|  | /* | 
|  | * zcache.c | 
|  | * | 
|  | * Copyright (c) 2010,2011, Dan Magenheimer, Oracle Corp. | 
|  | * Copyright (c) 2010,2011, Nitin Gupta | 
|  | * | 
|  | * Zcache provides an in-kernel "host implementation" for transcendent memory | 
|  | * and, thus indirectly, for cleancache and frontswap.  Zcache includes two | 
|  | * page-accessible memory [1] interfaces, both utilizing lzo1x compression: | 
|  | * 1) "compression buddies" ("zbud") is used for ephemeral pages | 
|  | * 2) xvmalloc is used for persistent pages. | 
|  | * Xvmalloc (based on the TLSF allocator) has very low fragmentation | 
|  | * so maximizes space efficiency, while zbud allows pairs (and potentially, | 
|  | * in the future, more than a pair of) compressed pages to be closely linked | 
|  | * so that reclaiming can be done via the kernel's physical-page-oriented | 
|  | * "shrinker" interface. | 
|  | * | 
|  | * [1] For a definition of page-accessible memory (aka PAM), see: | 
|  | *   http://marc.info/?l=linux-mm&m=127811271605009 | 
|  | */ | 
|  |  | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/lzo.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/atomic.h> | 
|  | #include "tmem.h" | 
|  |  | 
|  | #include "../zram/xvmalloc.h" /* if built in drivers/staging */ | 
|  |  | 
|  | #if (!defined(CONFIG_CLEANCACHE) && !defined(CONFIG_FRONTSWAP)) | 
|  | #error "zcache is useless without CONFIG_CLEANCACHE or CONFIG_FRONTSWAP" | 
|  | #endif | 
|  | #ifdef CONFIG_CLEANCACHE | 
|  | #include <linux/cleancache.h> | 
|  | #endif | 
|  | #ifdef CONFIG_FRONTSWAP | 
|  | #include <linux/frontswap.h> | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | /* this is more aggressive but may cause other problems? */ | 
|  | #define ZCACHE_GFP_MASK	(GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN) | 
|  | #else | 
|  | #define ZCACHE_GFP_MASK \ | 
|  | (__GFP_FS | __GFP_NORETRY | __GFP_NOWARN | __GFP_NOMEMALLOC) | 
|  | #endif | 
|  |  | 
|  | /********** | 
|  | * Compression buddies ("zbud") provides for packing two (or, possibly | 
|  | * in the future, more) compressed ephemeral pages into a single "raw" | 
|  | * (physical) page and tracking them with data structures so that | 
|  | * the raw pages can be easily reclaimed. | 
|  | * | 
|  | * A zbud page ("zbpg") is an aligned page containing a list_head, | 
|  | * a lock, and two "zbud headers".  The remainder of the physical | 
|  | * page is divided up into aligned 64-byte "chunks" which contain | 
|  | * the compressed data for zero, one, or two zbuds.  Each zbpg | 
|  | * resides on: (1) an "unused list" if it has no zbuds; (2) a | 
|  | * "buddied" list if it is fully populated  with two zbuds; or | 
|  | * (3) one of PAGE_SIZE/64 "unbuddied" lists indexed by how many chunks | 
|  | * the one unbuddied zbud uses.  The data inside a zbpg cannot be | 
|  | * read or written unless the zbpg's lock is held. | 
|  | */ | 
|  |  | 
|  | #define ZBH_SENTINEL  0x43214321 | 
|  | #define ZBPG_SENTINEL  0xdeadbeef | 
|  |  | 
|  | #define ZBUD_MAX_BUDS 2 | 
|  |  | 
|  | struct zbud_hdr { | 
|  | uint32_t pool_id; | 
|  | struct tmem_oid oid; | 
|  | uint32_t index; | 
|  | uint16_t size; /* compressed size in bytes, zero means unused */ | 
|  | DECL_SENTINEL | 
|  | }; | 
|  |  | 
|  | struct zbud_page { | 
|  | struct list_head bud_list; | 
|  | spinlock_t lock; | 
|  | struct zbud_hdr buddy[ZBUD_MAX_BUDS]; | 
|  | DECL_SENTINEL | 
|  | /* followed by NUM_CHUNK aligned CHUNK_SIZE-byte chunks */ | 
|  | }; | 
|  |  | 
|  | #define CHUNK_SHIFT	6 | 
|  | #define CHUNK_SIZE	(1 << CHUNK_SHIFT) | 
|  | #define CHUNK_MASK	(~(CHUNK_SIZE-1)) | 
|  | #define NCHUNKS		(((PAGE_SIZE - sizeof(struct zbud_page)) & \ | 
|  | CHUNK_MASK) >> CHUNK_SHIFT) | 
|  | #define MAX_CHUNK	(NCHUNKS-1) | 
|  |  | 
|  | static struct { | 
|  | struct list_head list; | 
|  | unsigned count; | 
|  | } zbud_unbuddied[NCHUNKS]; | 
|  | /* list N contains pages with N chunks USED and NCHUNKS-N unused */ | 
|  | /* element 0 is never used but optimizing that isn't worth it */ | 
|  | static unsigned long zbud_cumul_chunk_counts[NCHUNKS]; | 
|  |  | 
|  | struct list_head zbud_buddied_list; | 
|  | static unsigned long zcache_zbud_buddied_count; | 
|  |  | 
|  | /* protects the buddied list and all unbuddied lists */ | 
|  | static DEFINE_SPINLOCK(zbud_budlists_spinlock); | 
|  |  | 
|  | static LIST_HEAD(zbpg_unused_list); | 
|  | static unsigned long zcache_zbpg_unused_list_count; | 
|  |  | 
|  | /* protects the unused page list */ | 
|  | static DEFINE_SPINLOCK(zbpg_unused_list_spinlock); | 
|  |  | 
|  | static atomic_t zcache_zbud_curr_raw_pages; | 
|  | static atomic_t zcache_zbud_curr_zpages; | 
|  | static unsigned long zcache_zbud_curr_zbytes; | 
|  | static unsigned long zcache_zbud_cumul_zpages; | 
|  | static unsigned long zcache_zbud_cumul_zbytes; | 
|  | static unsigned long zcache_compress_poor; | 
|  |  | 
|  | /* forward references */ | 
|  | static void *zcache_get_free_page(void); | 
|  | static void zcache_free_page(void *p); | 
|  |  | 
|  | /* | 
|  | * zbud helper functions | 
|  | */ | 
|  |  | 
|  | static inline unsigned zbud_max_buddy_size(void) | 
|  | { | 
|  | return MAX_CHUNK << CHUNK_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline unsigned zbud_size_to_chunks(unsigned size) | 
|  | { | 
|  | BUG_ON(size == 0 || size > zbud_max_buddy_size()); | 
|  | return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline int zbud_budnum(struct zbud_hdr *zh) | 
|  | { | 
|  | unsigned offset = (unsigned long)zh & (PAGE_SIZE - 1); | 
|  | struct zbud_page *zbpg = NULL; | 
|  | unsigned budnum = -1U; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ZBUD_MAX_BUDS; i++) | 
|  | if (offset == offsetof(typeof(*zbpg), buddy[i])) { | 
|  | budnum = i; | 
|  | break; | 
|  | } | 
|  | BUG_ON(budnum == -1U); | 
|  | return budnum; | 
|  | } | 
|  |  | 
|  | static char *zbud_data(struct zbud_hdr *zh, unsigned size) | 
|  | { | 
|  | struct zbud_page *zbpg; | 
|  | char *p; | 
|  | unsigned budnum; | 
|  |  | 
|  | ASSERT_SENTINEL(zh, ZBH); | 
|  | budnum = zbud_budnum(zh); | 
|  | BUG_ON(size == 0 || size > zbud_max_buddy_size()); | 
|  | zbpg = container_of(zh, struct zbud_page, buddy[budnum]); | 
|  | ASSERT_SPINLOCK(&zbpg->lock); | 
|  | p = (char *)zbpg; | 
|  | if (budnum == 0) | 
|  | p += ((sizeof(struct zbud_page) + CHUNK_SIZE - 1) & | 
|  | CHUNK_MASK); | 
|  | else if (budnum == 1) | 
|  | p += PAGE_SIZE - ((size + CHUNK_SIZE - 1) & CHUNK_MASK); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zbud raw page management | 
|  | */ | 
|  |  | 
|  | static struct zbud_page *zbud_alloc_raw_page(void) | 
|  | { | 
|  | struct zbud_page *zbpg = NULL; | 
|  | struct zbud_hdr *zh0, *zh1; | 
|  | bool recycled = 0; | 
|  |  | 
|  | /* if any pages on the zbpg list, use one */ | 
|  | spin_lock(&zbpg_unused_list_spinlock); | 
|  | if (!list_empty(&zbpg_unused_list)) { | 
|  | zbpg = list_first_entry(&zbpg_unused_list, | 
|  | struct zbud_page, bud_list); | 
