| // SPDX-License-Identifier: GPL-2.0 |
| /* smp.c: Sparc64 SMP support. |
| * |
| * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) |
| */ |
| |
| #include <linux/export.h> |
| #include <linux/kernel.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/hotplug.h> |
| #include <linux/mm.h> |
| #include <linux/pagemap.h> |
| #include <linux/threads.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/cache.h> |
| #include <linux/jiffies.h> |
| #include <linux/profile.h> |
| #include <linux/bootmem.h> |
| #include <linux/vmalloc.h> |
| #include <linux/ftrace.h> |
| #include <linux/cpu.h> |
| #include <linux/slab.h> |
| #include <linux/kgdb.h> |
| |
| #include <asm/head.h> |
| #include <asm/ptrace.h> |
| #include <linux/atomic.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/cpudata.h> |
| #include <asm/hvtramp.h> |
| #include <asm/io.h> |
| #include <asm/timer.h> |
| #include <asm/setup.h> |
| |
| #include <asm/irq.h> |
| #include <asm/irq_regs.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/oplib.h> |
| #include <linux/uaccess.h> |
| #include <asm/starfire.h> |
| #include <asm/tlb.h> |
| #include <asm/sections.h> |
| #include <asm/prom.h> |
| #include <asm/mdesc.h> |
| #include <asm/ldc.h> |
| #include <asm/hypervisor.h> |
| #include <asm/pcr.h> |
| |
| #include "cpumap.h" |
| #include "kernel.h" |
| |
| DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; |
| cpumask_t cpu_core_map[NR_CPUS] __read_mostly = |
| { [0 ... NR_CPUS-1] = CPU_MASK_NONE }; |
| |
| cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = { |
| [0 ... NR_CPUS-1] = CPU_MASK_NONE }; |
| |
| cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = { |
| [0 ... NR_CPUS - 1] = CPU_MASK_NONE }; |
| |
| EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); |
| EXPORT_SYMBOL(cpu_core_map); |
| EXPORT_SYMBOL(cpu_core_sib_map); |
| EXPORT_SYMBOL(cpu_core_sib_cache_map); |
| |
| static cpumask_t smp_commenced_mask; |
| |
| static DEFINE_PER_CPU(bool, poke); |
| static bool cpu_poke; |
| |
| void smp_info(struct seq_file *m) |
| { |
| int i; |
| |
| seq_printf(m, "State:\n"); |
| for_each_online_cpu(i) |
| seq_printf(m, "CPU%d:\t\tonline\n", i); |
| } |
| |
| void smp_bogo(struct seq_file *m) |
| { |
| int i; |
| |
| for_each_online_cpu(i) |
| seq_printf(m, |
| "Cpu%dClkTck\t: %016lx\n", |
| i, cpu_data(i).clock_tick); |
| } |
| |
| extern void setup_sparc64_timer(void); |
| |
| static volatile unsigned long callin_flag = 0; |
| |
| void smp_callin(void) |
| { |
| int cpuid = hard_smp_processor_id(); |
| |
| __local_per_cpu_offset = __per_cpu_offset(cpuid); |
| |
| if (tlb_type == hypervisor) |
| sun4v_ktsb_register(); |
| |
| __flush_tlb_all(); |
| |
| setup_sparc64_timer(); |
| |
| if (cheetah_pcache_forced_on) |
| cheetah_enable_pcache(); |
| |
| callin_flag = 1; |
| __asm__ __volatile__("membar #Sync\n\t" |
| "flush %%g6" : : : "memory"); |
| |
| /* Clear this or we will die instantly when we |
| * schedule back to this idler... |
| */ |
| current_thread_info()->new_child = 0; |
| |
| /* Attach to the address space of init_task. */ |
| mmgrab(&init_mm); |
| current->active_mm = &init_mm; |
| |
| /* inform the notifiers about the new cpu */ |
| notify_cpu_starting(cpuid); |
| |
| while (!cpumask_test_cpu(cpuid, &smp_commenced_mask)) |
| rmb(); |
| |
| set_cpu_online(cpuid, true); |
| |
| /* idle thread is expected to have preempt disabled */ |
| preempt_disable(); |
| |
| local_irq_enable(); |
| |
| cpu_startup_entry(CPUHP_AP_ONLINE_IDLE); |
| } |
| |
| void cpu_panic(void) |
| { |
| printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); |
| panic("SMP bolixed\n"); |
| } |
| |
| /* This tick register synchronization scheme is taken entirely from |
| * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. |
| * |
| * The only change I've made is to rework it so that the master |
| * initiates the synchonization instead of the slave. -DaveM |
| */ |
| |
| #define MASTER 0 |
| #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long)) |
| |
| #define NUM_ROUNDS 64 /* magic value */ |
| #define NUM_ITERS 5 /* likewise */ |
| |
| static DEFINE_RAW_SPINLOCK(itc_sync_lock); |
| static unsigned long go[SLAVE + 1]; |
| |
| #define DEBUG_TICK_SYNC 0 |
| |
| static inline long get_delta (long *rt, long *master) |
| { |
| unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; |
| unsigned long tcenter, t0, t1, tm; |
| unsigned long i; |
| |
| for (i = 0; i < NUM_ITERS; i++) { |
| t0 = tick_ops->get_tick(); |
| go[MASTER] = 1; |
| membar_safe("#StoreLoad"); |
| while (!(tm = go[SLAVE])) |
| rmb(); |
| go[SLAVE] = 0; |
| wmb(); |
| t1 = tick_ops->get_tick(); |
| |
| if (t1 - t0 < best_t1 - best_t0) |
| best_t0 = t0, best_t1 = t1, best_tm = tm; |
| } |
| |
| *rt = best_t1 - best_t0; |
| *master = best_tm - best_t0; |
| |
| /* average best_t0 and best_t1 without overflow: */ |
| tcenter = (best_t0/2 + best_t1/2); |
| if (best_t0 % 2 + best_t1 % 2 == 2) |
