| /* | 
 |  *  linux/arch/x86_64/mm/init.c | 
 |  * | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  *  Copyright (C) 2000  Pavel Machek <pavel@ucw.cz> | 
 |  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de> | 
 |  */ | 
 |  | 
 | #include <linux/signal.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/string.h> | 
 | #include <linux/types.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/init.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/proc_fs.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/poison.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/module.h> | 
 | #include <linux/memory.h> | 
 | #include <linux/memory_hotplug.h> | 
 | #include <linux/nmi.h> | 
 | #include <linux/gfp.h> | 
 |  | 
 | #include <asm/processor.h> | 
 | #include <asm/bios_ebda.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/pgalloc.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/fixmap.h> | 
 | #include <asm/e820.h> | 
 | #include <asm/apic.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/proto.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/kdebug.h> | 
 | #include <asm/numa.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/init.h> | 
 | #include <asm/uv/uv.h> | 
 | #include <asm/setup.h> | 
 |  | 
 | static int __init parse_direct_gbpages_off(char *arg) | 
 | { | 
 | 	direct_gbpages = 0; | 
 | 	return 0; | 
 | } | 
 | early_param("nogbpages", parse_direct_gbpages_off); | 
 |  | 
 | static int __init parse_direct_gbpages_on(char *arg) | 
 | { | 
 | 	direct_gbpages = 1; | 
 | 	return 0; | 
 | } | 
 | early_param("gbpages", parse_direct_gbpages_on); | 
 |  | 
 | /* | 
 |  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the | 
 |  * physical space so we can cache the place of the first one and move | 
 |  * around without checking the pgd every time. | 
 |  */ | 
 |  | 
 | pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP; | 
 | EXPORT_SYMBOL_GPL(__supported_pte_mask); | 
 |  | 
 | int force_personality32; | 
 |  | 
 | /* | 
 |  * noexec32=on|off | 
 |  * Control non executable heap for 32bit processes. | 
 |  * To control the stack too use noexec=off | 
 |  * | 
 |  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default) | 
 |  * off	PROT_READ implies PROT_EXEC | 
 |  */ | 
 | static int __init nonx32_setup(char *str) | 
 | { | 
 | 	if (!strcmp(str, "on")) | 
 | 		force_personality32 &= ~READ_IMPLIES_EXEC; | 
 | 	else if (!strcmp(str, "off")) | 
 | 		force_personality32 |= READ_IMPLIES_EXEC; | 
 | 	return 1; | 
 | } | 
 | __setup("noexec32=", nonx32_setup); | 
 |  | 
 | /* | 
 |  * When memory was added/removed make sure all the processes MM have | 
 |  * suitable PGD entries in the local PGD level page. | 
 |  */ | 
 | void sync_global_pgds(unsigned long start, unsigned long end) | 
 | { | 
 | 	unsigned long address; | 
 |  | 
 | 	for (address = start; address <= end; address += PGDIR_SIZE) { | 
 | 		const pgd_t *pgd_ref = pgd_offset_k(address); | 
 | 		struct page *page; | 
 |  | 
 | 		if (pgd_none(*pgd_ref)) | 
 | 			continue; | 
 |  | 
 | 		spin_lock(&pgd_lock); | 
 | 		list_for_each_entry(page, &pgd_list, lru) { | 
 | 			pgd_t *pgd; | 
 | 			spinlock_t *pgt_lock; | 
 |  | 
 | 			pgd = (pgd_t *)page_address(page) + pgd_index(address); | 
 | 			/* the pgt_lock only for Xen */ | 
 | 			pgt_lock = &pgd_page_get_mm(page)->page_table_lock; | 
 | 			spin_lock(pgt_lock); | 
 |  | 
 | 			if (pgd_none(*pgd)) | 
 | 				set_pgd(pgd, *pgd_ref); | 
 | 			else | 
 | 				BUG_ON(pgd_page_vaddr(*pgd) | 
 | 				       != pgd_page_vaddr(*pgd_ref)); | 
 |  | 
 | 			spin_unlock(pgt_lock); | 
 | 		} | 
 | 		spin_unlock(&pgd_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: This function is marked __ref because it calls __init function | 