|  | list_del_init(&zbpg->bud_list); | 
|  | zcache_zbpg_unused_list_count--; | 
|  | recycled = 1; | 
|  | } | 
|  | spin_unlock(&zbpg_unused_list_spinlock); | 
|  | if (zbpg == NULL) | 
|  | /* none on zbpg list, try to get a kernel page */ | 
|  | zbpg = zcache_get_free_page(); | 
|  | if (likely(zbpg != NULL)) { | 
|  | INIT_LIST_HEAD(&zbpg->bud_list); | 
|  | zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1]; | 
|  | spin_lock_init(&zbpg->lock); | 
|  | if (recycled) { | 
|  | ASSERT_INVERTED_SENTINEL(zbpg, ZBPG); | 
|  | SET_SENTINEL(zbpg, ZBPG); | 
|  | BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid)); | 
|  | BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid)); | 
|  | } else { | 
|  | atomic_inc(&zcache_zbud_curr_raw_pages); | 
|  | INIT_LIST_HEAD(&zbpg->bud_list); | 
|  | SET_SENTINEL(zbpg, ZBPG); | 
|  | zh0->size = 0; zh1->size = 0; | 
|  | tmem_oid_set_invalid(&zh0->oid); | 
|  | tmem_oid_set_invalid(&zh1->oid); | 
|  | } | 
|  | } | 
|  | return zbpg; | 
|  | } | 
|  |  | 
|  | static void zbud_free_raw_page(struct zbud_page *zbpg) | 
|  | { | 
|  | struct zbud_hdr *zh0 = &zbpg->buddy[0], *zh1 = &zbpg->buddy[1]; | 
|  |  | 
|  | ASSERT_SENTINEL(zbpg, ZBPG); | 
|  | BUG_ON(!list_empty(&zbpg->bud_list)); | 
|  | ASSERT_SPINLOCK(&zbpg->lock); | 
|  | BUG_ON(zh0->size != 0 || tmem_oid_valid(&zh0->oid)); | 
|  | BUG_ON(zh1->size != 0 || tmem_oid_valid(&zh1->oid)); | 
|  | INVERT_SENTINEL(zbpg, ZBPG); | 
|  | spin_unlock(&zbpg->lock); | 
|  | spin_lock(&zbpg_unused_list_spinlock); | 
|  | list_add(&zbpg->bud_list, &zbpg_unused_list); | 
|  | zcache_zbpg_unused_list_count++; | 
|  | spin_unlock(&zbpg_unused_list_spinlock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * core zbud handling routines | 
|  | */ | 
|  |  | 
|  | static unsigned zbud_free(struct zbud_hdr *zh) | 
|  | { | 
|  | unsigned size; | 
|  |  | 
|  | ASSERT_SENTINEL(zh, ZBH); | 
|  | BUG_ON(!tmem_oid_valid(&zh->oid)); | 
|  | size = zh->size; | 
|  | BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size()); | 
|  | zh->size = 0; | 
|  | tmem_oid_set_invalid(&zh->oid); | 
|  | INVERT_SENTINEL(zh, ZBH); | 
|  | zcache_zbud_curr_zbytes -= size; | 
|  | atomic_dec(&zcache_zbud_curr_zpages); | 
|  | return size; | 
|  | } | 
|  |  | 
|  | static void zbud_free_and_delist(struct zbud_hdr *zh) | 
|  | { | 
|  | unsigned chunks; | 
|  | struct zbud_hdr *zh_other; | 
|  | unsigned budnum = zbud_budnum(zh), size; | 
|  | struct zbud_page *zbpg = | 
|  | container_of(zh, struct zbud_page, buddy[budnum]); | 
|  |  | 
|  | spin_lock(&zbpg->lock); | 
|  | if (list_empty(&zbpg->bud_list)) { | 
|  | /* ignore zombie page... see zbud_evict_pages() */ | 
|  | spin_unlock(&zbpg->lock); | 
|  | return; | 
|  | } | 
|  | size = zbud_free(zh); | 
|  | ASSERT_SPINLOCK(&zbpg->lock); | 
|  | zh_other = &zbpg->buddy[(budnum == 0) ? 1 : 0]; | 
|  | if (zh_other->size == 0) { /* was unbuddied: unlist and free */ | 
|  | chunks = zbud_size_to_chunks(size) ; | 
|  | spin_lock(&zbud_budlists_spinlock); | 
|  | BUG_ON(list_empty(&zbud_unbuddied[chunks].list)); | 
|  | list_del_init(&zbpg->bud_list); | 
|  | zbud_unbuddied[chunks].count--; | 
|  | spin_unlock(&zbud_budlists_spinlock); | 
|  | zbud_free_raw_page(zbpg); | 
|  | } else { /* was buddied: move remaining buddy to unbuddied list */ | 
|  | chunks = zbud_size_to_chunks(zh_other->size) ; | 
|  | spin_lock(&zbud_budlists_spinlock); | 
|  | list_del_init(&zbpg->bud_list); | 
|  | zcache_zbud_buddied_count--; | 
|  | list_add_tail(&zbpg->bud_list, &zbud_unbuddied[chunks].list); | 
|  | zbud_unbuddied[chunks].count++; | 
|  | spin_unlock(&zbud_budlists_spinlock); | 
|  | spin_unlock(&zbpg->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct zbud_hdr *zbud_create(uint32_t pool_id, struct tmem_oid *oid, | 
|  | uint32_t index, struct page *page, | 
|  | void *cdata, unsigned size) | 
|  | { | 
|  | struct zbud_hdr *zh0, *zh1, *zh = NULL; | 
|  | struct zbud_page *zbpg = NULL, *ztmp; | 
|  | unsigned nchunks; | 
|  | char *to; | 
|  | int i, found_good_buddy = 0; | 
|  |  | 
|  | nchunks = zbud_size_to_chunks(size) ; | 
|  | for (i = MAX_CHUNK - nchunks + 1; i > 0; i--) { | 
|  | spin_lock(&zbud_budlists_spinlock); | 
|  | if (!list_empty(&zbud_unbuddied[i].list)) { | 
|  | list_for_each_entry_safe(zbpg, ztmp, | 
|  | &zbud_unbuddied[i].list, bud_list) { | 
|  | if (spin_trylock(&zbpg->lock)) { | 
|  | found_good_buddy = i; | 
|  | goto found_unbuddied; | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock(&zbud_budlists_spinlock); | 
|  | } | 
|  | /* didn't find a good buddy, try allocating a new page */ | 
|  | zbpg = zbud_alloc_raw_page(); | 
|  | if (unlikely(zbpg == NULL)) | 
|  | goto out; | 
|  | /* ok, have a page, now compress the data before taking locks */ | 
|  | spin_lock(&zbpg->lock); | 
|  | spin_lock(&zbud_budlists_spinlock); | 
|  | list_add_tail(&zbpg->bud_list, &zbud_unbuddied[nchunks].list); | 
|  | zbud_unbuddied[nchunks].count++; | 
|  | zh = &zbpg->buddy[0]; | 
|  | goto init_zh; | 
|  |  | 
|  | found_unbuddied: | 
|  | ASSERT_SPINLOCK(&zbpg->lock); | 
|  | zh0 = &zbpg->buddy[0]; zh1 = &zbpg->buddy[1]; | 
|  | BUG_ON(!((zh0->size == 0) ^ (zh1->size == 0))); | 
|  | if (zh0->size != 0) { /* buddy0 in use, buddy1 is vacant */ | 
|  | ASSERT_SENTINEL(zh0, ZBH); | 
|  | zh = zh1; | 
|  | } else if (zh1->size != 0) { /* buddy1 in use, buddy0 is vacant */ | 
|  | ASSERT_SENTINEL(zh1, ZBH); | 
|  | zh = zh0; | 
|  | } else | 
|  | BUG(); | 
|  | list_del_init(&zbpg->bud_list); | 
|  | zbud_unbuddied[found_good_buddy].count--; | 
|  | list_add_tail(&zbpg->bud_list, &zbud_buddied_list); | 
|  | zcache_zbud_buddied_count++; | 
|  |  | 
|  | init_zh: | 
|  | SET_SENTINEL(zh, ZBH); | 
|  | zh->size = size; | 
|  | zh->index = index; | 
|  | zh->oid = *oid; | 
|  | zh->pool_id = pool_id; | 
|  | /* can wait to copy the data until the list locks are dropped */ | 
|  | spin_unlock(&zbud_budlists_spinlock); | 
|  |  | 
|  | to = zbud_data(zh, size); | 
|  | memcpy(to, cdata, size); | 
|  | spin_unlock(&zbpg->lock); | 
|  | zbud_cumul_chunk_counts[nchunks]++; | 
|  | atomic_inc(&zcache_zbud_curr_zpages); | 
|  | zcache_zbud_cumul_zpages++; | 
|  | zcache_zbud_curr_zbytes += size; | 
|  | zcache_zbud_cumul_zbytes += size; | 
|  | out: | 
|  | return zh; | 
|  | } | 
|  |  | 
|  | static int zbud_decompress(struct page *page, struct zbud_hdr *zh) | 
|  | { | 
|  | struct zbud_page *zbpg; | 
|  | unsigned budnum = zbud_budnum(zh); | 
|  | size_t out_len = PAGE_SIZE; | 
|  | char *to_va, *from_va; | 
|  | unsigned size; | 
|  | int ret = 0; | 
|  |  | 
|  | zbpg = container_of(zh, struct zbud_page, buddy[budnum]); | 
|  | spin_lock(&zbpg->lock); | 
|  | if (list_empty(&zbpg->bud_list)) { | 
|  | /* ignore zombie page... see zbud_evict_pages() */ | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | ASSERT_SENTINEL(zh, ZBH); | 
|  | BUG_ON(zh->size == 0 || zh->size > zbud_max_buddy_size()); | 
|  | to_va = kmap_atomic(page, KM_USER0); | 
|  | size = zh->size; | 
|  | from_va = zbud_data(zh, size); | 