| tcenter++; |
| return tcenter - best_tm; |
| } |
| |
| void smp_synchronize_tick_client(void) |
| { |
| long i, delta, adj, adjust_latency = 0, done = 0; |
| unsigned long flags, rt, master_time_stamp; |
| #if DEBUG_TICK_SYNC |
| struct { |
| long rt; /* roundtrip time */ |
| long master; /* master's timestamp */ |
| long diff; /* difference between midpoint and master's timestamp */ |
| long lat; /* estimate of itc adjustment latency */ |
| } t[NUM_ROUNDS]; |
| #endif |
| |
| go[MASTER] = 1; |
| |
| while (go[MASTER]) |
| rmb(); |
| |
| local_irq_save(flags); |
| { |
| for (i = 0; i < NUM_ROUNDS; i++) { |
| delta = get_delta(&rt, &master_time_stamp); |
| if (delta == 0) |
| done = 1; /* let's lock on to this... */ |
| |
| if (!done) { |
| if (i > 0) { |
| adjust_latency += -delta; |
| adj = -delta + adjust_latency/4; |
| } else |
| adj = -delta; |
| |
| tick_ops->add_tick(adj); |
| } |
| #if DEBUG_TICK_SYNC |
| t[i].rt = rt; |
| t[i].master = master_time_stamp; |
| t[i].diff = delta; |
| t[i].lat = adjust_latency/4; |
| #endif |
| } |
| } |
| local_irq_restore(flags); |
| |
| #if DEBUG_TICK_SYNC |
| for (i = 0; i < NUM_ROUNDS; i++) |
| printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", |
| t[i].rt, t[i].master, t[i].diff, t[i].lat); |
| #endif |
| |
| printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " |
| "(last diff %ld cycles, maxerr %lu cycles)\n", |
| smp_processor_id(), delta, rt); |
| } |
| |
| static void smp_start_sync_tick_client(int cpu); |
| |
| static void smp_synchronize_one_tick(int cpu) |
| { |
| unsigned long flags, i; |
| |
| go[MASTER] = 0; |
| |
| smp_start_sync_tick_client(cpu); |
| |
| /* wait for client to be ready */ |
| while (!go[MASTER]) |
| rmb(); |
| |
| /* now let the client proceed into his loop */ |
| go[MASTER] = 0; |
| membar_safe("#StoreLoad"); |
| |
| raw_spin_lock_irqsave(&itc_sync_lock, flags); |
| { |
| for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { |
| while (!go[MASTER]) |
| rmb(); |
| go[MASTER] = 0; |
| wmb(); |
| go[SLAVE] = tick_ops->get_tick(); |
| membar_safe("#StoreLoad"); |
| } |
| } |
| raw_spin_unlock_irqrestore(&itc_sync_lock, flags); |
| } |
| |
| #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) |
| static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg, |
| void **descrp) |
| { |
| extern unsigned long sparc64_ttable_tl0; |
| extern unsigned long kern_locked_tte_data; |
| struct hvtramp_descr *hdesc; |
| unsigned long trampoline_ra; |
| struct trap_per_cpu *tb; |
| u64 tte_vaddr, tte_data; |
| unsigned long hv_err; |
| int i; |
| |
| hdesc = kzalloc(sizeof(*hdesc) + |
| (sizeof(struct hvtramp_mapping) * |
| num_kernel_image_mappings - 1), |
| GFP_KERNEL); |
| if (!hdesc) { |
| printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " |
| "hvtramp_descr.\n"); |
| return; |
| } |
| *descrp = hdesc; |
| |
| hdesc->cpu = cpu; |
| hdesc->num_mappings = num_kernel_image_mappings; |
| |
| tb = &trap_block[cpu]; |
| |
| hdesc->fault_info_va = (unsigned long) &tb->fault_info; |
| hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); |
| |
| hdesc->thread_reg = thread_reg; |
| |
| tte_vaddr = (unsigned long) KERNBASE; |
| tte_data = kern_locked_tte_data; |
| |
| for (i = 0; i < hdesc->num_mappings; i++) { |
| hdesc->maps[i].vaddr = tte_vaddr; |
| hdesc->maps[i].tte = tte_data; |
| tte_vaddr += 0x400000; |
| tte_data += 0x400000; |
| } |
| |
| trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); |
| |
| hv_err = sun4v_cpu_start(cpu, trampoline_ra, |
| kimage_addr_to_ra(&sparc64_ttable_tl0), |
| __pa(hdesc)); |
| if (hv_err) |
| printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " |
| "gives error %lu\n", hv_err); |
| } |
| #endif |
| |
| extern unsigned long sparc64_cpu_startup; |
| |
| /* The OBP cpu startup callback truncates the 3rd arg cookie to |
| * 32-bits (I think) so to be safe we have it read the pointer |
| * contained here so we work on >4GB machines. -DaveM |
| */ |
| static struct thread_info *cpu_new_thread = NULL; |
| |
| static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle) |
| { |
| unsigned long entry = |
| (unsigned long)(&sparc64_cpu_startup); |
| unsigned long cookie = |
| (unsigned long)(&cpu_new_thread); |
| void *descr = NULL; |
| int timeout, ret; |
| |
| callin_flag = 0; |
| cpu_new_thread = task_thread_info(idle); |
| |
| if (tlb_type == hypervisor) { |
| #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) |
| if (ldom_domaining_enabled) |
| ldom_startcpu_cpuid(cpu, |
| (unsigned long) cpu_new_thread, |
| &descr); |
| else |
| #endif |
| prom_startcpu_cpuid(cpu, entry, cookie); |
| } else { |
| struct device_node *dp = of_find_node_by_cpuid(cpu); |
| |
| prom_startcpu(dp->phandle, entry, cookie); |
| } |
| |
| for (timeout = 0; timeout < 50000; timeout++) { |
| if (callin_flag) |
| break; |
| udelay(100); |
| } |
| |
| if (callin_flag) { |
| ret = 0; |
| } else { |
| printk("Processor %d is stuck.\n", cpu); |