 |  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0. | 
 |  */ | 
 | static __ref void *spp_getpage(void) | 
 | { | 
 | 	void *ptr; | 
 |  | 
 | 	if (after_bootmem) | 
 | 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK); | 
 | 	else | 
 | 		ptr = alloc_bootmem_pages(PAGE_SIZE); | 
 |  | 
 | 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) { | 
 | 		panic("set_pte_phys: cannot allocate page data %s\n", | 
 | 			after_bootmem ? "after bootmem" : ""); | 
 | 	} | 
 |  | 
 | 	pr_debug("spp_getpage %p\n", ptr); | 
 |  | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr) | 
 | { | 
 | 	if (pgd_none(*pgd)) { | 
 | 		pud_t *pud = (pud_t *)spp_getpage(); | 
 | 		pgd_populate(&init_mm, pgd, pud); | 
 | 		if (pud != pud_offset(pgd, 0)) | 
 | 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n", | 
 | 			       pud, pud_offset(pgd, 0)); | 
 | 	} | 
 | 	return pud_offset(pgd, vaddr); | 
 | } | 
 |  | 
 | static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr) | 
 | { | 
 | 	if (pud_none(*pud)) { | 
 | 		pmd_t *pmd = (pmd_t *) spp_getpage(); | 
 | 		pud_populate(&init_mm, pud, pmd); | 
 | 		if (pmd != pmd_offset(pud, 0)) | 
 | 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n", | 
 | 			       pmd, pmd_offset(pud, 0)); | 
 | 	} | 
 | 	return pmd_offset(pud, vaddr); | 
 | } | 
 |  | 
 | static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr) | 
 | { | 
 | 	if (pmd_none(*pmd)) { | 
 | 		pte_t *pte = (pte_t *) spp_getpage(); | 
 | 		pmd_populate_kernel(&init_mm, pmd, pte); | 
 | 		if (pte != pte_offset_kernel(pmd, 0)) | 
 | 			printk(KERN_ERR "PAGETABLE BUG #02!\n"); | 
 | 	} | 
 | 	return pte_offset_kernel(pmd, vaddr); | 
 | } | 
 |  | 
 | void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte) | 
 | { | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	pud = pud_page + pud_index(vaddr); | 
 | 	pmd = fill_pmd(pud, vaddr); | 
 | 	pte = fill_pte(pmd, vaddr); | 
 |  | 
 | 	set_pte(pte, new_pte); | 
 |  | 
 | 	/* | 
 | 	 * It's enough to flush this one mapping. | 
 | 	 * (PGE mappings get flushed as well) | 
 | 	 */ | 
 | 	__flush_tlb_one(vaddr); | 
 | } | 
 |  | 
 | void set_pte_vaddr(unsigned long vaddr, pte_t pteval) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud_page; | 
 |  | 
 | 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval)); | 
 |  | 
 | 	pgd = pgd_offset_k(vaddr); | 
 | 	if (pgd_none(*pgd)) { | 
 | 		printk(KERN_ERR | 
 | 			"PGD FIXMAP MISSING, it should be setup in head.S!\n"); | 
 | 		return; | 
 | 	} | 
 | 	pud_page = (pud_t*)pgd_page_vaddr(*pgd); | 
 | 	set_pte_vaddr_pud(pud_page, vaddr, pteval); | 
 | } | 
 |  | 
 | pmd_t * __init populate_extra_pmd(unsigned long vaddr) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 |  | 
 | 	pgd = pgd_offset_k(vaddr); | 
 | 	pud = fill_pud(pgd, vaddr); | 
 | 	return fill_pmd(pud, vaddr); | 
 | } | 
 |  | 
 | pte_t * __init populate_extra_pte(unsigned long vaddr) | 
 | { | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	pmd = populate_extra_pmd(vaddr); | 
 | 	return fill_pte(pmd, vaddr); | 
 | } | 
 |  | 
 | /* | 
 |  * Create large page table mappings for a range of physical addresses. | 
 |  */ | 
 | static void __init __init_extra_mapping(unsigned long phys, unsigned long size, | 
 | 						pgprot_t prot) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK)); | 
 | 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) { | 
 | 		pgd = pgd_offset_k((unsigned long)__va(phys)); | 
 | 		if (pgd_none(*pgd)) { | 
 | 			pud = (pud_t *) spp_getpage(); | 
 | 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE | | 
 | 						_PAGE_USER)); | 
 | 		} | 
 | 		pud = pud_offset(pgd, (unsigned long)__va(phys)); | 