|  | ret = lzo1x_decompress_safe(from_va, size, to_va, &out_len); | 
|  | BUG_ON(ret != LZO_E_OK); | 
|  | BUG_ON(out_len != PAGE_SIZE); | 
|  | kunmap_atomic(to_va, KM_USER0); | 
|  | out: | 
|  | spin_unlock(&zbpg->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The following routines handle shrinking of ephemeral pages by evicting | 
|  | * pages "least valuable" first. | 
|  | */ | 
|  |  | 
|  | static unsigned long zcache_evicted_raw_pages; | 
|  | static unsigned long zcache_evicted_buddied_pages; | 
|  | static unsigned long zcache_evicted_unbuddied_pages; | 
|  |  | 
|  | static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid); | 
|  | static void zcache_put_pool(struct tmem_pool *pool); | 
|  |  | 
|  | /* | 
|  | * Flush and free all zbuds in a zbpg, then free the pageframe | 
|  | */ | 
|  | static void zbud_evict_zbpg(struct zbud_page *zbpg) | 
|  | { | 
|  | struct zbud_hdr *zh; | 
|  | int i, j; | 
|  | uint32_t pool_id[ZBUD_MAX_BUDS], index[ZBUD_MAX_BUDS]; | 
|  | struct tmem_oid oid[ZBUD_MAX_BUDS]; | 
|  | struct tmem_pool *pool; | 
|  |  | 
|  | ASSERT_SPINLOCK(&zbpg->lock); | 
|  | BUG_ON(!list_empty(&zbpg->bud_list)); | 
|  | for (i = 0, j = 0; i < ZBUD_MAX_BUDS; i++) { | 
|  | zh = &zbpg->buddy[i]; | 
|  | if (zh->size) { | 
|  | pool_id[j] = zh->pool_id; | 
|  | oid[j] = zh->oid; | 
|  | index[j] = zh->index; | 
|  | j++; | 
|  | zbud_free(zh); | 
|  | } | 
|  | } | 
|  | spin_unlock(&zbpg->lock); | 
|  | for (i = 0; i < j; i++) { | 
|  | pool = zcache_get_pool_by_id(pool_id[i]); | 
|  | if (pool != NULL) { | 
|  | tmem_flush_page(pool, &oid[i], index[i]); | 
|  | zcache_put_pool(pool); | 
|  | } | 
|  | } | 
|  | ASSERT_SENTINEL(zbpg, ZBPG); | 
|  | spin_lock(&zbpg->lock); | 
|  | zbud_free_raw_page(zbpg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free nr pages.  This code is funky because we want to hold the locks | 
|  | * protecting various lists for as short a time as possible, and in some | 
|  | * circumstances the list may change asynchronously when the list lock is | 
|  | * not held.  In some cases we also trylock not only to avoid waiting on a | 
|  | * page in use by another cpu, but also to avoid potential deadlock due to | 
|  | * lock inversion. | 
|  | */ | 
|  | static void zbud_evict_pages(int nr) | 
|  | { | 
|  | struct zbud_page *zbpg; | 
|  | int i; | 
|  |  | 
|  | /* first try freeing any pages on unused list */ | 
|  | retry_unused_list: | 
|  | spin_lock_bh(&zbpg_unused_list_spinlock); | 
|  | if (!list_empty(&zbpg_unused_list)) { | 
|  | /* can't walk list here, since it may change when unlocked */ | 
|  | zbpg = list_first_entry(&zbpg_unused_list, | 
|  | struct zbud_page, bud_list); | 
|  | list_del_init(&zbpg->bud_list); | 
|  | zcache_zbpg_unused_list_count--; | 
|  | atomic_dec(&zcache_zbud_curr_raw_pages); | 
|  | spin_unlock_bh(&zbpg_unused_list_spinlock); | 
|  | zcache_free_page(zbpg); | 
|  | zcache_evicted_raw_pages++; | 
|  | if (--nr <= 0) | 
|  | goto out; | 
|  | goto retry_unused_list; | 
|  | } | 
|  | spin_unlock_bh(&zbpg_unused_list_spinlock); | 
|  |  | 
|  | /* now try freeing unbuddied pages, starting with least space avail */ | 
|  | for (i = 0; i < MAX_CHUNK; i++) { | 
|  | retry_unbud_list_i: | 
|  | spin_lock_bh(&zbud_budlists_spinlock); | 
|  | if (list_empty(&zbud_unbuddied[i].list)) { | 
|  | spin_unlock_bh(&zbud_budlists_spinlock); | 
|  | continue; | 
|  | } | 
|  | list_for_each_entry(zbpg, &zbud_unbuddied[i].list, bud_list) { | 
|  | if (unlikely(!spin_trylock(&zbpg->lock))) | 
|  | continue; | 
|  | list_del_init(&zbpg->bud_list); | 
|  | zbud_unbuddied[i].count--; | 
|  | spin_unlock(&zbud_budlists_spinlock); | 
|  | zcache_evicted_unbuddied_pages++; | 
|  | /* want budlists unlocked when doing zbpg eviction */ | 
|  | zbud_evict_zbpg(zbpg); | 
|  | local_bh_enable(); | 
|  | if (--nr <= 0) | 
|  | goto out; | 
|  | goto retry_unbud_list_i; | 
|  | } | 
|  | spin_unlock_bh(&zbud_budlists_spinlock); | 
|  | } | 
|  |  | 
|  | /* as a last resort, free buddied pages */ | 
|  | retry_bud_list: | 
|  | spin_lock_bh(&zbud_budlists_spinlock); | 
|  | if (list_empty(&zbud_buddied_list)) { | 
|  | spin_unlock_bh(&zbud_budlists_spinlock); | 
|  | goto out; | 
|  | } | 
|  | list_for_each_entry(zbpg, &zbud_buddied_list, bud_list) { | 
|  | if (unlikely(!spin_trylock(&zbpg->lock))) | 
|  | continue; | 
|  | list_del_init(&zbpg->bud_list); | 
|  | zcache_zbud_buddied_count--; | 
|  | spin_unlock(&zbud_budlists_spinlock); | 
|  | zcache_evicted_buddied_pages++; | 
|  | /* want budlists unlocked when doing zbpg eviction */ | 
|  | zbud_evict_zbpg(zbpg); | 
|  | local_bh_enable(); | 
|  | if (--nr <= 0) | 
|  | goto out; | 
|  | goto retry_bud_list; | 
|  | } | 
|  | spin_unlock_bh(&zbud_budlists_spinlock); | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void zbud_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | INIT_LIST_HEAD(&zbud_buddied_list); | 
|  | zcache_zbud_buddied_count = 0; | 
|  | for (i = 0; i < NCHUNKS; i++) { | 
|  | INIT_LIST_HEAD(&zbud_unbuddied[i].list); | 
|  | zbud_unbuddied[i].count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | /* | 
|  | * These sysfs routines show a nice distribution of how many zbpg's are | 
|  | * currently (and have ever been placed) in each unbuddied list.  It's fun | 
|  | * to watch but can probably go away before final merge. | 
|  | */ | 
|  | static int zbud_show_unbuddied_list_counts(char *buf) | 
|  | { | 
|  | int i; | 
|  | char *p = buf; | 
|  |  | 
|  | for (i = 0; i < NCHUNKS - 1; i++) | 
|  | p += sprintf(p, "%u ", zbud_unbuddied[i].count); | 
|  | p += sprintf(p, "%d\n", zbud_unbuddied[i].count); | 
|  | return p - buf; | 
|  | } | 
|  |  | 
|  | static int zbud_show_cumul_chunk_counts(char *buf) | 
|  | { | 
|  | unsigned long i, chunks = 0, total_chunks = 0, sum_total_chunks = 0; | 
|  | unsigned long total_chunks_lte_21 = 0, total_chunks_lte_32 = 0; | 
|  | unsigned long total_chunks_lte_42 = 0; | 
|  | char *p = buf; | 
|  |  | 
|  | for (i = 0; i < NCHUNKS; i++) { | 
|  | p += sprintf(p, "%lu ", zbud_cumul_chunk_counts[i]); | 
|  | chunks += zbud_cumul_chunk_counts[i]; | 
|  | total_chunks += zbud_cumul_chunk_counts[i]; | 
|  | sum_total_chunks += i * zbud_cumul_chunk_counts[i]; | 
|  | if (i == 21) | 
|  | total_chunks_lte_21 = total_chunks; | 
|  | if (i == 32) | 
|  | total_chunks_lte_32 = total_chunks; | 
|  | if (i == 42) | 
|  | total_chunks_lte_42 = total_chunks; | 
|  | } | 
|  | p += sprintf(p, "<=21:%lu <=32:%lu <=42:%lu, mean:%lu\n", | 
|  | total_chunks_lte_21, total_chunks_lte_32, total_chunks_lte_42, | 
|  | chunks == 0 ? 0 : sum_total_chunks / chunks); | 
|  | return p - buf; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /********** | 
|  | * This "zv" PAM implementation combines the TLSF-based xvMalloc | 
|  | * with lzo1x compression to maximize the amount of data that can | 
|  | * be packed into a physical page. | 
|  | * | 
|  | * Zv represents a PAM page with the index and object (plus a "size" value | 