| ret = -ENODEV; |
| } |
| cpu_new_thread = NULL; |
| |
| kfree(descr); |
| |
| return ret; |
| } |
| |
| static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) |
| { |
| u64 result, target; |
| int stuck, tmp; |
| |
| if (this_is_starfire) { |
| /* map to real upaid */ |
| cpu = (((cpu & 0x3c) << 1) | |
| ((cpu & 0x40) >> 4) | |
| (cpu & 0x3)); |
| } |
| |
| target = (cpu << 14) | 0x70; |
| again: |
| /* Ok, this is the real Spitfire Errata #54. |
| * One must read back from a UDB internal register |
| * after writes to the UDB interrupt dispatch, but |
| * before the membar Sync for that write. |
| * So we use the high UDB control register (ASI 0x7f, |
| * ADDR 0x20) for the dummy read. -DaveM |
| */ |
| tmp = 0x40; |
| __asm__ __volatile__( |
| "wrpr %1, %2, %%pstate\n\t" |
| "stxa %4, [%0] %3\n\t" |
| "stxa %5, [%0+%8] %3\n\t" |
| "add %0, %8, %0\n\t" |
| "stxa %6, [%0+%8] %3\n\t" |
| "membar #Sync\n\t" |
| "stxa %%g0, [%7] %3\n\t" |
| "membar #Sync\n\t" |
| "mov 0x20, %%g1\n\t" |
| "ldxa [%%g1] 0x7f, %%g0\n\t" |
| "membar #Sync" |
| : "=r" (tmp) |
| : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), |
| "r" (data0), "r" (data1), "r" (data2), "r" (target), |
| "r" (0x10), "0" (tmp) |
| : "g1"); |
| |
| /* NOTE: PSTATE_IE is still clear. */ |
| stuck = 100000; |
| do { |
| __asm__ __volatile__("ldxa [%%g0] %1, %0" |
| : "=r" (result) |
| : "i" (ASI_INTR_DISPATCH_STAT)); |
| if (result == 0) { |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : : "r" (pstate)); |
| return; |
| } |
| stuck -= 1; |
| if (stuck == 0) |
| break; |
| } while (result & 0x1); |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : : "r" (pstate)); |
| if (stuck == 0) { |
| printk("CPU[%d]: mondo stuckage result[%016llx]\n", |
| smp_processor_id(), result); |
| } else { |
| udelay(2); |
| goto again; |
| } |
| } |
| |
| static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) |
| { |
| u64 *mondo, data0, data1, data2; |
| u16 *cpu_list; |
| u64 pstate; |
| int i; |
| |
| __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); |
| cpu_list = __va(tb->cpu_list_pa); |
| mondo = __va(tb->cpu_mondo_block_pa); |
| data0 = mondo[0]; |
| data1 = mondo[1]; |
| data2 = mondo[2]; |
| for (i = 0; i < cnt; i++) |
| spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); |
| } |
| |
| /* Cheetah now allows to send the whole 64-bytes of data in the interrupt |
| * packet, but we have no use for that. However we do take advantage of |
| * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). |
| */ |
| static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) |
| { |
| int nack_busy_id, is_jbus, need_more; |
| u64 *mondo, pstate, ver, busy_mask; |
| u16 *cpu_list; |
| |
| cpu_list = __va(tb->cpu_list_pa); |
| mondo = __va(tb->cpu_mondo_block_pa); |
| |
| /* Unfortunately, someone at Sun had the brilliant idea to make the |
| * busy/nack fields hard-coded by ITID number for this Ultra-III |
| * derivative processor. |
| */ |
| __asm__ ("rdpr %%ver, %0" : "=r" (ver)); |
| is_jbus = ((ver >> 32) == __JALAPENO_ID || |
| (ver >> 32) == __SERRANO_ID); |
| |
| __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); |
| |
| retry: |
| need_more = 0; |
| __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" |
| : : "r" (pstate), "i" (PSTATE_IE)); |
| |
| /* Setup the dispatch data registers. */ |
| __asm__ __volatile__("stxa %0, [%3] %6\n\t" |
| "stxa %1, [%4] %6\n\t" |
| "stxa %2, [%5] %6\n\t" |
| "membar #Sync\n\t" |
| : /* no outputs */ |
| : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), |
| "r" (0x40), "r" (0x50), "r" (0x60), |
| "i" (ASI_INTR_W)); |
| |
| nack_busy_id = 0; |
| busy_mask = 0; |
| { |
| int i; |
| |
| for (i = 0; i < cnt; i++) { |
| u64 target, nr; |
| |
| nr = cpu_list[i]; |
| if (nr == 0xffff) |
| continue; |
| |
| target = (nr << 14) | 0x70; |
| if (is_jbus) { |
| busy_mask |= (0x1UL << (nr * 2)); |
| } else { |
| target |= (nack_busy_id << 24); |
| busy_mask |= (0x1UL << |
| (nack_busy_id * 2)); |
| } |
| __asm__ __volatile__( |
| "stxa %%g0, [%0] %1\n\t" |
| "membar #Sync\n\t" |
| : /* no outputs */ |
| : "r" (target), "i" (ASI_INTR_W)); |
| nack_busy_id++; |
| if (nack_busy_id == 32) { |
| need_more = 1; |
| break; |
| } |
| } |
| } |
| |
| /* Now, poll for completion. */ |
| { |
| u64 dispatch_stat, nack_mask; |
| long stuck; |
| |
| stuck = 100000 * nack_busy_id; |
| nack_mask = busy_mask << 1; |
| do { |
| __asm__ __volatile__("ldxa [%%g0] %1, %0" |
| : "=r" (dispatch_stat) |
| : "i" (ASI_INTR_DISPATCH_STAT)); |
| if (!(dispatch_stat & (busy_mask | nack_mask))) { |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : : "r" (pstate)); |
| if (unlikely(need_more)) { |
| int i, this_cnt = 0; |
| for (i = 0; i < cnt; i++) { |
| if (cpu_list[i] == 0xffff) |
| continue; |
| cpu_list[i] = 0xffff; |
| this_cnt++; |
| if (this_cnt == 32) |
| break; |
| } |
| goto retry; |
| } |
| return; |
| } |
| if (!--stuck) |