 | 		if (pud_none(*pud)) { | 
 | 			pmd = (pmd_t *) spp_getpage(); | 
 | 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | | 
 | 						_PAGE_USER)); | 
 | 		} | 
 | 		pmd = pmd_offset(pud, phys); | 
 | 		BUG_ON(!pmd_none(*pmd)); | 
 | 		set_pmd(pmd, __pmd(phys | pgprot_val(prot))); | 
 | 	} | 
 | } | 
 |  | 
 | void __init init_extra_mapping_wb(unsigned long phys, unsigned long size) | 
 | { | 
 | 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE); | 
 | } | 
 |  | 
 | void __init init_extra_mapping_uc(unsigned long phys, unsigned long size) | 
 | { | 
 | 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE); | 
 | } | 
 |  | 
 | /* | 
 |  * The head.S code sets up the kernel high mapping: | 
 |  * | 
 |  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text) | 
 |  * | 
 |  * phys_addr holds the negative offset to the kernel, which is added | 
 |  * to the compile time generated pmds. This results in invalid pmds up | 
 |  * to the point where we hit the physaddr 0 mapping. | 
 |  * | 
 |  * We limit the mappings to the region from _text to _brk_end.  _brk_end | 
 |  * is rounded up to the 2MB boundary. This catches the invalid pmds as | 
 |  * well, as they are located before _text: | 
 |  */ | 
 | void __init cleanup_highmap(void) | 
 | { | 
 | 	unsigned long vaddr = __START_KERNEL_map; | 
 | 	unsigned long vaddr_end = __START_KERNEL_map + (max_pfn_mapped << PAGE_SHIFT); | 
 | 	unsigned long end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1; | 
 | 	pmd_t *pmd = level2_kernel_pgt; | 
 |  | 
 | 	for (; vaddr + PMD_SIZE - 1 < vaddr_end; pmd++, vaddr += PMD_SIZE) { | 
 | 		if (pmd_none(*pmd)) | 
 | 			continue; | 
 | 		if (vaddr < (unsigned long) _text || vaddr > end) | 
 | 			set_pmd(pmd, __pmd(0)); | 
 | 	} | 
 | } | 
 |  | 
 | static __ref void *alloc_low_page(unsigned long *phys) | 
 | { | 
 | 	unsigned long pfn = pgt_buf_end++; | 
 | 	void *adr; | 
 |  | 
 | 	if (after_bootmem) { | 
 | 		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK); | 
 | 		*phys = __pa(adr); | 
 |  | 
 | 		return adr; | 
 | 	} | 
 |  | 
 | 	if (pfn >= pgt_buf_top) | 
 | 		panic("alloc_low_page: ran out of memory"); | 
 |  | 
 | 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE); | 
 | 	clear_page(adr); | 
 | 	*phys  = pfn * PAGE_SIZE; | 
 | 	return adr; | 
 | } | 
 |  | 
 | static __ref void *map_low_page(void *virt) | 
 | { | 
 | 	void *adr; | 
 | 	unsigned long phys, left; | 
 |  | 
 | 	if (after_bootmem) | 
 | 		return virt; | 
 |  | 
 | 	phys = __pa(virt); | 
 | 	left = phys & (PAGE_SIZE - 1); | 
 | 	adr = early_memremap(phys & PAGE_MASK, PAGE_SIZE); | 
 | 	adr = (void *)(((unsigned long)adr) | left); | 
 |  | 
 | 	return adr; | 
 | } | 
 |  | 
 | static __ref void unmap_low_page(void *adr) | 
 | { | 
 | 	if (after_bootmem) | 
 | 		return; | 
 |  | 
 | 	early_iounmap((void *)((unsigned long)adr & PAGE_MASK), PAGE_SIZE); | 
 | } | 
 |  | 
 | static unsigned long __meminit | 
 | phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end, | 
 | 	      pgprot_t prot) | 
 | { | 
 | 	unsigned pages = 0; | 
 | 	unsigned long last_map_addr = end; | 
 | 	int i; | 
 |  | 
 | 	pte_t *pte = pte_page + pte_index(addr); | 
 |  | 
 | 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) { | 
 |  | 
 | 		if (addr >= end) { | 
 | 			if (!after_bootmem) { | 
 | 				for(; i < PTRS_PER_PTE; i++, pte++) | 
 | 					set_pte(pte, __pte(0)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * We will re-use the existing mapping. | 
 | 		 * Xen for example has some special requirements, like mapping | 
 | 		 * pagetable pages as RO. So assume someone who pre-setup | 
 | 		 * these mappings are more intelligent. | 
 | 		 */ | 
 | 		if (pte_val(*pte)) { | 
 | 			if (!after_bootmem) | 
