE), |
| SMC_RAM_END)) |
| PP_ASSERT_WITH_CODE(false, |
| "Attempt to download PmFuseTable Failed!", |
| return -EINVAL); |
| } |
| return 0; |
| } |
| |
| static int vegam_enable_reconfig_cus(struct pp_hwmgr *hwmgr) |
| { |
| struct amdgpu_device *adev = hwmgr->adev; |
| |
| smum_send_msg_to_smc_with_parameter(hwmgr, |
| PPSMC_MSG_EnableModeSwitchRLCNotification, |
| adev->gfx.cu_info.number); |
| |
| return 0; |
| } |
| |
| static int vegam_init_smc_table(struct pp_hwmgr *hwmgr) |
| { |
| int result; |
| struct smu7_hwmgr *hw_data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = (struct vegam_smumgr *)(hwmgr->smu_backend); |
| |
| struct phm_ppt_v1_information *table_info = |
| (struct phm_ppt_v1_information *)(hwmgr->pptable); |
| struct SMU75_Discrete_DpmTable *table = &(smu_data->smc_state_table); |
| uint8_t i; |
| struct pp_atomctrl_gpio_pin_assignment gpio_pin; |
| struct phm_ppt_v1_gpio_table *gpio_table = |
| (struct phm_ppt_v1_gpio_table *)table_info->gpio_table; |
| pp_atomctrl_clock_dividers_vi dividers; |
| |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| |
| vegam_initialize_power_tune_defaults(hwmgr); |
| |
| if (SMU7_VOLTAGE_CONTROL_NONE != hw_data->voltage_control) |
| vegam_populate_smc_voltage_tables(hwmgr, table); |
| |
| table->SystemFlags = 0; |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_StepVddc)) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC; |
| |
| if (hw_data->is_memory_gddr5) |
| table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5; |
| |
| if (hw_data->ulv_supported && table_info->us_ulv_voltage_offset) { |
| result = vegam_populate_ulv_state(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize ULV state!", return result); |
| cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, |
| ixCG_ULV_PARAMETER, SMU7_CGULVPARAMETER_DFLT); |
| } |
| |
| result = vegam_populate_smc_link_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Link Level!", return result); |
| |
| result = vegam_populate_all_graphic_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Graphics Level!", return result); |
| |
| result = vegam_populate_all_memory_levels(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Memory Level!", return result); |
| |
| result = vegam_populate_smc_acpi_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize ACPI Level!", return result); |
| |
| result = vegam_populate_smc_vce_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize VCE Level!", return result); |
| |
| /* Since only the initial state is completely set up at this point |
| * (the other states are just copies of the boot state) we only |
| * need to populate the ARB settings for the initial state. |
| */ |
| result = vegam_program_memory_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to Write ARB settings for the initial state.", return result); |
| |
| result = vegam_populate_smc_uvd_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize UVD Level!", return result); |
| |
| result = vegam_populate_smc_boot_level(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Boot Level!", return result); |
| |
| result = vegam_populate_smc_initial_state(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to initialize Boot State!", return result); |
| |
| result = vegam_populate_bapm_parameters_in_dpm_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate BAPM Parameters!", return result); |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_ClockStretcher)) { |
| result = vegam_populate_clock_stretcher_data_table(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate Clock Stretcher Data Table!", |
| return result); |
| } |
| |
| result = vegam_populate_avfs_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate AVFS Parameters!", return result;); |
| |
| table->CurrSclkPllRange = 0xff; |
| table->GraphicsVoltageChangeEnable = 1; |
| table->GraphicsThermThrottleEnable = 1; |
| table->GraphicsInterval = 1; |
| table->VoltageInterval = 1; |
| table->ThermalInterval = 1; |
| table->TemperatureLimitHigh = |
| table_info->cac_dtp_table->usTargetOperatingTemp * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT; |
| table->TemperatureLimitLow = |
| (table_info->cac_dtp_table->usTargetOperatingTemp - 1) * |
| SMU7_Q88_FORMAT_CONVERSION_UNIT; |
| table->MemoryVoltageChangeEnable = 1; |
| table->MemoryInterval = 1; |
| table->VoltageResponseTime = 0; |
| table->PhaseResponseTime = 0; |
| table->MemoryThermThrottleEnable = 1; |
| |
| PP_ASSERT_WITH_CODE(hw_data->dpm_table.pcie_speed_table.count >= 1, |