| break; |
| } while (dispatch_stat & busy_mask); |
| |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : : "r" (pstate)); |
| |
| if (dispatch_stat & busy_mask) { |
| /* Busy bits will not clear, continue instead |
| * of freezing up on this cpu. |
| */ |
| printk("CPU[%d]: mondo stuckage result[%016llx]\n", |
| smp_processor_id(), dispatch_stat); |
| } else { |
| int i, this_busy_nack = 0; |
| |
| /* Delay some random time with interrupts enabled |
| * to prevent deadlock. |
| */ |
| udelay(2 * nack_busy_id); |
| |
| /* Clear out the mask bits for cpus which did not |
| * NACK us. |
| */ |
| for (i = 0; i < cnt; i++) { |
| u64 check_mask, nr; |
| |
| nr = cpu_list[i]; |
| if (nr == 0xffff) |
| continue; |
| |
| if (is_jbus) |
| check_mask = (0x2UL << (2*nr)); |
| else |
| check_mask = (0x2UL << |
| this_busy_nack); |
| if ((dispatch_stat & check_mask) == 0) |
| cpu_list[i] = 0xffff; |
| this_busy_nack += 2; |
| if (this_busy_nack == 64) |
| break; |
| } |
| |
| goto retry; |
| } |
| } |
| } |
| |
| #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid]) |
| #define MONDO_USEC_WAIT_MIN 2 |
| #define MONDO_USEC_WAIT_MAX 100 |
| #define MONDO_RETRY_LIMIT 500000 |
| |
| /* Multi-cpu list version. |
| * |
| * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'. |
| * Sometimes not all cpus receive the mondo, requiring us to re-send |
| * the mondo until all cpus have received, or cpus are truly stuck |
| * unable to receive mondo, and we timeout. |
| * Occasionally a target cpu strand is borrowed briefly by hypervisor to |
| * perform guest service, such as PCIe error handling. Consider the |
| * service time, 1 second overall wait is reasonable for 1 cpu. |
| * Here two in-between mondo check wait time are defined: 2 usec for |
| * single cpu quick turn around and up to 100usec for large cpu count. |
| * Deliver mondo to large number of cpus could take longer, we adjusts |
| * the retry count as long as target cpus are making forward progress. |
| */ |
| static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) |
| { |
| int this_cpu, tot_cpus, prev_sent, i, rem; |
| int usec_wait, retries, tot_retries; |
| u16 first_cpu = 0xffff; |
| unsigned long xc_rcvd = 0; |
| unsigned long status; |
| int ecpuerror_id = 0; |
| int enocpu_id = 0; |
| u16 *cpu_list; |
| u16 cpu; |
| |
| this_cpu = smp_processor_id(); |
| cpu_list = __va(tb->cpu_list_pa); |
| usec_wait = cnt * MONDO_USEC_WAIT_MIN; |
| if (usec_wait > MONDO_USEC_WAIT_MAX) |
| usec_wait = MONDO_USEC_WAIT_MAX; |
| retries = tot_retries = 0; |
| tot_cpus = cnt; |
| prev_sent = 0; |
| |
| do { |
| int n_sent, mondo_delivered, target_cpu_busy; |
| |
| status = sun4v_cpu_mondo_send(cnt, |
| tb->cpu_list_pa, |
| tb->cpu_mondo_block_pa); |
| |
| /* HV_EOK means all cpus received the xcall, we're done. */ |
| if (likely(status == HV_EOK)) |
| goto xcall_done; |
| |
| /* If not these non-fatal errors, panic */ |
| if (unlikely((status != HV_EWOULDBLOCK) && |
| (status != HV_ECPUERROR) && |
| (status != HV_ENOCPU))) |
| goto fatal_errors; |
| |
| /* First, see if we made any forward progress. |
| * |
| * Go through the cpu_list, count the target cpus that have |
| * received our mondo (n_sent), and those that did not (rem). |
| * Re-pack cpu_list with the cpus remain to be retried in the |
| * front - this simplifies tracking the truly stalled cpus. |
| * |
| * The hypervisor indicates successful sends by setting |
| * cpu list entries to the value 0xffff. |
| * |
| * EWOULDBLOCK means some target cpus did not receive the |
| * mondo and retry usually helps. |
| * |
| * ECPUERROR means at least one target cpu is in error state, |
| * it's usually safe to skip the faulty cpu and retry. |
| * |
| * ENOCPU means one of the target cpu doesn't belong to the |
| * domain, perhaps offlined which is unexpected, but not |
| * fatal and it's okay to skip the offlined cpu. |
| */ |
| rem = 0; |
| n_sent = 0; |
| for (i = 0; i < cnt; i++) { |
| cpu = cpu_list[i]; |
| if (likely(cpu == 0xffff)) { |
| n_sent++; |
| } else if ((status == HV_ECPUERROR) && |
| (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) { |
| ecpuerror_id = cpu + 1; |
| } else if (status == HV_ENOCPU && !cpu_online(cpu)) { |
| enocpu_id = cpu + 1; |
| } else { |
| cpu_list[rem++] = cpu; |
| } |
| } |
| |
| /* No cpu remained, we're done. */ |
| if (rem == 0) |
| break; |
| |
| /* Otherwise, update the cpu count for retry. */ |
| cnt = rem; |
| |
| /* Record the overall number of mondos received by the |
| * first of the remaining cpus. |
| */ |
| if (first_cpu != cpu_list[0]) { |
| first_cpu = cpu_list[0]; |
| xc_rcvd = CPU_MONDO_COUNTER(first_cpu); |
| } |
| |
| /* Was any mondo delivered successfully? */ |
| mondo_delivered = (n_sent > prev_sent); |
| prev_sent = n_sent; |
| |
| /* or, was any target cpu busy processing other mondos? */ |
| target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu)); |