|  | * necessary for decompression) immediately preceding the compressed data. | 
|  | */ | 
|  |  | 
|  | #define ZVH_SENTINEL  0x43214321 | 
|  |  | 
|  | struct zv_hdr { | 
|  | uint32_t pool_id; | 
|  | struct tmem_oid oid; | 
|  | uint32_t index; | 
|  | DECL_SENTINEL | 
|  | }; | 
|  |  | 
|  | static const int zv_max_page_size = (PAGE_SIZE / 8) * 7; | 
|  |  | 
|  | static struct zv_hdr *zv_create(struct xv_pool *xvpool, uint32_t pool_id, | 
|  | struct tmem_oid *oid, uint32_t index, | 
|  | void *cdata, unsigned clen) | 
|  | { | 
|  | struct page *page; | 
|  | struct zv_hdr *zv = NULL; | 
|  | uint32_t offset; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(!irqs_disabled()); | 
|  | ret = xv_malloc(xvpool, clen + sizeof(struct zv_hdr), | 
|  | &page, &offset, ZCACHE_GFP_MASK); | 
|  | if (unlikely(ret)) | 
|  | goto out; | 
|  | zv = kmap_atomic(page, KM_USER0) + offset; | 
|  | zv->index = index; | 
|  | zv->oid = *oid; | 
|  | zv->pool_id = pool_id; | 
|  | SET_SENTINEL(zv, ZVH); | 
|  | memcpy((char *)zv + sizeof(struct zv_hdr), cdata, clen); | 
|  | kunmap_atomic(zv, KM_USER0); | 
|  | out: | 
|  | return zv; | 
|  | } | 
|  |  | 
|  | static void zv_free(struct xv_pool *xvpool, struct zv_hdr *zv) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct page *page; | 
|  | uint32_t offset; | 
|  | uint16_t size; | 
|  |  | 
|  | ASSERT_SENTINEL(zv, ZVH); | 
|  | size = xv_get_object_size(zv) - sizeof(*zv); | 
|  | BUG_ON(size == 0 || size > zv_max_page_size); | 
|  | INVERT_SENTINEL(zv, ZVH); | 
|  | page = virt_to_page(zv); | 
|  | offset = (unsigned long)zv & ~PAGE_MASK; | 
|  | local_irq_save(flags); | 
|  | xv_free(xvpool, page, offset); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void zv_decompress(struct page *page, struct zv_hdr *zv) | 
|  | { | 
|  | size_t clen = PAGE_SIZE; | 
|  | char *to_va; | 
|  | unsigned size; | 
|  | int ret; | 
|  |  | 
|  | ASSERT_SENTINEL(zv, ZVH); | 
|  | size = xv_get_object_size(zv) - sizeof(*zv); | 
|  | BUG_ON(size == 0 || size > zv_max_page_size); | 
|  | to_va = kmap_atomic(page, KM_USER0); | 
|  | ret = lzo1x_decompress_safe((char *)zv + sizeof(*zv), | 
|  | size, to_va, &clen); | 
|  | kunmap_atomic(to_va, KM_USER0); | 
|  | BUG_ON(ret != LZO_E_OK); | 
|  | BUG_ON(clen != PAGE_SIZE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zcache core code starts here | 
|  | */ | 
|  |  | 
|  | /* useful stats not collected by cleancache or frontswap */ | 
|  | static unsigned long zcache_flush_total; | 
|  | static unsigned long zcache_flush_found; | 
|  | static unsigned long zcache_flobj_total; | 
|  | static unsigned long zcache_flobj_found; | 
|  | static unsigned long zcache_failed_eph_puts; | 
|  | static unsigned long zcache_failed_pers_puts; | 
|  |  | 
|  | #define MAX_POOLS_PER_CLIENT 16 | 
|  |  | 
|  | static struct { | 
|  | struct tmem_pool *tmem_pools[MAX_POOLS_PER_CLIENT]; | 
|  | struct xv_pool *xvpool; | 
|  | } zcache_client; | 
|  |  | 
|  | /* | 
|  | * Tmem operations assume the poolid implies the invoking client. | 
|  | * Zcache only has one client (the kernel itself), so translate | 
|  | * the poolid into the tmem_pool allocated for it.  A KVM version | 
|  | * of zcache would have one client per guest and each client might | 
|  | * have a poolid==N. | 
|  | */ | 
|  | static struct tmem_pool *zcache_get_pool_by_id(uint32_t poolid) | 
|  | { | 
|  | struct tmem_pool *pool = NULL; | 
|  |  | 
|  | if (poolid >= 0) { | 
|  | pool = zcache_client.tmem_pools[poolid]; | 
|  | if (pool != NULL) | 
|  | atomic_inc(&pool->refcount); | 
|  | } | 
|  | return pool; | 
|  | } | 
|  |  | 
|  | static void zcache_put_pool(struct tmem_pool *pool) | 
|  | { | 
|  | if (pool != NULL) | 
|  | atomic_dec(&pool->refcount); | 
|  | } | 
|  |  | 
|  | /* counters for debugging */ | 
|  | static unsigned long zcache_failed_get_free_pages; | 
|  | static unsigned long zcache_failed_alloc; | 
|  | static unsigned long zcache_put_to_flush; | 
|  | static unsigned long zcache_aborted_preload; | 
|  | static unsigned long zcache_aborted_shrink; | 
|  |  | 
|  | /* | 
|  | * Ensure that memory allocation requests in zcache don't result | 
|  | * in direct reclaim requests via the shrinker, which would cause | 
|  | * an infinite loop.  Maybe a GFP flag would be better? | 
|  | */ | 
|  | static DEFINE_SPINLOCK(zcache_direct_reclaim_lock); | 
|  |  | 
|  | /* | 
|  | * for now, used named slabs so can easily track usage; later can | 
|  | * either just use kmalloc, or perhaps add a slab-like allocator | 
|  | * to more carefully manage total memory utilization | 
|  | */ | 
|  | static struct kmem_cache *zcache_objnode_cache; | 
|  | static struct kmem_cache *zcache_obj_cache; | 
|  | static atomic_t zcache_curr_obj_count = ATOMIC_INIT(0); | 
|  | static unsigned long zcache_curr_obj_count_max; | 
|  | static atomic_t zcache_curr_objnode_count = ATOMIC_INIT(0); | 
|  | static unsigned long zcache_curr_objnode_count_max; | 
|  |  | 
|  | /* | 
|  | * to avoid memory allocation recursion (e.g. due to direct reclaim), we | 
|  | * preload all necessary data structures so the hostops callbacks never | 
|  | * actually do a malloc | 
|  | */ | 
|  | struct zcache_preload { | 
|  | void *page; | 
|  | struct tmem_obj *obj; | 
|  | int nr; | 
|  | struct tmem_objnode *objnodes[OBJNODE_TREE_MAX_PATH]; | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct zcache_preload, zcache_preloads) = { 0, }; | 
|  |  | 
|  | static int zcache_do_preload(struct tmem_pool *pool) | 
|  | { | 
|  | struct zcache_preload *kp; | 
|  | struct tmem_objnode *objnode; | 
|  | struct tmem_obj *obj; | 
|  | void *page; | 
|  | int ret = -ENOMEM; | 
|  |  | 
|  | if (unlikely(zcache_objnode_cache == NULL)) | 
|  | goto out; | 
|  | if (unlikely(zcache_obj_cache == NULL)) | 
|  | goto out; | 
|  | if (!spin_trylock(&zcache_direct_reclaim_lock)) { | 
|  | zcache_aborted_preload++; | 
|  | goto out; | 
|  | } | 
|  | preempt_disable(); | 
|  | kp = &__get_cpu_var(zcache_preloads); | 
|  | while (kp->nr < ARRAY_SIZE(kp->objnodes)) { | 
|  | preempt_enable_no_resched(); | 
|  | objnode = kmem_cache_alloc(zcache_objnode_cache, | 
|  | ZCACHE_GFP_MASK); | 
|  | if (unlikely(objnode == NULL)) { | 
|  | zcache_failed_alloc++; | 
|  | goto unlock_out; | 
|  | } | 
|  | preempt_disable(); | 
|  | kp = &__get_cpu_var(zcache_preloads); | 
|  | if (kp->nr < ARRAY_SIZE(kp->objnodes)) | 
|  | kp->objnodes[kp->nr++] = objnode; | 
|  | else | 
|  | kmem_cache_free(zcache_objnode_cache, objnode); | 
|  | } | 
|  | preempt_enable_no_resched(); | 
|  | obj = kmem_cache_alloc(zcache_obj_cache, ZCACHE_GFP_MASK); | 
|  | if (unlikely(obj == NULL)) { | 
|  | zcache_failed_alloc++; | 
|  | goto unlock_out; | 
|  | } | 
|  | page = (void *)__get_free_page(ZCACHE_GFP_MASK); | 
|  | if (unlikely(page == NULL)) { | 
|  | zcache_failed_get_free_pages++; | 
|  | kmem_cache_free(zcache_obj_cache, obj); | 
|  | goto unlock_out; | 
|  | } | 
|  | preempt_disable(); | 
|  | kp = &__get_cpu_var(zcache_preloads); | 