| "There must be 1 or more PCIE levels defined in PPTable.", |
| return -EINVAL); |
| table->PCIeBootLinkLevel = |
| hw_data->dpm_table.pcie_speed_table.count; |
| table->PCIeGenInterval = 1; |
| table->VRConfig = 0; |
| |
| result = vegam_populate_vr_config(hwmgr, table); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate VRConfig setting!", return result); |
| |
| table->ThermGpio = 17; |
| table->SclkStepSize = 0x4000; |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, |
| VDDC_VRHOT_GPIO_PINID, &gpio_pin)) { |
| table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| if (gpio_table) |
| table->VRHotLevel = |
| table_info->gpio_table->vrhot_triggered_sclk_dpm_index; |
| } else { |
| table->VRHotGpio = SMU7_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot); |
| } |
| |
| if (atomctrl_get_pp_assign_pin(hwmgr, |
| PP_AC_DC_SWITCH_GPIO_PINID, &gpio_pin)) { |
| table->AcDcGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition) && |
| !smum_send_msg_to_smc(hwmgr, PPSMC_MSG_UseNewGPIOScheme)) |
| phm_cap_set(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SMCtoPPLIBAcdcGpioScheme); |
| } else { |
| table->AcDcGpio = SMU7_UNUSED_GPIO_PIN; |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_AutomaticDCTransition); |
| } |
| |
| /* Thermal Output GPIO */ |
| if (atomctrl_get_pp_assign_pin(hwmgr, |
| THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin)) { |
| table->ThermOutGpio = gpio_pin.uc_gpio_pin_bit_shift; |
| |
| /* For porlarity read GPIOPAD_A with assigned Gpio pin |
| * since VBIOS will program this register to set 'inactive state', |
| * driver can then determine 'active state' from this and |
| * program SMU with correct polarity |
| */ |
| table->ThermOutPolarity = |
| (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) & |
| (1 << gpio_pin.uc_gpio_pin_bit_shift))) ? 1:0; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY; |
| |
| /* if required, combine VRHot/PCC with thermal out GPIO */ |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_RegulatorHot) && |
| phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_CombinePCCWithThermalSignal)) |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT; |
| } else { |
| table->ThermOutGpio = 17; |
| table->ThermOutPolarity = 1; |
| table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE; |
| } |
| |
| /* Populate BIF_SCLK levels into SMC DPM table */ |
| for (i = 0; i <= hw_data->dpm_table.pcie_speed_table.count; i++) { |
| result = atomctrl_get_dfs_pll_dividers_vi(hwmgr, |
| smu_data->bif_sclk_table[i], ÷rs); |
| PP_ASSERT_WITH_CODE(!result, |
| "Can not find DFS divide id for Sclk", |
| return result); |
| |
| if (i == 0) |
| table->Ulv.BifSclkDfs = |
| PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider)); |
| else |
| table->LinkLevel[i - 1].BifSclkDfs = |
| PP_HOST_TO_SMC_US((uint16_t)(dividers.pll_post_divider)); |
| } |
| |
| for (i = 0; i < SMU75_MAX_ENTRIES_SMIO; i++) |
| table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]); |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize); |
| CONVERT_FROM_HOST_TO_SMC_UL(table->CurrSclkPllRange); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh); |
| CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow); |
| CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime); |
| CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime); |
| |
| /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */ |
| result = smu7_copy_bytes_to_smc(hwmgr, |
| smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU75_Discrete_DpmTable, SystemFlags), |
| (uint8_t *)&(table->SystemFlags), |
| sizeof(SMU75_Discrete_DpmTable) - 3 * sizeof(SMU75_PIDController), |
| SMC_RAM_END); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to upload dpm data to SMC memory!", return result); |
| |
| result = vegam_populate_pm_fuses(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to populate PM fuses to SMC memory!", return result); |
| |
| result = vegam_enable_reconfig_cus(hwmgr); |
| PP_ASSERT_WITH_CODE(!result, |
| "Failed to enable reconfigurable CUs!", return result); |
| |
| return 0; |
| } |
| |
| static uint32_t vegam_get_offsetof(uint32_t type, uint32_t member) |
| { |
| switch (type) { |
| case SMU_SoftRegisters: |
| switch (member) { |
| case HandshakeDisables: |
| return offsetof(SMU75_SoftRegisters, HandshakeDisables); |
| case VoltageChangeTimeout: |
| return offsetof(SMU75_SoftRegisters, VoltageChangeTimeout); |
| case AverageGraphicsActivity: |
| return offsetof(SMU75_SoftRegisters, AverageGraphicsActivity); |