| xc_rcvd = CPU_MONDO_COUNTER(first_cpu); |
| |
| /* Retry count is for no progress. If we're making progress, |
| * reset the retry count. |
| */ |
| if (likely(mondo_delivered || target_cpu_busy)) { |
| tot_retries += retries; |
| retries = 0; |
| } else if (unlikely(retries > MONDO_RETRY_LIMIT)) { |
| goto fatal_mondo_timeout; |
| } |
| |
| /* Delay a little bit to let other cpus catch up on |
| * their cpu mondo queue work. |
| */ |
| if (!mondo_delivered) |
| udelay(usec_wait); |
| |
| retries++; |
| } while (1); |
| |
| xcall_done: |
| if (unlikely(ecpuerror_id > 0)) { |
| pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n", |
| this_cpu, ecpuerror_id - 1); |
| } else if (unlikely(enocpu_id > 0)) { |
| pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n", |
| this_cpu, enocpu_id - 1); |
| } |
| return; |
| |
| fatal_errors: |
| /* fatal errors include bad alignment, etc */ |
| pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n", |
| this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa); |
| panic("Unexpected SUN4V mondo error %lu\n", status); |
| |
| fatal_mondo_timeout: |
| /* some cpus being non-responsive to the cpu mondo */ |
| pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n", |
| this_cpu, first_cpu, (tot_retries + retries), tot_cpus); |
| panic("SUN4V mondo timeout panic\n"); |
| } |
| |
| static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); |
| |
| static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) |
| { |
| struct trap_per_cpu *tb; |
| int this_cpu, i, cnt; |
| unsigned long flags; |
| u16 *cpu_list; |
| u64 *mondo; |
| |
| /* We have to do this whole thing with interrupts fully disabled. |
| * Otherwise if we send an xcall from interrupt context it will |
| * corrupt both our mondo block and cpu list state. |
| * |
| * One consequence of this is that we cannot use timeout mechanisms |
| * that depend upon interrupts being delivered locally. So, for |
| * example, we cannot sample jiffies and expect it to advance. |
| * |
| * Fortunately, udelay() uses %stick/%tick so we can use that. |
| */ |
| local_irq_save(flags); |
| |
| this_cpu = smp_processor_id(); |
| tb = &trap_block[this_cpu]; |
| |
| mondo = __va(tb->cpu_mondo_block_pa); |
| mondo[0] = data0; |
| mondo[1] = data1; |
| mondo[2] = data2; |
| wmb(); |
| |
| cpu_list = __va(tb->cpu_list_pa); |
| |
| /* Setup the initial cpu list. */ |
| cnt = 0; |
| for_each_cpu(i, mask) { |
| if (i == this_cpu || !cpu_online(i)) |
| continue; |
| cpu_list[cnt++] = i; |
| } |
| |
| if (cnt) |
| xcall_deliver_impl(tb, cnt); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* Send cross call to all processors mentioned in MASK_P |
| * except self. Really, there are only two cases currently, |
| * "cpu_online_mask" and "mm_cpumask(mm)". |
| */ |
| static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) |
| { |
| u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); |
| |
| xcall_deliver(data0, data1, data2, mask); |
| } |
| |
| /* Send cross call to all processors except self. */ |
| static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) |
| { |
| smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask); |
| } |
| |
| extern unsigned long xcall_sync_tick; |
| |
| static void smp_start_sync_tick_client(int cpu) |
| { |
| xcall_deliver((u64) &xcall_sync_tick, 0, 0, |
| cpumask_of(cpu)); |
| } |
| |
| extern unsigned long xcall_call_function; |
| |
| void arch_send_call_function_ipi_mask(const struct cpumask *mask) |
| { |
| xcall_deliver((u64) &xcall_call_function, 0, 0, mask); |
| } |
| |
| extern unsigned long xcall_call_function_single; |
| |
| void arch_send_call_function_single_ipi(int cpu) |
| { |
| xcall_deliver((u64) &xcall_call_function_single, 0, 0, |
| cpumask_of(cpu)); |
| } |
| |
| void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs) |
| { |
| clear_softint(1 << irq); |
| irq_enter(); |
| generic_smp_call_function_interrupt(); |
| irq_exit(); |
| } |
| |
| void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs) |
| { |
| clear_softint(1 << irq); |
| irq_enter(); |
| generic_smp_call_function_single_interrupt(); |
| irq_exit(); |
| } |
| |
| static void tsb_sync(void *info) |
| { |
| struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; |
| struct mm_struct *mm = info; |
| |
| /* It is not valid to test "current->active_mm == mm" here. |
| * |
| * The value of "current" is not changed atomically with |
| * switch_mm(). But that's OK, we just need to check the |
| * current cpu's trap block PGD physical address. |
| */ |
| if (tp->pgd_paddr == __pa(mm->pgd)) |
| tsb_context_switch(mm); |
| } |
| |
| void smp_tsb_sync(struct mm_struct *mm) |
| { |
| smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1); |
| } |
| |
| extern unsigned long xcall_flush_tlb_mm; |
| extern unsigned long xcall_flush_tlb_page; |
| extern unsigned long xcall_flush_tlb_kernel_range; |
| extern unsigned long xcall_fetch_glob_regs; |