|  | if (kp->obj == NULL) | 
|  | kp->obj = obj; | 
|  | else | 
|  | kmem_cache_free(zcache_obj_cache, obj); | 
|  | if (kp->page == NULL) | 
|  | kp->page = page; | 
|  | else | 
|  | free_page((unsigned long)page); | 
|  | ret = 0; | 
|  | unlock_out: | 
|  | spin_unlock(&zcache_direct_reclaim_lock); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void *zcache_get_free_page(void) | 
|  | { | 
|  | struct zcache_preload *kp; | 
|  | void *page; | 
|  |  | 
|  | kp = &__get_cpu_var(zcache_preloads); | 
|  | page = kp->page; | 
|  | BUG_ON(page == NULL); | 
|  | kp->page = NULL; | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void zcache_free_page(void *p) | 
|  | { | 
|  | free_page((unsigned long)p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * zcache implementation for tmem host ops | 
|  | */ | 
|  |  | 
|  | static struct tmem_objnode *zcache_objnode_alloc(struct tmem_pool *pool) | 
|  | { | 
|  | struct tmem_objnode *objnode = NULL; | 
|  | unsigned long count; | 
|  | struct zcache_preload *kp; | 
|  |  | 
|  | kp = &__get_cpu_var(zcache_preloads); | 
|  | if (kp->nr <= 0) | 
|  | goto out; | 
|  | objnode = kp->objnodes[kp->nr - 1]; | 
|  | BUG_ON(objnode == NULL); | 
|  | kp->objnodes[kp->nr - 1] = NULL; | 
|  | kp->nr--; | 
|  | count = atomic_inc_return(&zcache_curr_objnode_count); | 
|  | if (count > zcache_curr_objnode_count_max) | 
|  | zcache_curr_objnode_count_max = count; | 
|  | out: | 
|  | return objnode; | 
|  | } | 
|  |  | 
|  | static void zcache_objnode_free(struct tmem_objnode *objnode, | 
|  | struct tmem_pool *pool) | 
|  | { | 
|  | atomic_dec(&zcache_curr_objnode_count); | 
|  | BUG_ON(atomic_read(&zcache_curr_objnode_count) < 0); | 
|  | kmem_cache_free(zcache_objnode_cache, objnode); | 
|  | } | 
|  |  | 
|  | static struct tmem_obj *zcache_obj_alloc(struct tmem_pool *pool) | 
|  | { | 
|  | struct tmem_obj *obj = NULL; | 
|  | unsigned long count; | 
|  | struct zcache_preload *kp; | 
|  |  | 
|  | kp = &__get_cpu_var(zcache_preloads); | 
|  | obj = kp->obj; | 
|  | BUG_ON(obj == NULL); | 
|  | kp->obj = NULL; | 
|  | count = atomic_inc_return(&zcache_curr_obj_count); | 
|  | if (count > zcache_curr_obj_count_max) | 
|  | zcache_curr_obj_count_max = count; | 
|  | return obj; | 
|  | } | 
|  |  | 
|  | static void zcache_obj_free(struct tmem_obj *obj, struct tmem_pool *pool) | 
|  | { | 
|  | atomic_dec(&zcache_curr_obj_count); | 
|  | BUG_ON(atomic_read(&zcache_curr_obj_count) < 0); | 
|  | kmem_cache_free(zcache_obj_cache, obj); | 
|  | } | 
|  |  | 
|  | static struct tmem_hostops zcache_hostops = { | 
|  | .obj_alloc = zcache_obj_alloc, | 
|  | .obj_free = zcache_obj_free, | 
|  | .objnode_alloc = zcache_objnode_alloc, | 
|  | .objnode_free = zcache_objnode_free, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * zcache implementations for PAM page descriptor ops | 
|  | */ | 
|  |  | 
|  | static atomic_t zcache_curr_eph_pampd_count = ATOMIC_INIT(0); | 
|  | static unsigned long zcache_curr_eph_pampd_count_max; | 
|  | static atomic_t zcache_curr_pers_pampd_count = ATOMIC_INIT(0); | 
|  | static unsigned long zcache_curr_pers_pampd_count_max; | 
|  |  | 
|  | /* forward reference */ | 
|  | static int zcache_compress(struct page *from, void **out_va, size_t *out_len); | 
|  |  | 
|  | static void *zcache_pampd_create(struct tmem_pool *pool, struct tmem_oid *oid, | 
|  | uint32_t index, struct page *page) | 
|  | { | 
|  | void *pampd = NULL, *cdata; | 
|  | size_t clen; | 
|  | int ret; | 
|  | bool ephemeral = is_ephemeral(pool); | 
|  | unsigned long count; | 
|  |  | 
|  | if (ephemeral) { | 
|  | ret = zcache_compress(page, &cdata, &clen); | 
|  | if (ret == 0) | 
|  |  | 
|  | goto out; | 
|  | if (clen == 0 || clen > zbud_max_buddy_size()) { | 
|  | zcache_compress_poor++; | 
|  | goto out; | 
|  | } | 
|  | pampd = (void *)zbud_create(pool->pool_id, oid, index, | 
|  | page, cdata, clen); | 
|  | if (pampd != NULL) { | 
|  | count = atomic_inc_return(&zcache_curr_eph_pampd_count); | 
|  | if (count > zcache_curr_eph_pampd_count_max) | 
|  | zcache_curr_eph_pampd_count_max = count; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * FIXME: This is all the "policy" there is for now. | 
|  | * 3/4 totpages should allow ~37% of RAM to be filled with | 
|  | * compressed frontswap pages | 
|  | */ | 
|  | if (atomic_read(&zcache_curr_pers_pampd_count) > | 
|  | 3 * totalram_pages / 4) | 
|  | goto out; | 
|  | ret = zcache_compress(page, &cdata, &clen); | 
|  | if (ret == 0) | 
|  | goto out; | 
|  | if (clen > zv_max_page_size) { | 
|  | zcache_compress_poor++; | 
|  | goto out; | 
|  | } | 
|  | pampd = (void *)zv_create(zcache_client.xvpool, pool->pool_id, | 
|  | oid, index, cdata, clen); | 
|  | if (pampd == NULL) | 
|  | goto out; | 
|  | count = atomic_inc_return(&zcache_curr_pers_pampd_count); | 
|  | if (count > zcache_curr_pers_pampd_count_max) | 
|  | zcache_curr_pers_pampd_count_max = count; | 
|  | } | 
|  | out: | 
|  | return pampd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fill the pageframe corresponding to the struct page with the data | 
|  | * from the passed pampd | 
|  | */ | 
|  | static int zcache_pampd_get_data(struct page *page, void *pampd, | 
|  | struct tmem_pool *pool) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (is_ephemeral(pool)) | 
|  | ret = zbud_decompress(page, pampd); | 
|  | else | 
|  | zv_decompress(page, pampd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free the pampd and remove it from any zcache lists | 
|  | * pampd must no longer be pointed to from any tmem data structures! | 
|  | */ | 
|  | static void zcache_pampd_free(void *pampd, struct tmem_pool *pool) | 
|  | { | 
|  | if (is_ephemeral(pool)) { | 
|  | zbud_free_and_delist((struct zbud_hdr *)pampd); | 
|  | atomic_dec(&zcache_curr_eph_pampd_count); | 
|  | BUG_ON(atomic_read(&zcache_curr_eph_pampd_count) < 0); | 
|  | } else { | 
|  | zv_free(zcache_client.xvpool, (struct zv_hdr *)pampd); | 
|  | atomic_dec(&zcache_curr_pers_pampd_count); | 
|  | BUG_ON(atomic_read(&zcache_curr_pers_pampd_count) < 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct tmem_pamops zcache_pamops = { | 
|  | .create = zcache_pampd_create, | 
|  | .get_data = zcache_pampd_get_data, | 
|  | .free = zcache_pampd_free, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * zcache compression/decompression and related per-cpu stuff | 
|  | */ | 
|  |  | 
|  | #define LZO_WORKMEM_BYTES LZO1X_1_MEM_COMPRESS | 
|  | #define LZO_DSTMEM_PAGE_ORDER 1 | 
|  | static DEFINE_PER_CPU(unsigned char *, zcache_workmem); | 
|  | static DEFINE_PER_CPU(unsigned char *, zcache_dstmem); | 
|  |  | 
|  | static int zcache_compress(struct page *from, void **out_va, size_t *out_len) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned char *dmem = __get_cpu_var(zcache_dstmem); | 
|  | unsigned char *wmem = __get_cpu_var(zcache_workmem); | 
|  | char *from_va; | 
|  |  | 
|  | BUG_ON(!irqs_disabled()); | 
|  | if (unlikely(dmem == NULL || wmem == NULL)) | 