 | 				pages++; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (0) | 
 | 			printk("   pte=%p addr=%lx pte=%016lx\n", | 
 | 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte); | 
 | 		pages++; | 
 | 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot)); | 
 | 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	update_page_count(PG_LEVEL_4K, pages); | 
 |  | 
 | 	return last_map_addr; | 
 | } | 
 |  | 
 | static unsigned long __meminit | 
 | phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end, | 
 | 	      unsigned long page_size_mask, pgprot_t prot) | 
 | { | 
 | 	unsigned long pages = 0, next; | 
 | 	unsigned long last_map_addr = end; | 
 |  | 
 | 	int i = pmd_index(address); | 
 |  | 
 | 	for (; i < PTRS_PER_PMD; i++, address = next) { | 
 | 		unsigned long pte_phys; | 
 | 		pmd_t *pmd = pmd_page + pmd_index(address); | 
 | 		pte_t *pte; | 
 | 		pgprot_t new_prot = prot; | 
 |  | 
 | 		if (address >= end) { | 
 | 			if (!after_bootmem) { | 
 | 				for (; i < PTRS_PER_PMD; i++, pmd++) | 
 | 					set_pmd(pmd, __pmd(0)); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		next = (address & PMD_MASK) + PMD_SIZE; | 
 |  | 
 | 		if (pmd_val(*pmd)) { | 
 | 			if (!pmd_large(*pmd)) { | 
 | 				spin_lock(&init_mm.page_table_lock); | 
 | 				pte = map_low_page((pte_t *)pmd_page_vaddr(*pmd)); | 
 | 				last_map_addr = phys_pte_init(pte, address, | 
 | 								end, prot); | 
 | 				unmap_low_page(pte); | 
 | 				spin_unlock(&init_mm.page_table_lock); | 
 | 				continue; | 
 | 			} | 
 | 			/* | 
 | 			 * If we are ok with PG_LEVEL_2M mapping, then we will | 
 | 			 * use the existing mapping, | 
 | 			 * | 
 | 			 * Otherwise, we will split the large page mapping but | 
 | 			 * use the same existing protection bits except for | 
 | 			 * large page, so that we don't violate Intel's TLB | 
 | 			 * Application note (317080) which says, while changing | 
 | 			 * the page sizes, new and old translations should | 
 | 			 * not differ with respect to page frame and | 
 | 			 * attributes. | 
 | 			 */ | 
 | 			if (page_size_mask & (1 << PG_LEVEL_2M)) { | 
 | 				if (!after_bootmem) | 
 | 					pages++; | 
 | 				last_map_addr = next; | 
 | 				continue; | 
 | 			} | 
 | 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd)); | 
 | 		} | 
 |  | 
 | 		if (page_size_mask & (1<<PG_LEVEL_2M)) { | 
 | 			pages++; | 
 | 			spin_lock(&init_mm.page_table_lock); | 
 | 			set_pte((pte_t *)pmd, | 
 | 				pfn_pte(address >> PAGE_SHIFT, | 
 | 					__pgprot(pgprot_val(prot) | _PAGE_PSE))); | 
 | 			spin_unlock(&init_mm.page_table_lock); | 
 | 			last_map_addr = next; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pte = alloc_low_page(&pte_phys); | 
 | 		last_map_addr = phys_pte_init(pte, address, end, new_prot); | 
 | 		unmap_low_page(pte); | 
 |  | 
 | 		spin_lock(&init_mm.page_table_lock); | 
 | 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys)); | 
 | 		spin_unlock(&init_mm.page_table_lock); | 
 | 	} | 
 | 	update_page_count(PG_LEVEL_2M, pages); | 
 | 	return last_map_addr; | 
 | } | 
 |  | 
 | static unsigned long __meminit | 
 | phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end, | 
 | 			 unsigned long page_size_mask) | 
 | { | 
 | 	unsigned long pages = 0, next; | 
 | 	unsigned long last_map_addr = end; | 
 | 	int i = pud_index(addr); | 
 |  | 
 | 	for (; i < PTRS_PER_PUD; i++, addr = next) { | 
 | 		unsigned long pmd_phys; | 
 | 		pud_t *pud = pud_page + pud_index(addr); | 
 | 		pmd_t *pmd; | 
 | 		pgprot_t prot = PAGE_KERNEL; | 
 |  | 
 | 		if (addr >= end) | 
 | 			break; | 
 |  | 
 | 		next = (addr & PUD_MASK) + PUD_SIZE; | 
 |  | 
 | 		if (!after_bootmem && !e820_any_mapped(addr, next, 0)) { | 