| extern unsigned long xcall_fetch_glob_pmu; |
| extern unsigned long xcall_fetch_glob_pmu_n4; |
| extern unsigned long xcall_receive_signal; |
| extern unsigned long xcall_new_mmu_context_version; |
| #ifdef CONFIG_KGDB |
| extern unsigned long xcall_kgdb_capture; |
| #endif |
| |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| extern unsigned long xcall_flush_dcache_page_cheetah; |
| #endif |
| extern unsigned long xcall_flush_dcache_page_spitfire; |
| |
| static inline void __local_flush_dcache_page(struct page *page) |
| { |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| __flush_dcache_page(page_address(page), |
| ((tlb_type == spitfire) && |
| page_mapping_file(page) != NULL)); |
| #else |
| if (page_mapping_file(page) != NULL && |
| tlb_type == spitfire) |
| __flush_icache_page(__pa(page_address(page))); |
| #endif |
| } |
| |
| void smp_flush_dcache_page_impl(struct page *page, int cpu) |
| { |
| int this_cpu; |
| |
| if (tlb_type == hypervisor) |
| return; |
| |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes); |
| #endif |
| |
| this_cpu = get_cpu(); |
| |
| if (cpu == this_cpu) { |
| __local_flush_dcache_page(page); |
| } else if (cpu_online(cpu)) { |
| void *pg_addr = page_address(page); |
| u64 data0 = 0; |
| |
| if (tlb_type == spitfire) { |
| data0 = ((u64)&xcall_flush_dcache_page_spitfire); |
| if (page_mapping_file(page) != NULL) |
| data0 |= ((u64)1 << 32); |
| } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| data0 = ((u64)&xcall_flush_dcache_page_cheetah); |
| #endif |
| } |
| if (data0) { |
| xcall_deliver(data0, __pa(pg_addr), |
| (u64) pg_addr, cpumask_of(cpu)); |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes_xcall); |
| #endif |
| } |
| } |
| |
| put_cpu(); |
| } |
| |
| void flush_dcache_page_all(struct mm_struct *mm, struct page *page) |
| { |
| void *pg_addr; |
| u64 data0; |
| |
| if (tlb_type == hypervisor) |
| return; |
| |
| preempt_disable(); |
| |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes); |
| #endif |
| data0 = 0; |
| pg_addr = page_address(page); |
| if (tlb_type == spitfire) { |
| data0 = ((u64)&xcall_flush_dcache_page_spitfire); |
| if (page_mapping_file(page) != NULL) |
| data0 |= ((u64)1 << 32); |
| } else if (tlb_type == cheetah || tlb_type == cheetah_plus) { |
| #ifdef DCACHE_ALIASING_POSSIBLE |
| data0 = ((u64)&xcall_flush_dcache_page_cheetah); |
| #endif |
| } |
| if (data0) { |
| xcall_deliver(data0, __pa(pg_addr), |
| (u64) pg_addr, cpu_online_mask); |
| #ifdef CONFIG_DEBUG_DCFLUSH |
| atomic_inc(&dcpage_flushes_xcall); |
| #endif |
| } |
| __local_flush_dcache_page(page); |
| |
| preempt_enable(); |
| } |
| |
| #ifdef CONFIG_KGDB |
| void kgdb_roundup_cpus(unsigned long flags) |
| { |
| smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); |
| } |
| #endif |
| |
| void smp_fetch_global_regs(void) |
| { |
| smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); |
| } |
| |
| void smp_fetch_global_pmu(void) |
| { |
| if (tlb_type == hypervisor && |
| sun4v_chip_type >= SUN4V_CHIP_NIAGARA4) |
| smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0); |
| else |
| smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0); |
| } |
| |
| /* We know that the window frames of the user have been flushed |
| * to the stack before we get here because all callers of us |
| * are flush_tlb_*() routines, and these run after flush_cache_*() |
| * which performs the flushw. |
| * |
| * The SMP TLB coherency scheme we use works as follows: |
| * |
| * 1) mm->cpu_vm_mask is a bit mask of which cpus an address |
| * space has (potentially) executed on, this is the heuristic |
| * we use to avoid doing cross calls. |
| * |
| * Also, for flushing from kswapd and also for clones, we |
| * use cpu_vm_mask as the list of cpus to make run the TLB. |
| * |
| * 2) TLB context numbers are shared globally across all processors |
| * in the system, this allows us to play several games to avoid |
| * cross calls. |
| * |
| * One invariant is that when a cpu switches to a process, and |
| * that processes tsk->active_mm->cpu_vm_mask does not have the |
| * current cpu's bit set, that tlb context is flushed locally. |
| * |
| * If the address space is non-shared (ie. mm->count == 1) we avoid |
| * cross calls when we want to flush the currently running process's |
| * tlb state. This is done by clearing all cpu bits except the current |
| * processor's in current->mm->cpu_vm_mask and performing the |
| * flush locally only. This will force any subsequent cpus which run |
| * this task to flush the context from the local tlb if the process |
| * migrates to another cpu (again). |
| * |
| * 3) For shared address spaces (threads) and swapping we bite the |
| * bullet for most cases and perform the cross call (but only to |
| * the cpus listed in cpu_vm_mask). |
| * |
| * The performance gain from "optimizing" away the cross call for threads is |