|  | goto out;  /* no buffer, so can't compress */ | 
|  | from_va = kmap_atomic(from, KM_USER0); | 
|  | mb(); | 
|  | ret = lzo1x_1_compress(from_va, PAGE_SIZE, dmem, out_len, wmem); | 
|  | BUG_ON(ret != LZO_E_OK); | 
|  | *out_va = dmem; | 
|  | kunmap_atomic(from_va, KM_USER0); | 
|  | ret = 1; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int zcache_cpu_notifier(struct notifier_block *nb, | 
|  | unsigned long action, void *pcpu) | 
|  | { | 
|  | int cpu = (long)pcpu; | 
|  | struct zcache_preload *kp; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | per_cpu(zcache_dstmem, cpu) = (void *)__get_free_pages( | 
|  | GFP_KERNEL | __GFP_REPEAT, | 
|  | LZO_DSTMEM_PAGE_ORDER), | 
|  | per_cpu(zcache_workmem, cpu) = | 
|  | kzalloc(LZO1X_MEM_COMPRESS, | 
|  | GFP_KERNEL | __GFP_REPEAT); | 
|  | break; | 
|  | case CPU_DEAD: | 
|  | case CPU_UP_CANCELED: | 
|  | free_pages((unsigned long)per_cpu(zcache_dstmem, cpu), | 
|  | LZO_DSTMEM_PAGE_ORDER); | 
|  | per_cpu(zcache_dstmem, cpu) = NULL; | 
|  | kfree(per_cpu(zcache_workmem, cpu)); | 
|  | per_cpu(zcache_workmem, cpu) = NULL; | 
|  | kp = &per_cpu(zcache_preloads, cpu); | 
|  | while (kp->nr) { | 
|  | kmem_cache_free(zcache_objnode_cache, | 
|  | kp->objnodes[kp->nr - 1]); | 
|  | kp->objnodes[kp->nr - 1] = NULL; | 
|  | kp->nr--; | 
|  | } | 
|  | kmem_cache_free(zcache_obj_cache, kp->obj); | 
|  | free_page((unsigned long)kp->page); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block zcache_cpu_notifier_block = { | 
|  | .notifier_call = zcache_cpu_notifier | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SYSFS | 
|  | #define ZCACHE_SYSFS_RO(_name) \ | 
|  | static ssize_t zcache_##_name##_show(struct kobject *kobj, \ | 
|  | struct kobj_attribute *attr, char *buf) \ | 
|  | { \ | 
|  | return sprintf(buf, "%lu\n", zcache_##_name); \ | 
|  | } \ | 
|  | static struct kobj_attribute zcache_##_name##_attr = { \ | 
|  | .attr = { .name = __stringify(_name), .mode = 0444 }, \ | 
|  | .show = zcache_##_name##_show, \ | 
|  | } | 
|  |  | 
|  | #define ZCACHE_SYSFS_RO_ATOMIC(_name) \ | 
|  | static ssize_t zcache_##_name##_show(struct kobject *kobj, \ | 
|  | struct kobj_attribute *attr, char *buf) \ | 
|  | { \ | 
|  | return sprintf(buf, "%d\n", atomic_read(&zcache_##_name)); \ | 
|  | } \ | 
|  | static struct kobj_attribute zcache_##_name##_attr = { \ | 
|  | .attr = { .name = __stringify(_name), .mode = 0444 }, \ | 
|  | .show = zcache_##_name##_show, \ | 
|  | } | 
|  |  | 
|  | #define ZCACHE_SYSFS_RO_CUSTOM(_name, _func) \ | 
|  | static ssize_t zcache_##_name##_show(struct kobject *kobj, \ | 
|  | struct kobj_attribute *attr, char *buf) \ | 
|  | { \ | 
|  | return _func(buf); \ | 
|  | } \ | 
|  | static struct kobj_attribute zcache_##_name##_attr = { \ | 
|  | .attr = { .name = __stringify(_name), .mode = 0444 }, \ | 
|  | .show = zcache_##_name##_show, \ | 
|  | } | 
|  |  | 
|  | ZCACHE_SYSFS_RO(curr_obj_count_max); | 
|  | ZCACHE_SYSFS_RO(curr_objnode_count_max); | 
|  | ZCACHE_SYSFS_RO(flush_total); | 
|  | ZCACHE_SYSFS_RO(flush_found); | 
|  | ZCACHE_SYSFS_RO(flobj_total); | 
|  | ZCACHE_SYSFS_RO(flobj_found); | 
|  | ZCACHE_SYSFS_RO(failed_eph_puts); | 
|  | ZCACHE_SYSFS_RO(failed_pers_puts); | 
|  | ZCACHE_SYSFS_RO(zbud_curr_zbytes); | 
|  | ZCACHE_SYSFS_RO(zbud_cumul_zpages); | 
|  | ZCACHE_SYSFS_RO(zbud_cumul_zbytes); | 
|  | ZCACHE_SYSFS_RO(zbud_buddied_count); | 
|  | ZCACHE_SYSFS_RO(zbpg_unused_list_count); | 
|  | ZCACHE_SYSFS_RO(evicted_raw_pages); | 
|  | ZCACHE_SYSFS_RO(evicted_unbuddied_pages); | 
|  | ZCACHE_SYSFS_RO(evicted_buddied_pages); | 
|  | ZCACHE_SYSFS_RO(failed_get_free_pages); | 
|  | ZCACHE_SYSFS_RO(failed_alloc); | 
|  | ZCACHE_SYSFS_RO(put_to_flush); | 
|  | ZCACHE_SYSFS_RO(aborted_preload); | 
|  | ZCACHE_SYSFS_RO(aborted_shrink); | 
|  | ZCACHE_SYSFS_RO(compress_poor); | 
|  | ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_raw_pages); | 
|  | ZCACHE_SYSFS_RO_ATOMIC(zbud_curr_zpages); | 
|  | ZCACHE_SYSFS_RO_ATOMIC(curr_obj_count); | 
|  | ZCACHE_SYSFS_RO_ATOMIC(curr_objnode_count); | 
|  | ZCACHE_SYSFS_RO_CUSTOM(zbud_unbuddied_list_counts, | 
|  | zbud_show_unbuddied_list_counts); | 
|  | ZCACHE_SYSFS_RO_CUSTOM(zbud_cumul_chunk_counts, | 
|  | zbud_show_cumul_chunk_counts); | 
|  |  | 
|  | static struct attribute *zcache_attrs[] = { | 
|  | &zcache_curr_obj_count_attr.attr, | 
|  | &zcache_curr_obj_count_max_attr.attr, | 
|  | &zcache_curr_objnode_count_attr.attr, | 
|  | &zcache_curr_objnode_count_max_attr.attr, | 
|  | &zcache_flush_total_attr.attr, | 
|  | &zcache_flobj_total_attr.attr, | 
|  | &zcache_flush_found_attr.attr, | 
|  | &zcache_flobj_found_attr.attr, | 
|  | &zcache_failed_eph_puts_attr.attr, | 
|  | &zcache_failed_pers_puts_attr.attr, | 
|  | &zcache_compress_poor_attr.attr, | 
|  | &zcache_zbud_curr_raw_pages_attr.attr, | 
|  | &zcache_zbud_curr_zpages_attr.attr, | 
|  | &zcache_zbud_curr_zbytes_attr.attr, | 
|  | &zcache_zbud_cumul_zpages_attr.attr, | 
|  | &zcache_zbud_cumul_zbytes_attr.attr, | 
|  | &zcache_zbud_buddied_count_attr.attr, | 
|  | &zcache_zbpg_unused_list_count_attr.attr, | 
|  | &zcache_evicted_raw_pages_attr.attr, | 
|  | &zcache_evicted_unbuddied_pages_attr.attr, | 
|  | &zcache_evicted_buddied_pages_attr.attr, | 
|  | &zcache_failed_get_free_pages_attr.attr, | 
|  | &zcache_failed_alloc_attr.attr, | 
|  | &zcache_put_to_flush_attr.attr, | 
|  | &zcache_aborted_preload_attr.attr, | 
|  | &zcache_aborted_shrink_attr.attr, | 
|  | &zcache_zbud_unbuddied_list_counts_attr.attr, | 
|  | &zcache_zbud_cumul_chunk_counts_attr.attr, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group zcache_attr_group = { | 
|  | .attrs = zcache_attrs, | 
|  | .name = "zcache", | 
|  | }; | 
|  |  | 
|  | #endif /* CONFIG_SYSFS */ | 
|  | /* | 
|  | * When zcache is disabled ("frozen"), pools can be created and destroyed, | 
|  | * but all puts (and thus all other operations that require memory allocation) | 
|  | * must fail.  If zcache is unfrozen, accepts puts, then frozen again, | 
|  | * data consistency requires all puts while frozen to be converted into | 
|  | * flushes. | 
|  | */ | 
|  | static bool zcache_freeze; | 
|  |  | 
|  | /* | 
|  | * zcache shrinker interface (only useful for ephemeral pages, so zbud only) | 
|  | */ | 
|  | static int shrink_zcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) | 
|  | { | 
|  | int ret = -1; | 
|  |  | 
|  | if (nr >= 0) { | 
|  | if (!(gfp_mask & __GFP_FS)) | 
|  | /* does this case really need to be skipped? */ | 
|  | goto out; | 
|  | if (spin_trylock(&zcache_direct_reclaim_lock)) { | 
|  | zbud_evict_pages(nr); | 
|  | spin_unlock(&zcache_direct_reclaim_lock); | 
|  | } else | 
|  | zcache_aborted_shrink++; | 
|  | } | 
|  | ret = (int)atomic_read(&zcache_zbud_curr_raw_pages); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct shrinker zcache_shrinker = { | 
|  | .shrink = shrink_zcache_memory, | 
|  | .seeks = DEFAULT_SEEKS, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * zcache shims between cleancache/frontswap ops and tmem | 
