blob: cef9abb40a58f43168ad3f2632c1f0e8636937b2 [file] [log] [blame]
/*
* Copyright (c) 2011 Broadcom Corporation
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* ***** SDIO interface chip backplane handle functions ***** */
#include <linux/types.h>
#include <linux/netdevice.h>
#include <linux/mmc/card.h>
#include <linux/ssb/ssb_regs.h>
#include <linux/bcma/bcma.h>
#include <chipcommon.h>
#include <brcm_hw_ids.h>
#include <brcmu_wifi.h>
#include <brcmu_utils.h>
#include <soc.h>
#include "dhd.h"
#include "dhd_dbg.h"
#include "sdio_host.h"
#include "sdio_chip.h"
/* chip core base & ramsize */
/* bcm4329 */
/* SDIO device core, ID 0x829 */
#define BCM4329_CORE_BUS_BASE 0x18011000
/* internal memory core, ID 0x80e */
#define BCM4329_CORE_SOCRAM_BASE 0x18003000
/* ARM Cortex M3 core, ID 0x82a */
#define BCM4329_CORE_ARM_BASE 0x18002000
#define BCM4329_RAMSIZE 0x48000
#define SBCOREREV(sbidh) \
((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
((sbidh) & SSB_IDHIGH_RCLO))
/* SOC Interconnect types (aka chip types) */
#define SOCI_SB 0
#define SOCI_AI 1
/* EROM CompIdentB */
#define CIB_REV_MASK 0xff000000
#define CIB_REV_SHIFT 24
#define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu))
/* SDIO Pad drive strength to select value mappings */
struct sdiod_drive_str {
u8 strength; /* Pad Drive Strength in mA */
u8 sel; /* Chip-specific select value */
};
/* SDIO Drive Strength to sel value table for PMU Rev 1 */
static const struct sdiod_drive_str sdiod_drive_strength_tab1[] = {
{
4, 0x2}, {
2, 0x3}, {
1, 0x0}, {
0, 0x0}
};
/* SDIO Drive Strength to sel value table for PMU Rev 2, 3 */
static const struct sdiod_drive_str sdiod_drive_strength_tab2[] = {
{
12, 0x7}, {
10, 0x6}, {
8, 0x5}, {
6, 0x4}, {
4, 0x2}, {
2, 0x1}, {
0, 0x0}
};
/* SDIO Drive Strength to sel value table for PMU Rev 8 (1.8V) */
static const struct sdiod_drive_str sdiod_drive_strength_tab3[] = {
{
32, 0x7}, {
26, 0x6}, {
22, 0x5}, {
16, 0x4}, {
12, 0x3}, {
8, 0x2}, {
4, 0x1}, {
0, 0x0}
};
u8
brcmf_sdio_chip_getinfidx(struct chip_info *ci, u16 coreid)
{
u8 idx;
for (idx = 0; idx < BRCMF_MAX_CORENUM; idx++)
if (coreid == ci->c_inf[idx].id)
return idx;
return BRCMF_MAX_CORENUM;
}
static u32
brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u16 coreid)
{
u32 regdata;
u8 idx;
idx = brcmf_sdio_chip_getinfidx(ci, coreid);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbidhigh), 4);
return SBCOREREV(regdata);
}
static u32
brcmf_sdio_ai_corerev(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u16 coreid)
{
u8 idx;
idx = brcmf_sdio_chip_getinfidx(ci, coreid);
return (ci->c_inf[idx].cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
}
static bool
brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u16 coreid)
{
u32 regdata;
u8 idx;
idx = brcmf_sdio_chip_getinfidx(ci, coreid);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
return (SSB_TMSLOW_CLOCK == regdata);
}
static bool
brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u16 coreid)
{
u32 regdata;
u8 idx;
bool ret;
idx = brcmf_sdio_chip_getinfidx(ci, coreid);
regdata = brcmf_sdcard_reg_read(sdiodev,
ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4);
ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
regdata = brcmf_sdcard_reg_read(sdiodev,
ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
4);
ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
return ret;
}
static void
brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u16 coreid)
{
u32 regdata;
u8 idx;
idx = brcmf_sdio_chip_getinfidx(ci, coreid);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
if (regdata & SSB_TMSLOW_RESET)
return;
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
if ((regdata & SSB_TMSLOW_CLOCK) != 0) {
/*
* set target reject and spin until busy is clear
* (preserve core-specific bits)
*/
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
4, regdata | SSB_TMSLOW_REJECT);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
udelay(1);
SPINWAIT((brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 4) &
SSB_TMSHIGH_BUSY), 100000);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 4);
if (regdata & SSB_TMSHIGH_BUSY)