| * questionable (in theory the big win for threads is the massive sharing of |
| * address space state across processors). |
| */ |
| |
| /* This currently is only used by the hugetlb arch pre-fault |
| * hook on UltraSPARC-III+ and later when changing the pagesize |
| * bits of the context register for an address space. |
| */ |
| void smp_flush_tlb_mm(struct mm_struct *mm) |
| { |
| u32 ctx = CTX_HWBITS(mm->context); |
| int cpu = get_cpu(); |
| |
| if (atomic_read(&mm->mm_users) == 1) { |
| cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); |
| goto local_flush_and_out; |
| } |
| |
| smp_cross_call_masked(&xcall_flush_tlb_mm, |
| ctx, 0, 0, |
| mm_cpumask(mm)); |
| |
| local_flush_and_out: |
| __flush_tlb_mm(ctx, SECONDARY_CONTEXT); |
| |
| put_cpu(); |
| } |
| |
| struct tlb_pending_info { |
| unsigned long ctx; |
| unsigned long nr; |
| unsigned long *vaddrs; |
| }; |
| |
| static void tlb_pending_func(void *info) |
| { |
| struct tlb_pending_info *t = info; |
| |
| __flush_tlb_pending(t->ctx, t->nr, t->vaddrs); |
| } |
| |
| void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) |
| { |
| u32 ctx = CTX_HWBITS(mm->context); |
| struct tlb_pending_info info; |
| int cpu = get_cpu(); |
| |
| info.ctx = ctx; |
| info.nr = nr; |
| info.vaddrs = vaddrs; |
| |
| if (mm == current->mm && atomic_read(&mm->mm_users) == 1) |
| cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); |
| else |
| smp_call_function_many(mm_cpumask(mm), tlb_pending_func, |
| &info, 1); |
| |
| __flush_tlb_pending(ctx, nr, vaddrs); |
| |
| put_cpu(); |
| } |
| |
| void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr) |
| { |
| unsigned long context = CTX_HWBITS(mm->context); |
| int cpu = get_cpu(); |
| |
| if (mm == current->mm && atomic_read(&mm->mm_users) == 1) |
| cpumask_copy(mm_cpumask(mm), cpumask_of(cpu)); |
| else |
| smp_cross_call_masked(&xcall_flush_tlb_page, |
| context, vaddr, 0, |
| mm_cpumask(mm)); |
| __flush_tlb_page(context, vaddr); |
| |
| put_cpu(); |
| } |
| |
| void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) |
| { |
| start &= PAGE_MASK; |
| end = PAGE_ALIGN(end); |
| if (start != end) { |
| smp_cross_call(&xcall_flush_tlb_kernel_range, |
| 0, start, end); |
| |
| __flush_tlb_kernel_range(start, end); |
| } |
| } |
| |
| /* CPU capture. */ |
| /* #define CAPTURE_DEBUG */ |
| extern unsigned long xcall_capture; |
| |
| static atomic_t smp_capture_depth = ATOMIC_INIT(0); |
| static atomic_t smp_capture_registry = ATOMIC_INIT(0); |
| static unsigned long penguins_are_doing_time; |
| |
| void smp_capture(void) |
| { |
| int result = atomic_add_return(1, &smp_capture_depth); |
| |
| if (result == 1) { |
| int ncpus = num_online_cpus(); |
| |
| #ifdef CAPTURE_DEBUG |
| printk("CPU[%d]: Sending penguins to jail...", |
| smp_processor_id()); |
| #endif |
| penguins_are_doing_time = 1; |
| atomic_inc(&smp_capture_registry); |
| smp_cross_call(&xcall_capture, 0, 0, 0); |
| while (atomic_read(&smp_capture_registry) != ncpus) |
| rmb(); |
| #ifdef CAPTURE_DEBUG |
| printk("done\n"); |
| #endif |
| } |
| } |
| |
| void smp_release(void) |
| { |
| if (atomic_dec_and_test(&smp_capture_depth)) { |
| #ifdef CAPTURE_DEBUG |
| printk("CPU[%d]: Giving pardon to " |
| "imprisoned penguins\n", |
| smp_processor_id()); |
| #endif |
| penguins_are_doing_time = 0; |
| membar_safe("#StoreLoad"); |
| atomic_dec(&smp_capture_registry); |
| } |
| } |
| |
| /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE |
| * set, so they can service tlb flush xcalls... |
| */ |
| extern void prom_world(int); |
| |
| void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs) |
| { |
| clear_softint(1 << irq); |
| |
| preempt_disable(); |
| |
| __asm__ __volatile__("flushw"); |
| prom_world(1); |
| atomic_inc(&smp_capture_registry); |
| membar_safe("#StoreLoad"); |
| while (penguins_are_doing_time) |
| rmb(); |
| atomic_dec(&smp_capture_registry); |
| prom_world(0); |
| |
| preempt_enable(); |
| } |
| |
| /* /proc/profile writes can call this, don't __init it please. */ |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |
| |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| } |
| |
| void smp_prepare_boot_cpu(void) |
| { |
| } |
| |
| void __init smp_setup_processor_id(void) |
| { |
| if (tlb_type == spitfire) |
| xcall_deliver_impl = spitfire_xcall_deliver; |
| else if (tlb_type == cheetah || tlb_type == cheetah_plus) |
| xcall_deliver_impl = cheetah_xcall_deliver; |
| else |
| xcall_deliver_impl = hypervisor_xcall_deliver; |
| } |
| |
| void __init smp_fill_in_cpu_possible_map(void) |
| { |
| int possible_cpus = num_possible_cpus(); |
| int i; |
| |
| if (possible_cpus > nr_cpu_ids) |
| possible_cpus = nr_cpu_ids; |
| |
| for (i = 0; i < possible_cpus; i++) |
| set_cpu_possible(i, true); |
| for (; i < NR_CPUS; i++) |
| set_cpu_possible(i, false); |
| } |
| |
| void smp_fill_in_sib_core_maps(void) |
| { |
| unsigned int i; |
| |
| for_each_present_cpu(i) { |
| unsigned int j; |