| case AverageMemoryActivity: |
| return offsetof(SMU75_SoftRegisters, AverageMemoryActivity); |
| case PreVBlankGap: |
| return offsetof(SMU75_SoftRegisters, PreVBlankGap); |
| case VBlankTimeout: |
| return offsetof(SMU75_SoftRegisters, VBlankTimeout); |
| case UcodeLoadStatus: |
| return offsetof(SMU75_SoftRegisters, UcodeLoadStatus); |
| case DRAM_LOG_ADDR_H: |
| return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_H); |
| case DRAM_LOG_ADDR_L: |
| return offsetof(SMU75_SoftRegisters, DRAM_LOG_ADDR_L); |
| case DRAM_LOG_PHY_ADDR_H: |
| return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_H); |
| case DRAM_LOG_PHY_ADDR_L: |
| return offsetof(SMU75_SoftRegisters, DRAM_LOG_PHY_ADDR_L); |
| case DRAM_LOG_BUFF_SIZE: |
| return offsetof(SMU75_SoftRegisters, DRAM_LOG_BUFF_SIZE); |
| } |
| break; |
| case SMU_Discrete_DpmTable: |
| switch (member) { |
| case UvdBootLevel: |
| return offsetof(SMU75_Discrete_DpmTable, UvdBootLevel); |
| case VceBootLevel: |
| return offsetof(SMU75_Discrete_DpmTable, VceBootLevel); |
| case LowSclkInterruptThreshold: |
| return offsetof(SMU75_Discrete_DpmTable, LowSclkInterruptThreshold); |
| } |
| break; |
| } |
| pr_warn("can't get the offset of type %x member %x\n", type, member); |
| return 0; |
| } |
| |
| static int vegam_program_mem_timing_parameters(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| |
| if (data->need_update_smu7_dpm_table & |
| (DPMTABLE_OD_UPDATE_SCLK + |
| DPMTABLE_UPDATE_SCLK + |
| DPMTABLE_UPDATE_MCLK)) |
| return vegam_program_memory_timing_parameters(hwmgr); |
| |
| return 0; |
| } |
| |
| static int vegam_update_sclk_threshold(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| struct vegam_smumgr *smu_data = |
| (struct vegam_smumgr *)(hwmgr->smu_backend); |
| int result = 0; |
| uint32_t low_sclk_interrupt_threshold = 0; |
| |
| if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_SclkThrottleLowNotification) |
| && (data->low_sclk_interrupt_threshold != 0)) { |
| low_sclk_interrupt_threshold = |
| data->low_sclk_interrupt_threshold; |
| |
| CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold); |
| |
| result = smu7_copy_bytes_to_smc( |
| hwmgr, |
| smu_data->smu7_data.dpm_table_start + |
| offsetof(SMU75_Discrete_DpmTable, |
| LowSclkInterruptThreshold), |
| (uint8_t *)&low_sclk_interrupt_threshold, |
| sizeof(uint32_t), |
| SMC_RAM_END); |
| } |
| PP_ASSERT_WITH_CODE((result == 0), |
| "Failed to update SCLK threshold!", return result); |
| |
| result = vegam_program_mem_timing_parameters(hwmgr); |
| PP_ASSERT_WITH_CODE((result == 0), |
| "Failed to program memory timing parameters!", |
| ); |
| |
| return result; |
| } |
| |
| int vegam_thermal_avfs_enable(struct pp_hwmgr *hwmgr) |
| { |
| struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend); |
| int ret; |
| |
| if (!hwmgr->avfs_supported) |
| return 0; |
| |
| ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_EnableAvfs); |
| if (!ret) { |
| if (data->apply_avfs_cks_off_voltage) |
| ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ApplyAvfsCksOffVoltage); |
| } |
| |
| return ret; |
| } |
| |
| static int vegam_thermal_setup_fan_table(struct pp_hwmgr *hwmgr) |
| { |
| PP_ASSERT_WITH_CODE(hwmgr->thermal_controller.fanInfo.bNoFan, |
| "VBIOS fan info is not correct!", |
| ); |
| phm_cap_unset(hwmgr->platform_descriptor.platformCaps, |
| PHM_PlatformCaps_MicrocodeFanControl); |
| return 0; |
| } |
| |
| const struct pp_smumgr_func vegam_smu_funcs = { |
| .name = "vegam_smu", |
| .smu_init = vegam_smu_init, |
| .smu_fini = smu7_smu_fini, |
| .start_smu = vegam_start_smu, |
| .check_fw_load_finish = smu7_check_fw_load_finish, |
| .request_smu_load_fw = smu7_reload_firmware, |
| .request_smu_load_specific_fw = NULL, |
| .send_msg_to_smc = smu7_send_msg_to_smc, |
| .send_msg_to_smc_with_parameter = smu7_send_msg_to_smc_with_parameter, |
| .process_firmware_header = vegam_process_firmware_header, |
| .is_dpm_running = vegam_is_dpm_running, |
| .get_mac_definition = vegam_get_mac_definition, |
| .update_smc_table = vegam_update_smc_table, |
| .init_smc_table = vegam_init_smc_table, |
| .get_offsetof = vegam_get_offsetof, |
| .populate_all_graphic_levels = vegam_populate_all_graphic_levels, |
| .populate_all_memory_levels = vegam_populate_all_memory_levels, |
| .update_sclk_threshold = vegam_update_sclk_threshold, |
| .is_hw_avfs_present = vegam_is_hw_avfs_present, |
| .thermal_avfs_enable = vegam_thermal_avfs_enable, |
| .thermal_setup_fan_table = vegam_thermal_setup_fan_table, |
| }; |