brcmf_dbg(ERROR, "core state still busy\n");
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbidlow), 4);
if (regdata & SSB_IDLOW_INITIATOR) {
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbimstate), 4) |
SSB_IMSTATE_REJECT;
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbimstate), 4,
regdata);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbimstate), 4);
udelay(1);
SPINWAIT((brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbimstate), 4) &
SSB_IMSTATE_BUSY), 100000);
}
/* set reset and reject while enabling the clocks */
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4,
(SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
udelay(10);
/* clear the initiator reject bit */
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbidlow), 4);
if (regdata & SSB_IDLOW_INITIATOR) {
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbimstate), 4) &
~SSB_IMSTATE_REJECT;
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbimstate), 4,
regdata);
}
}
/* leave reset and reject asserted */
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4,
(SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
udelay(1);
}
static void
brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u16 coreid)
{
u8 idx;
u32 regdata;
idx = brcmf_sdio_chip_getinfidx(ci, coreid);
/* if core is already in reset, just return */
regdata = brcmf_sdcard_reg_read(sdiodev,
ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
4);
if ((regdata & BCMA_RESET_CTL_RESET) != 0)
return;
brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
4, 0);
regdata = brcmf_sdcard_reg_read(sdiodev,
ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4);
udelay(10);
brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
4, BCMA_RESET_CTL_RESET);
udelay(1);
}
static void
brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u16 coreid)
{
u32 regdata;
u8 idx;
idx = brcmf_sdio_chip_getinfidx(ci, coreid);
/*
* Must do the disable sequence first to work for
* arbitrary current core state.
*/
brcmf_sdio_sb_coredisable(sdiodev, ci, coreid);
/*
* Now do the initialization sequence.
* set reset while enabling the clock and
* forcing them on throughout the core
*/
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4,
SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
udelay(1);
/* clear any serror */
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 4);
if (regdata & SSB_TMSHIGH_SERR)
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatehigh), 4, 0);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbimstate), 4);
if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO))
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbimstate), 4,
regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO));
/* clear reset and allow it to propagate throughout the core */
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4,
SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
udelay(1);
/* leave clock enabled */
brcmf_sdcard_reg_write(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
4, SSB_TMSLOW_CLOCK);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[idx].base, sbtmstatelow), 4);
udelay(1);
}
static void
brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u16 coreid)
{
u8 idx;
u32 regdata;
idx = brcmf_sdio_chip_getinfidx(ci, coreid);
/* must disable first to work for arbitrary current core state */
brcmf_sdio_ai_coredisable(sdiodev, ci, coreid);
/* now do initialization sequence */
brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
4, BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
regdata = brcmf_sdcard_reg_read(sdiodev,
ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4);
brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
4, 0);
udelay(1);
brcmf_sdcard_reg_write(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
4, BCMA_IOCTL_CLK);
regdata = brcmf_sdcard_reg_read(sdiodev,
ci->c_inf[idx].wrapbase+BCMA_IOCTL, 4);
udelay(1);
}
static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u32 regs)
{
u32 regdata;
/*
* Get CC core rev
* Chipid is assume to be at offset 0 from regs arg
* For different chiptypes or old sdio hosts w/o chipcommon,
* other ways of recognition should be added here.