 | 			set_pud(pud, __pud(0)); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (pud_val(*pud)) { | 
 | 			if (!pud_large(*pud)) { | 
 | 				pmd = map_low_page(pmd_offset(pud, 0)); | 
 | 				last_map_addr = phys_pmd_init(pmd, addr, end, | 
 | 							 page_size_mask, prot); | 
 | 				unmap_low_page(pmd); | 
 | 				__flush_tlb_all(); | 
 | 				continue; | 
 | 			} | 
 | 			/* | 
 | 			 * If we are ok with PG_LEVEL_1G mapping, then we will | 
 | 			 * use the existing mapping. | 
 | 			 * | 
 | 			 * Otherwise, we will split the gbpage mapping but use | 
 | 			 * the same existing protection  bits except for large | 
 | 			 * page, so that we don't violate Intel's TLB | 
 | 			 * Application note (317080) which says, while changing | 
 | 			 * the page sizes, new and old translations should | 
 | 			 * not differ with respect to page frame and | 
 | 			 * attributes. | 
 | 			 */ | 
 | 			if (page_size_mask & (1 << PG_LEVEL_1G)) { | 
 | 				if (!after_bootmem) | 
 | 					pages++; | 
 | 				last_map_addr = next; | 
 | 				continue; | 
 | 			} | 
 | 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud)); | 
 | 		} | 
 |  | 
 | 		if (page_size_mask & (1<<PG_LEVEL_1G)) { | 
 | 			pages++; | 
 | 			spin_lock(&init_mm.page_table_lock); | 
 | 			set_pte((pte_t *)pud, | 
 | 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE)); | 
 | 			spin_unlock(&init_mm.page_table_lock); | 
 | 			last_map_addr = next; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pmd = alloc_low_page(&pmd_phys); | 
 | 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask, | 
 | 					      prot); | 
 | 		unmap_low_page(pmd); | 
 |  | 
 | 		spin_lock(&init_mm.page_table_lock); | 
 | 		pud_populate(&init_mm, pud, __va(pmd_phys)); | 
 | 		spin_unlock(&init_mm.page_table_lock); | 
 | 	} | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	update_page_count(PG_LEVEL_1G, pages); | 
 |  | 
 | 	return last_map_addr; | 
 | } | 
 |  | 
 | unsigned long __meminit | 
 | kernel_physical_mapping_init(unsigned long start, | 
 | 			     unsigned long end, | 
 | 			     unsigned long page_size_mask) | 
 | { | 
 | 	bool pgd_changed = false; | 
 | 	unsigned long next, last_map_addr = end; | 
 | 	unsigned long addr; | 
 |  | 
 | 	start = (unsigned long)__va(start); | 
 | 	end = (unsigned long)__va(end); | 
 | 	addr = start; | 
 |  | 
 | 	for (; start < end; start = next) { | 
 | 		pgd_t *pgd = pgd_offset_k(start); | 
 | 		unsigned long pud_phys; | 
 | 		pud_t *pud; | 
 |  | 
 | 		next = (start + PGDIR_SIZE) & PGDIR_MASK; | 
 | 		if (next > end) | 
 | 			next = end; | 
 |  | 
 | 		if (pgd_val(*pgd)) { | 
 | 			pud = map_low_page((pud_t *)pgd_page_vaddr(*pgd)); | 
 | 			last_map_addr = phys_pud_init(pud, __pa(start), | 
 | 						 __pa(end), page_size_mask); | 
 | 			unmap_low_page(pud); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pud = alloc_low_page(&pud_phys); | 
 | 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next), | 
 | 						 page_size_mask); | 
 | 		unmap_low_page(pud); | 
 |  | 
 | 		spin_lock(&init_mm.page_table_lock); | 
 | 		pgd_populate(&init_mm, pgd, __va(pud_phys)); | 
 | 		spin_unlock(&init_mm.page_table_lock); | 
 | 		pgd_changed = true; | 
 | 	} | 
 |  | 
 | 	if (pgd_changed) | 
 | 		sync_global_pgds(addr, end); | 
 |  | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	return last_map_addr; | 
 | } | 
 |  | 
 | #ifndef CONFIG_NUMA | 
 | void __init initmem_init(void) | 
 | { | 
 | 	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, 0); | 
 | } | 
 | #endif | 
 |  | 
 | void __init paging_init(void) | 
 | { | 
 | 	sparse_memory_present_with_active_regions(MAX_NUMNODES); | 
 | 	sparse_init(); | 
 |  | 
 | 	/* | 
 | 	 * clear the default setting with node 0 | 