|  | */ | 
|  |  | 
|  | static int zcache_put_page(int pool_id, struct tmem_oid *oidp, | 
|  | uint32_t index, struct page *page) | 
|  | { | 
|  | struct tmem_pool *pool; | 
|  | int ret = -1; | 
|  |  | 
|  | BUG_ON(!irqs_disabled()); | 
|  | pool = zcache_get_pool_by_id(pool_id); | 
|  | if (unlikely(pool == NULL)) | 
|  | goto out; | 
|  | if (!zcache_freeze && zcache_do_preload(pool) == 0) { | 
|  | /* preload does preempt_disable on success */ | 
|  | ret = tmem_put(pool, oidp, index, page); | 
|  | if (ret < 0) { | 
|  | if (is_ephemeral(pool)) | 
|  | zcache_failed_eph_puts++; | 
|  | else | 
|  | zcache_failed_pers_puts++; | 
|  | } | 
|  | zcache_put_pool(pool); | 
|  | preempt_enable_no_resched(); | 
|  | } else { | 
|  | zcache_put_to_flush++; | 
|  | if (atomic_read(&pool->obj_count) > 0) | 
|  | /* the put fails whether the flush succeeds or not */ | 
|  | (void)tmem_flush_page(pool, oidp, index); | 
|  | zcache_put_pool(pool); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zcache_get_page(int pool_id, struct tmem_oid *oidp, | 
|  | uint32_t index, struct page *page) | 
|  | { | 
|  | struct tmem_pool *pool; | 
|  | int ret = -1; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | pool = zcache_get_pool_by_id(pool_id); | 
|  | if (likely(pool != NULL)) { | 
|  | if (atomic_read(&pool->obj_count) > 0) | 
|  | ret = tmem_get(pool, oidp, index, page); | 
|  | zcache_put_pool(pool); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zcache_flush_page(int pool_id, struct tmem_oid *oidp, uint32_t index) | 
|  | { | 
|  | struct tmem_pool *pool; | 
|  | int ret = -1; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | zcache_flush_total++; | 
|  | pool = zcache_get_pool_by_id(pool_id); | 
|  | if (likely(pool != NULL)) { | 
|  | if (atomic_read(&pool->obj_count) > 0) | 
|  | ret = tmem_flush_page(pool, oidp, index); | 
|  | zcache_put_pool(pool); | 
|  | } | 
|  | if (ret >= 0) | 
|  | zcache_flush_found++; | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zcache_flush_object(int pool_id, struct tmem_oid *oidp) | 
|  | { | 
|  | struct tmem_pool *pool; | 
|  | int ret = -1; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | zcache_flobj_total++; | 
|  | pool = zcache_get_pool_by_id(pool_id); | 
|  | if (likely(pool != NULL)) { | 
|  | if (atomic_read(&pool->obj_count) > 0) | 
|  | ret = tmem_flush_object(pool, oidp); | 
|  | zcache_put_pool(pool); | 
|  | } | 
|  | if (ret >= 0) | 
|  | zcache_flobj_found++; | 
|  | local_irq_restore(flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zcache_destroy_pool(int pool_id) | 
|  | { | 
|  | struct tmem_pool *pool = NULL; | 
|  | int ret = -1; | 
|  |  | 
|  | if (pool_id < 0) | 
|  | goto out; | 
|  | pool = zcache_client.tmem_pools[pool_id]; | 
|  | if (pool == NULL) | 
|  | goto out; | 
|  | zcache_client.tmem_pools[pool_id] = NULL; | 
|  | /* wait for pool activity on other cpus to quiesce */ | 
|  | while (atomic_read(&pool->refcount) != 0) | 
|  | ; | 
|  | local_bh_disable(); | 
|  | ret = tmem_destroy_pool(pool); | 
|  | local_bh_enable(); | 
|  | kfree(pool); | 
|  | pr_info("zcache: destroyed pool id=%d\n", pool_id); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int zcache_new_pool(uint32_t flags) | 
|  | { | 
|  | int poolid = -1; | 
|  | struct tmem_pool *pool; | 
|  |  | 
|  | pool = kmalloc(sizeof(struct tmem_pool), GFP_KERNEL); | 
|  | if (pool == NULL) { | 
|  | pr_info("zcache: pool creation failed: out of memory\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (poolid = 0; poolid < MAX_POOLS_PER_CLIENT; poolid++) | 
|  | if (zcache_client.tmem_pools[poolid] == NULL) | 
|  | break; | 
|  | if (poolid >= MAX_POOLS_PER_CLIENT) { | 
|  | pr_info("zcache: pool creation failed: max exceeded\n"); | 
|  | kfree(pool); | 
|  | poolid = -1; | 
|  | goto out; | 
|  | } | 
|  | atomic_set(&pool->refcount, 0); | 
|  | pool->client = &zcache_client; | 
|  | pool->pool_id = poolid; | 
|  | tmem_new_pool(pool, flags); | 
|  | zcache_client.tmem_pools[poolid] = pool; | 
|  | pr_info("zcache: created %s tmem pool, id=%d\n", | 
|  | flags & TMEM_POOL_PERSIST ? "persistent" : "ephemeral", | 
|  | poolid); | 
|  | out: | 
|  | return poolid; | 
|  | } | 
|  |  | 
|  | /********** | 
|  | * Two kernel functionalities currently can be layered on top of tmem. | 
|  | * These are "cleancache" which is used as a second-chance cache for clean | 
|  | * page cache pages; and "frontswap" which is used for swap pages | 
|  | * to avoid writes to disk.  A generic "shim" is provided here for each | 
|  | * to translate in-kernel semantics to zcache semantics. | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_CLEANCACHE | 
|  | static void zcache_cleancache_put_page(int pool_id, | 
|  | struct cleancache_filekey key, | 
|  | pgoff_t index, struct page *page) | 
|  | { | 
|  | u32 ind = (u32) index; | 
|  | struct tmem_oid oid = *(struct tmem_oid *)&key; | 
|  |  | 
|  | if (likely(ind == index)) | 
|  | (void)zcache_put_page(pool_id, &oid, index, page); | 
|  | } | 
|  |  | 
|  | static int zcache_cleancache_get_page(int pool_id, | 
|  | struct cleancache_filekey key, | 
|  | pgoff_t index, struct page *page) | 
|  | { | 
|  | u32 ind = (u32) index; | 
|  | struct tmem_oid oid = *(struct tmem_oid *)&key; | 
|  | int ret = -1; | 
|  |  | 
|  | if (likely(ind == index)) | 
|  | ret = zcache_get_page(pool_id, &oid, index, page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void zcache_cleancache_flush_page(int pool_id, | 
|  | struct cleancache_filekey key, | 
|  | pgoff_t index) | 
|  | { | 
|  | u32 ind = (u32) index; | 
|  | struct tmem_oid oid = *(struct tmem_oid *)&key; | 
|  |  | 
|  | if (likely(ind == index)) | 
|  | (void)zcache_flush_page(pool_id, &oid, ind); | 
|  | } | 
|  |  | 
|  | static void zcache_cleancache_flush_inode(int pool_id, | 
|  | struct cleancache_filekey key) | 
|  | { | 
|  | struct tmem_oid oid = *(struct tmem_oid *)&key; | 
|  |  | 
|  | (void)zcache_flush_object(pool_id, &oid); | 
|  | } | 
|  |  | 
|  | static void zcache_cleancache_flush_fs(int pool_id) | 
|  | { | 
|  | if (pool_id >= 0) | 
|  | (void)zcache_destroy_pool(pool_id); | 
|  | } | 
|  |  | 
|  | static int zcache_cleancache_init_fs(size_t pagesize) | 
|  | { | 
|  | BUG_ON(sizeof(struct cleancache_filekey) != | 
|  | sizeof(struct tmem_oid)); | 
|  | BUG_ON(pagesize != PAGE_SIZE); | 
|  | return zcache_new_pool(0); | 
|  | } | 
|  |  | 
|  | static int zcache_cleancache_init_shared_fs(char *uuid, size_t pagesize) | 
|  | { | 
|  | /* shared pools are unsupported and map to private */ | 
|  | BUG_ON(sizeof(struct cleancache_filekey) != | 
|  | sizeof(struct tmem_oid)); | 
|  | BUG_ON(pagesize != PAGE_SIZE); | 
|  | return zcache_new_pool(0); | 
|  | } | 
|  |  | 
|  | static struct cleancache_ops zcache_cleancache_ops = { | 
|  | .put_page = zcache_cleancache_put_page, | 
|  | .get_page = zcache_cleancache_get_page, | 
|  | .flush_page = zcache_cleancache_flush_page, | 
|  | .flush_inode = zcache_cleancache_flush_inode, | 