*/
ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON;
ci->c_inf[0].base = regs;
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_CC_REG(ci->c_inf[0].base, chipid), 4);
ci->chip = regdata & CID_ID_MASK;
ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev);
/* Address of cores for new chips should be added here */
switch (ci->chip) {
case BCM4329_CHIP_ID:
ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
ci->c_inf[1].base = BCM4329_CORE_BUS_BASE;
ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE;
ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
ci->c_inf[3].base = BCM4329_CORE_ARM_BASE;
ci->ramsize = BCM4329_RAMSIZE;
break;
default:
brcmf_dbg(ERROR, "chipid 0x%x is not supported\n", ci->chip);
return -ENODEV;
}
switch (ci->socitype) {
case SOCI_SB:
ci->iscoreup = brcmf_sdio_sb_iscoreup;
ci->corerev = brcmf_sdio_sb_corerev;
ci->coredisable = brcmf_sdio_sb_coredisable;
ci->resetcore = brcmf_sdio_sb_resetcore;
break;
case SOCI_AI:
ci->iscoreup = brcmf_sdio_ai_iscoreup;
ci->corerev = brcmf_sdio_ai_corerev;
ci->coredisable = brcmf_sdio_ai_coredisable;
ci->resetcore = brcmf_sdio_ai_resetcore;
break;
default:
brcmf_dbg(ERROR, "socitype %u not supported\n", ci->socitype);
return -ENODEV;
}
return 0;
}
static int
brcmf_sdio_chip_buscoreprep(struct brcmf_sdio_dev *sdiodev)
{
int err = 0;
u8 clkval, clkset;
/* Try forcing SDIO core to do ALPAvail request only */
clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
brcmf_sdcard_cfg_write(sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
if (err) {
brcmf_dbg(ERROR, "error writing for HT off\n");
return err;
}
/* If register supported, wait for ALPAvail and then force ALP */
/* This may take up to 15 milliseconds */
clkval = brcmf_sdcard_cfg_read(sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, NULL);
if ((clkval & ~SBSDIO_AVBITS) != clkset) {
brcmf_dbg(ERROR, "ChipClkCSR access: wrote 0x%02x read 0x%02x\n",
clkset, clkval);
return -EACCES;
}
SPINWAIT(((clkval = brcmf_sdcard_cfg_read(sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, NULL)),
!SBSDIO_ALPAV(clkval)),
PMU_MAX_TRANSITION_DLY);
if (!SBSDIO_ALPAV(clkval)) {
brcmf_dbg(ERROR, "timeout on ALPAV wait, clkval 0x%02x\n",
clkval);
return -EBUSY;
}
clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
brcmf_sdcard_cfg_write(sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
udelay(65);
/* Also, disable the extra SDIO pull-ups */
brcmf_sdcard_cfg_write(sdiodev, SDIO_FUNC_1,
SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
return 0;
}
static void
brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci)
{
u32 regdata;
/* get chipcommon rev */
ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id);
/* get chipcommon capabilites */
ci->c_inf[0].caps =
brcmf_sdcard_reg_read(sdiodev,
CORE_CC_REG(ci->c_inf[0].base, capabilities), 4);
/* get pmu caps & rev */
if (ci->c_inf[0].caps & CC_CAP_PMU) {
ci->pmucaps = brcmf_sdcard_reg_read(sdiodev,
CORE_CC_REG(ci->c_inf[0].base, pmucapabilities), 4);
ci->pmurev = ci->pmucaps & PCAP_REV_MASK;
}
ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id);
regdata = brcmf_sdcard_reg_read(sdiodev,
CORE_SB(ci->c_inf[1].base, sbidhigh), 4);
ci->c_inf[1].id = (regdata & SSB_IDHIGH_CC) >> SSB_IDHIGH_CC_SHIFT;
brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n",
ci->c_inf[0].rev, ci->pmurev,
ci->c_inf[1].rev, ci->c_inf[1].id);
/*
* Make sure any on-chip ARM is off (in case strapping is wrong),
* or downloaded code was already running.