 | 	 * note: don't use nodes_clear here, that is really clearing when | 
 | 	 *	 numa support is not compiled in, and later node_set_state | 
 | 	 *	 will not set it back. | 
 | 	 */ | 
 | 	node_clear_state(0, N_MEMORY); | 
 | 	if (N_MEMORY != N_NORMAL_MEMORY) | 
 | 		node_clear_state(0, N_NORMAL_MEMORY); | 
 |  | 
 | 	zone_sizes_init(); | 
 | } | 
 |  | 
 | /* | 
 |  * Memory hotplug specific functions | 
 |  */ | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | /* | 
 |  * After memory hotplug the variables max_pfn, max_low_pfn and high_memory need | 
 |  * updating. | 
 |  */ | 
 | static void  update_end_of_memory_vars(u64 start, u64 size) | 
 | { | 
 | 	unsigned long end_pfn = PFN_UP(start + size); | 
 |  | 
 | 	if (end_pfn > max_pfn) { | 
 | 		max_pfn = end_pfn; | 
 | 		max_low_pfn = end_pfn; | 
 | 		high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Memory is added always to NORMAL zone. This means you will never get | 
 |  * additional DMA/DMA32 memory. | 
 |  */ | 
 | int arch_add_memory(int nid, u64 start, u64 size) | 
 | { | 
 | 	struct pglist_data *pgdat = NODE_DATA(nid); | 
 | 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL; | 
 | 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT; | 
 | 	unsigned long nr_pages = size >> PAGE_SHIFT; | 
 | 	int ret; | 
 |  | 
 | 	last_mapped_pfn = init_memory_mapping(start, start + size); | 
 | 	if (last_mapped_pfn > max_pfn_mapped) | 
 | 		max_pfn_mapped = last_mapped_pfn; | 
 |  | 
 | 	ret = __add_pages(nid, zone, start_pfn, nr_pages); | 
 | 	WARN_ON_ONCE(ret); | 
 |  | 
 | 	/* update max_pfn, max_low_pfn and high_memory */ | 
 | 	update_end_of_memory_vars(start, size); | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(arch_add_memory); | 
 |  | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
 |  | 
 | static struct kcore_list kcore_vsyscall; | 
 |  | 
 | void __init mem_init(void) | 
 | { | 
 | 	long codesize, reservedpages, datasize, initsize; | 
 | 	unsigned long absent_pages; | 
 |  | 
 | 	pci_iommu_alloc(); | 
 |  | 
 | 	/* clear_bss() already clear the empty_zero_page */ | 
 |  | 
 | 	reservedpages = 0; | 
 |  | 
 | 	/* this will put all low memory onto the freelists */ | 
 | #ifdef CONFIG_NUMA | 
 | 	totalram_pages = numa_free_all_bootmem(); | 
 | #else | 
 | 	totalram_pages = free_all_bootmem(); | 
 | #endif | 
 |  | 
 | 	absent_pages = absent_pages_in_range(0, max_pfn); | 
 | 	reservedpages = max_pfn - totalram_pages - absent_pages; | 
 | 	after_bootmem = 1; | 
 |  | 
 | 	codesize =  (unsigned long) &_etext - (unsigned long) &_text; | 
 | 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext; | 
 | 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin; | 
 |  | 
 | 	/* Register memory areas for /proc/kcore */ | 
 | 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START, | 
 | 			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER); | 
 |  | 
 | 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, " | 
 | 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n", | 
 | 		nr_free_pages() << (PAGE_SHIFT-10), | 
 | 		max_pfn << (PAGE_SHIFT-10), | 
 | 		codesize >> 10, | 
 | 		absent_pages << (PAGE_SHIFT-10), | 
 | 		reservedpages << (PAGE_SHIFT-10), | 
 | 		datasize >> 10, | 
 | 		initsize >> 10); | 
 | } | 
 |  | 
 | #ifdef CONFIG_DEBUG_RODATA | 
 | const int rodata_test_data = 0xC3; | 
 | EXPORT_SYMBOL_GPL(rodata_test_data); | 
 |  | 
 | int kernel_set_to_readonly; | 
 |  | 
 | void set_kernel_text_rw(void) | 
 | { | 
 | 	unsigned long start = PFN_ALIGN(_text); | 
 | 	unsigned long end = PFN_ALIGN(__stop___ex_table); | 
 |  | 
 | 	if (!kernel_set_to_readonly) | 
 | 		return; | 
 |  | 
 | 	pr_debug("Set kernel text: %lx - %lx for read write\n", | 
 | 		 start, end); | 
 |  | 
 | 	/* | 