|  | .flush_fs = zcache_cleancache_flush_fs, | 
|  | .init_shared_fs = zcache_cleancache_init_shared_fs, | 
|  | .init_fs = zcache_cleancache_init_fs | 
|  | }; | 
|  |  | 
|  | struct cleancache_ops zcache_cleancache_register_ops(void) | 
|  | { | 
|  | struct cleancache_ops old_ops = | 
|  | cleancache_register_ops(&zcache_cleancache_ops); | 
|  |  | 
|  | return old_ops; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FRONTSWAP | 
|  | /* a single tmem poolid is used for all frontswap "types" (swapfiles) */ | 
|  | static int zcache_frontswap_poolid = -1; | 
|  |  | 
|  | /* | 
|  | * Swizzling increases objects per swaptype, increasing tmem concurrency | 
|  | * for heavy swaploads.  Later, larger nr_cpus -> larger SWIZ_BITS | 
|  | */ | 
|  | #define SWIZ_BITS		4 | 
|  | #define SWIZ_MASK		((1 << SWIZ_BITS) - 1) | 
|  | #define _oswiz(_type, _ind)	((_type << SWIZ_BITS) | (_ind & SWIZ_MASK)) | 
|  | #define iswiz(_ind)		(_ind >> SWIZ_BITS) | 
|  |  | 
|  | static inline struct tmem_oid oswiz(unsigned type, u32 ind) | 
|  | { | 
|  | struct tmem_oid oid = { .oid = { 0 } }; | 
|  | oid.oid[0] = _oswiz(type, ind); | 
|  | return oid; | 
|  | } | 
|  |  | 
|  | static int zcache_frontswap_put_page(unsigned type, pgoff_t offset, | 
|  | struct page *page) | 
|  | { | 
|  | u64 ind64 = (u64)offset; | 
|  | u32 ind = (u32)offset; | 
|  | struct tmem_oid oid = oswiz(type, ind); | 
|  | int ret = -1; | 
|  | unsigned long flags; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | if (likely(ind64 == ind)) { | 
|  | local_irq_save(flags); | 
|  | ret = zcache_put_page(zcache_frontswap_poolid, &oid, | 
|  | iswiz(ind), page); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* returns 0 if the page was successfully gotten from frontswap, -1 if | 
|  | * was not present (should never happen!) */ | 
|  | static int zcache_frontswap_get_page(unsigned type, pgoff_t offset, | 
|  | struct page *page) | 
|  | { | 
|  | u64 ind64 = (u64)offset; | 
|  | u32 ind = (u32)offset; | 
|  | struct tmem_oid oid = oswiz(type, ind); | 
|  | int ret = -1; | 
|  |  | 
|  | BUG_ON(!PageLocked(page)); | 
|  | if (likely(ind64 == ind)) | 
|  | ret = zcache_get_page(zcache_frontswap_poolid, &oid, | 
|  | iswiz(ind), page); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* flush a single page from frontswap */ | 
|  | static void zcache_frontswap_flush_page(unsigned type, pgoff_t offset) | 
|  | { | 
|  | u64 ind64 = (u64)offset; | 
|  | u32 ind = (u32)offset; | 
|  | struct tmem_oid oid = oswiz(type, ind); | 
|  |  | 
|  | if (likely(ind64 == ind)) | 
|  | (void)zcache_flush_page(zcache_frontswap_poolid, &oid, | 
|  | iswiz(ind)); | 
|  | } | 
|  |  | 
|  | /* flush all pages from the passed swaptype */ | 
|  | static void zcache_frontswap_flush_area(unsigned type) | 
|  | { | 
|  | struct tmem_oid oid; | 
|  | int ind; | 
|  |  | 
|  | for (ind = SWIZ_MASK; ind >= 0; ind--) { | 
|  | oid = oswiz(type, ind); | 
|  | (void)zcache_flush_object(zcache_frontswap_poolid, &oid); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void zcache_frontswap_init(unsigned ignored) | 
|  | { | 
|  | /* a single tmem poolid is used for all frontswap "types" (swapfiles) */ | 
|  | if (zcache_frontswap_poolid < 0) | 
|  | zcache_frontswap_poolid = zcache_new_pool(TMEM_POOL_PERSIST); | 
|  | } | 
|  |  | 
|  | static struct frontswap_ops zcache_frontswap_ops = { | 
|  | .put_page = zcache_frontswap_put_page, | 
|  | .get_page = zcache_frontswap_get_page, | 
|  | .flush_page = zcache_frontswap_flush_page, | 
|  | .flush_area = zcache_frontswap_flush_area, | 
|  | .init = zcache_frontswap_init | 
|  | }; | 
|  |  | 
|  | struct frontswap_ops zcache_frontswap_register_ops(void) | 
|  | { | 
|  | struct frontswap_ops old_ops = | 
|  | frontswap_register_ops(&zcache_frontswap_ops); | 
|  |  | 
|  | return old_ops; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * zcache initialization | 
|  | * NOTE FOR NOW zcache MUST BE PROVIDED AS A KERNEL BOOT PARAMETER OR | 
|  | * NOTHING HAPPENS! | 
|  | */ | 
|  |  | 
|  | static int zcache_enabled; | 
|  |  | 
|  | static int __init enable_zcache(char *s) | 
|  | { | 
|  | zcache_enabled = 1; | 
|  | return 1; | 
|  | } | 
|  | __setup("zcache", enable_zcache); | 
|  |  | 
|  | /* allow independent dynamic disabling of cleancache and frontswap */ | 
|  |  | 
|  | static int use_cleancache = 1; | 
|  |  | 
|  | static int __init no_cleancache(char *s) | 
|  | { | 
|  | use_cleancache = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("nocleancache", no_cleancache); | 
|  |  | 
|  | static int use_frontswap = 1; | 
|  |  | 
|  | static int __init no_frontswap(char *s) | 
|  | { | 
|  | use_frontswap = 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("nofrontswap", no_frontswap); | 
|  |  | 
|  | static int __init zcache_init(void) | 
|  | { | 
|  | #ifdef CONFIG_SYSFS | 
|  | int ret = 0; | 
|  |  | 
|  | ret = sysfs_create_group(mm_kobj, &zcache_attr_group); | 
|  | if (ret) { | 
|  | pr_err("zcache: can't create sysfs\n"); | 
|  | goto out; | 
|  | } | 
|  | #endif /* CONFIG_SYSFS */ | 
|  | #if defined(CONFIG_CLEANCACHE) || defined(CONFIG_FRONTSWAP) | 
|  | if (zcache_enabled) { | 
|  | unsigned int cpu; | 
|  |  | 
|  | tmem_register_hostops(&zcache_hostops); | 
|  | tmem_register_pamops(&zcache_pamops); | 
|  | ret = register_cpu_notifier(&zcache_cpu_notifier_block); | 
|  | if (ret) { | 
|  | pr_err("zcache: can't register cpu notifier\n"); | 
|  | goto out; | 
|  | } | 
|  | for_each_online_cpu(cpu) { | 
|  | void *pcpu = (void *)(long)cpu; | 
|  | zcache_cpu_notifier(&zcache_cpu_notifier_block, | 
|  | CPU_UP_PREPARE, pcpu); | 
|  | } | 
|  | } | 
|  | zcache_objnode_cache = kmem_cache_create("zcache_objnode", | 
|  | sizeof(struct tmem_objnode), 0, 0, NULL); | 
|  | zcache_obj_cache = kmem_cache_create("zcache_obj", | 
|  | sizeof(struct tmem_obj), 0, 0, NULL); | 
|  | #endif | 
|  | #ifdef CONFIG_CLEANCACHE | 
|  | if (zcache_enabled && use_cleancache) { | 
|  | struct cleancache_ops old_ops; | 
|  |  | 
|  | zbud_init(); | 
|  | register_shrinker(&zcache_shrinker); | 
|  | old_ops = zcache_cleancache_register_ops(); | 
|  | pr_info("zcache: cleancache enabled using kernel " | 
|  | "transcendent memory and compression buddies\n"); | 
|  | if (old_ops.init_fs != NULL) | 
|  | pr_warning("zcache: cleancache_ops overridden"); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_FRONTSWAP | 
|  | if (zcache_enabled && use_frontswap) { | 
|  | struct frontswap_ops old_ops; | 
|  |  | 
|  | zcache_client.xvpool = xv_create_pool(); | 
|  | if (zcache_client.xvpool == NULL) { | 
|  | pr_err("zcache: can't create xvpool\n"); | 
|  | goto out; | 
|  | } | 
|  | old_ops = zcache_frontswap_register_ops(); | 
|  | pr_info("zcache: frontswap enabled using kernel " | 
|  | "transcendent memory and xvmalloc\n"); | 
|  | if (old_ops.init != NULL) | 
|  | pr_warning("ktmem: frontswap_ops overridden"); | 
|  | } | 
|  | #endif | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | module_init(zcache_init) |