*/
ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3);
}
int brcmf_sdio_chip_attach(struct brcmf_sdio_dev *sdiodev,
struct chip_info **ci_ptr, u32 regs)
{
int ret;
struct chip_info *ci;
brcmf_dbg(TRACE, "Enter\n");
/* alloc chip_info_t */
ci = kzalloc(sizeof(struct chip_info), GFP_ATOMIC);
if (!ci)
return -ENOMEM;
ret = brcmf_sdio_chip_buscoreprep(sdiodev);
if (ret != 0)
goto err;
ret = brcmf_sdio_chip_recognition(sdiodev, ci, regs);
if (ret != 0)
goto err;
brcmf_sdio_chip_buscoresetup(sdiodev, ci);
brcmf_sdcard_reg_write(sdiodev,
CORE_CC_REG(ci->c_inf[0].base, gpiopullup), 4, 0);
brcmf_sdcard_reg_write(sdiodev,
CORE_CC_REG(ci->c_inf[0].base, gpiopulldown), 4, 0);
*ci_ptr = ci;
return 0;
err:
kfree(ci);
return ret;
}
void
brcmf_sdio_chip_detach(struct chip_info **ci_ptr)
{
brcmf_dbg(TRACE, "Enter\n");
kfree(*ci_ptr);
*ci_ptr = NULL;
}
static char *brcmf_sdio_chip_name(uint chipid, char *buf, uint len)
{
const char *fmt;
fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
snprintf(buf, len, fmt, chipid);
return buf;
}
void
brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev,
struct chip_info *ci, u32 drivestrength)
{
struct sdiod_drive_str *str_tab = NULL;
u32 str_mask = 0;
u32 str_shift = 0;
char chn[8];
if (!(ci->c_inf[0].caps & CC_CAP_PMU))
return;
switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) {
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 1):
str_tab = (struct sdiod_drive_str *)&sdiod_drive_strength_tab1;
str_mask = 0x30000000;
str_shift = 28;
break;
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 2):
case SDIOD_DRVSTR_KEY(BCM4325_CHIP_ID, 3):
str_tab = (struct sdiod_drive_str *)&sdiod_drive_strength_tab2;
str_mask = 0x00003800;
str_shift = 11;
break;
case SDIOD_DRVSTR_KEY(BCM4336_CHIP_ID, 8):
str_tab = (struct sdiod_drive_str *)&sdiod_drive_strength_tab3;
str_mask = 0x00003800;
str_shift = 11;
break;
default:
brcmf_dbg(ERROR, "No SDIO Drive strength init done for chip %s rev %d pmurev %d\n",
brcmf_sdio_chip_name(ci->chip, chn, 8),
ci->chiprev, ci->pmurev);
break;
}
if (str_tab != NULL) {
u32 drivestrength_sel = 0;
u32 cc_data_temp;
int i;
for (i = 0; str_tab[i].strength != 0; i++) {
if (drivestrength >= str_tab[i].strength) {
drivestrength_sel = str_tab[i].sel;
break;
}
}
brcmf_sdcard_reg_write(sdiodev,
CORE_CC_REG(ci->c_inf[0].base, chipcontrol_addr),
4, 1);
cc_data_temp = brcmf_sdcard_reg_read(sdiodev,
CORE_CC_REG(ci->c_inf[0].base, chipcontrol_addr), 4);
cc_data_temp &= ~str_mask;
drivestrength_sel <<= str_shift;
cc_data_temp |= drivestrength_sel;
brcmf_sdcard_reg_write(sdiodev,
CORE_CC_REG(ci->c_inf[0].base, chipcontrol_addr),
4, cc_data_temp);
brcmf_dbg(INFO, "SDIO: %dmA drive strength selected, set to 0x%08x\n",
drivestrength, cc_data_temp);
}
}