 | 	 * Make the kernel identity mapping for text RW. Kernel text | 
 | 	 * mapping will always be RO. Refer to the comment in | 
 | 	 * static_protections() in pageattr.c | 
 | 	 */ | 
 | 	set_memory_rw(start, (end - start) >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | void set_kernel_text_ro(void) | 
 | { | 
 | 	unsigned long start = PFN_ALIGN(_text); | 
 | 	unsigned long end = PFN_ALIGN(__stop___ex_table); | 
 |  | 
 | 	if (!kernel_set_to_readonly) | 
 | 		return; | 
 |  | 
 | 	pr_debug("Set kernel text: %lx - %lx for read only\n", | 
 | 		 start, end); | 
 |  | 
 | 	/* | 
 | 	 * Set the kernel identity mapping for text RO. | 
 | 	 */ | 
 | 	set_memory_ro(start, (end - start) >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | void mark_rodata_ro(void) | 
 | { | 
 | 	unsigned long start = PFN_ALIGN(_text); | 
 | 	unsigned long rodata_start = | 
 | 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK; | 
 | 	unsigned long end = (unsigned long) &__end_rodata_hpage_align; | 
 | 	unsigned long text_end = PAGE_ALIGN((unsigned long) &__stop___ex_table); | 
 | 	unsigned long rodata_end = PAGE_ALIGN((unsigned long) &__end_rodata); | 
 | 	unsigned long data_start = (unsigned long) &_sdata; | 
 |  | 
 | 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n", | 
 | 	       (end - start) >> 10); | 
 | 	set_memory_ro(start, (end - start) >> PAGE_SHIFT); | 
 |  | 
 | 	kernel_set_to_readonly = 1; | 
 |  | 
 | 	/* | 
 | 	 * The rodata section (but not the kernel text!) should also be | 
 | 	 * not-executable. | 
 | 	 */ | 
 | 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT); | 
 |  | 
 | 	rodata_test(); | 
 |  | 
 | #ifdef CONFIG_CPA_DEBUG | 
 | 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end); | 
 | 	set_memory_rw(start, (end-start) >> PAGE_SHIFT); | 
 |  | 
 | 	printk(KERN_INFO "Testing CPA: again\n"); | 
 | 	set_memory_ro(start, (end-start) >> PAGE_SHIFT); | 
 | #endif | 
 |  | 
 | 	free_init_pages("unused kernel memory", | 
 | 			(unsigned long) page_address(virt_to_page(text_end)), | 
 | 			(unsigned long) | 
 | 				 page_address(virt_to_page(rodata_start))); | 
 | 	free_init_pages("unused kernel memory", | 
 | 			(unsigned long) page_address(virt_to_page(rodata_end)), | 
 | 			(unsigned long) page_address(virt_to_page(data_start))); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | int kern_addr_valid(unsigned long addr) | 
 | { | 
 | 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT; | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	if (above != 0 && above != -1UL) | 
 | 		return 0; | 
 |  | 
 | 	pgd = pgd_offset_k(addr); | 
 | 	if (pgd_none(*pgd)) | 
 | 		return 0; | 
 |  | 
 | 	pud = pud_offset(pgd, addr); | 
 | 	if (pud_none(*pud)) | 
 | 		return 0; | 
 |  | 
 | 	pmd = pmd_offset(pud, addr); | 
 | 	if (pmd_none(*pmd)) | 
 | 		return 0; | 
 |  | 
 | 	if (pmd_large(*pmd)) | 
 | 		return pfn_valid(pmd_pfn(*pmd)); | 
 |  | 
 | 	pte = pte_offset_kernel(pmd, addr); | 
 | 	if (pte_none(*pte)) | 
 | 		return 0; | 
 |  | 
 | 	return pfn_valid(pte_pfn(*pte)); | 
 | } | 
 |  | 
 | /* | 
 |  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only | 
 |  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does | 
 |  * not need special handling anymore: | 
 |  */ | 
 | static struct vm_area_struct gate_vma = { | 
 | 	.vm_start	= VSYSCALL_START, | 
 | 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE), | 
 | 	.vm_page_prot	= PAGE_READONLY_EXEC, | 
 | 	.vm_flags	= VM_READ | VM_EXEC | 
 | }; | 
 |  | 
 | struct vm_area_struct *get_gate_vma(struct mm_struct *mm) | 
 | { | 
 | #ifdef CONFIG_IA32_EMULATION | 
 | 	if (!mm || mm->context.ia32_compat) | 
 | 		return NULL; | 
 | #endif | 
 | 	return &gate_vma; | 
 | } | 
 |  | 
 | int in_gate_area(struct mm_struct *mm, unsigned long addr) | 
 | { | 
 | 	struct vm_area_struct *vma = get_gate_vma(mm); | 
 |  | 
 | 	if (!vma) | 
 | 		return 0; | 
 |  | 
 | 	return (addr >= vma->vm_start) && (addr < vma->vm_end); | 
 | } | 
 |  | 
 | /* | 
 |  * Use this when you have no reliable mm, typically from interrupt | 
 |  * context. It is less reliable than using a task's mm and may give | 
 |  * false positives. | 
 |  */ | 
 | int in_gate_area_no_mm(unsigned long addr) | 
 | { | 
 | 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END); | 
 | } | 
 |  | 
 | const char *arch_vma_name(struct vm_area_struct *vma) | 
 | { | 
 | 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso) | 
 | 		return "[vdso]"; | 
 | 	if (vma == &gate_vma) | 
 | 		return "[vsyscall]"; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_UV | 
 | unsigned long memory_block_size_bytes(void) | 
 | { | 
 | 	if (is_uv_system()) { | 
 | 		printk(KERN_INFO "UV: memory block size 2GB\n"); | 
 | 		return 2UL * 1024 * 1024 * 1024; | 
 | 	} | 
 | 	return MIN_MEMORY_BLOCK_SIZE; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | /* | 
 |  * Initialise the sparsemem vmemmap using huge-pages at the PMD level. | 
 |  */ | 
 | static long __meminitdata addr_start, addr_end; | 
 | static void __meminitdata *p_start, *p_end; | 
 | static int __meminitdata node_start; | 
 |  | 
 | int __meminit | 
 | vmemmap_populate(struct page *start_page, unsigned long size, int node) | 
 | { | 
 | 	unsigned long addr = (unsigned long)start_page; | 
 | 	unsigned long end = (unsigned long)(start_page + size); | 
 | 	unsigned long next; | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	for (; addr < end; addr = next) { | 
 | 		void *p = NULL; | 
 |  | 
 | 		pgd = vmemmap_pgd_populate(addr, node); | 
 | 		if (!pgd) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		pud = vmemmap_pud_populate(pgd, addr, node); | 
 | 		if (!pud) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		if (!cpu_has_pse) { | 
 | 			next = (addr + PAGE_SIZE) & PAGE_MASK; | 
 | 			pmd = vmemmap_pmd_populate(pud, addr, node); | 
 |  | 
 | 			if (!pmd) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			p = vmemmap_pte_populate(pmd, addr, node); | 
 |  | 
 | 			if (!p) | 
 | 				return -ENOMEM; | 
 |  | 
 | 			addr_end = addr + PAGE_SIZE; | 
 | 			p_end = p + PAGE_SIZE; | 
 | 		} else { | 
 | 			next = pmd_addr_end(addr, end); | 
 |  | 
 | 			pmd = pmd_offset(pud, addr); | 
 | 			if (pmd_none(*pmd)) { | 
 | 				pte_t entry; | 
 |  | 
 | 				p = vmemmap_alloc_block_buf(PMD_SIZE, node); | 
 | 				if (!p) | 
 | 					return -ENOMEM; | 
 |  | 
 | 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT, | 
 | 						PAGE_KERNEL_LARGE); | 
 | 				set_pmd(pmd, __pmd(pte_val(entry))); | 
 |  | 
 | 				/* check to see if we have contiguous blocks */ | 
 | 				if (p_end != p || node_start != node) { | 
 | 					if (p_start) | 
 | 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", | 
 | 						       addr_start, addr_end-1, p_start, p_end-1, node_start); | 
 | 					addr_start = addr; | 
 | 					node_start = node; | 
 | 					p_start = p; | 
 | 				} | 
 |  | 
 | 				addr_end = addr + PMD_SIZE; | 
 | 				p_end = p + PMD_SIZE; | 
 | 			} else | 
 | 				vmemmap_verify((pte_t *)pmd, node, addr, next); | 
 | 		} | 
 |  | 
 | 	} | 
 | 	sync_global_pgds((unsigned long)start_page, end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __meminit vmemmap_populate_print_last(void) | 
 | { | 
 | 	if (p_start) { | 
 | 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n", | 
 | 			addr_start, addr_end-1, p_start, p_end-1, node_start); | 
 | 		p_start = NULL; | 
 | 		p_end = NULL; | 
 | 		node_start = 0; | 
 | 	} | 
 | } | 
 | #endif |