| |
| cpumask_clear(&cpu_core_map[i]); |
| if (cpu_data(i).core_id == 0) { |
| cpumask_set_cpu(i, &cpu_core_map[i]); |
| continue; |
| } |
| |
| for_each_present_cpu(j) { |
| if (cpu_data(i).core_id == |
| cpu_data(j).core_id) |
| cpumask_set_cpu(j, &cpu_core_map[i]); |
| } |
| } |
| |
| for_each_present_cpu(i) { |
| unsigned int j; |
| |
| for_each_present_cpu(j) { |
| if (cpu_data(i).max_cache_id == |
| cpu_data(j).max_cache_id) |
| cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]); |
| |
| if (cpu_data(i).sock_id == cpu_data(j).sock_id) |
| cpumask_set_cpu(j, &cpu_core_sib_map[i]); |
| } |
| } |
| |
| for_each_present_cpu(i) { |
| unsigned int j; |
| |
| cpumask_clear(&per_cpu(cpu_sibling_map, i)); |
| if (cpu_data(i).proc_id == -1) { |
| cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i)); |
| continue; |
| } |
| |
| for_each_present_cpu(j) { |
| if (cpu_data(i).proc_id == |
| cpu_data(j).proc_id) |
| cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i)); |
| } |
| } |
| } |
| |
| int __cpu_up(unsigned int cpu, struct task_struct *tidle) |
| { |
| int ret = smp_boot_one_cpu(cpu, tidle); |
| |
| if (!ret) { |
| cpumask_set_cpu(cpu, &smp_commenced_mask); |
| while (!cpu_online(cpu)) |
| mb(); |
| if (!cpu_online(cpu)) { |
| ret = -ENODEV; |
| } else { |
| /* On SUN4V, writes to %tick and %stick are |
| * not allowed. |
| */ |
| if (tlb_type != hypervisor) |
| smp_synchronize_one_tick(cpu); |
| } |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| void cpu_play_dead(void) |
| { |
| int cpu = smp_processor_id(); |
| unsigned long pstate; |
| |
| idle_task_exit(); |
| |
| if (tlb_type == hypervisor) { |
| struct trap_per_cpu *tb = &trap_block[cpu]; |
| |
| sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, |
| tb->cpu_mondo_pa, 0); |
| sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, |
| tb->dev_mondo_pa, 0); |
| sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, |
| tb->resum_mondo_pa, 0); |
| sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, |
| tb->nonresum_mondo_pa, 0); |
| } |
| |
| cpumask_clear_cpu(cpu, &smp_commenced_mask); |
| membar_safe("#Sync"); |
| |
| local_irq_disable(); |
| |
| __asm__ __volatile__( |
| "rdpr %%pstate, %0\n\t" |
| "wrpr %0, %1, %%pstate" |
| : "=r" (pstate) |
| : "i" (PSTATE_IE)); |
| |
| while (1) |
| barrier(); |
| } |
| |
| int __cpu_disable(void) |
| { |
| int cpu = smp_processor_id(); |
| cpuinfo_sparc *c; |
| int i; |
| |
| for_each_cpu(i, &cpu_core_map[cpu]) |
| cpumask_clear_cpu(cpu, &cpu_core_map[i]); |
| cpumask_clear(&cpu_core_map[cpu]); |
| |
| for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu)) |
| cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i)); |
| cpumask_clear(&per_cpu(cpu_sibling_map, cpu)); |
| |
| c = &cpu_data(cpu); |
| |
| c->core_id = 0; |
| c->proc_id = -1; |
| |
| smp_wmb(); |
| |
| /* Make sure no interrupts point to this cpu. */ |
| fixup_irqs(); |
| |
| local_irq_enable(); |
| mdelay(1); |
| local_irq_disable(); |
| |
| set_cpu_online(cpu, false); |
| |
| cpu_map_rebuild(); |
| |
| return 0; |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| int i; |
| |
| for (i = 0; i < 100; i++) { |
| smp_rmb(); |
| if (!cpumask_test_cpu(cpu, &smp_commenced_mask)) |
| break; |
| msleep(100); |
| } |
| if (cpumask_test_cpu(cpu, &smp_commenced_mask)) { |
| printk(KERN_ERR "CPU %u didn't die...\n", cpu); |
| } else { |
| #if defined(CONFIG_SUN_LDOMS) |
| unsigned long hv_err; |
| int limit = 100; |
| |
| do { |
| hv_err = sun4v_cpu_stop(cpu); |
| if (hv_err == HV_EOK) { |
| set_cpu_present(cpu, false); |
| break; |
| } |
| } while (--limit > 0); |
| if (limit <= 0) { |
| printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", |
| hv_err); |
| } |
| #endif |
| } |
| } |
| #endif |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| } |
| |
| static void send_cpu_ipi(int cpu) |
| { |
| xcall_deliver((u64) &xcall_receive_signal, |
| 0, 0, cpumask_of(cpu)); |
| } |
| |
| void scheduler_poke(void) |
| { |
| if (!cpu_poke) |
| return; |
| |
| if (!__this_cpu_read(poke)) |
| return; |
| |
| __this_cpu_write(poke, false); |
| set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); |
| } |
| |
| static unsigned long send_cpu_poke(int cpu) |
| { |
| unsigned long hv_err; |
| |
| per_cpu(poke, cpu) = true; |
| hv_err = sun4v_cpu_poke(cpu); |
| if (hv_err != HV_EOK) { |
| per_cpu(poke, cpu) = false; |
| pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n", |
| __func__, hv_err); |
| } |
| |
| return hv_err; |
| } |
| |
| void smp_send_reschedule(int cpu) |
| { |
| if (cpu == smp_processor_id()) { |
| WARN_ON_ONCE(preemptible()); |
| set_softint(1 << PIL_SMP_RECEIVE_SIGNAL); |
| return; |
| } |
| |
| /* Use cpu poke to resume idle cpu if supported. */ |
| if (cpu_poke && idle_cpu(cpu)) { |
| unsigned long ret; |
| |
| ret = send_cpu_poke(cpu); |
| if (ret == HV_EOK) |
| return; |
| } |
| |
| /* Use IPI in following cases: |
| * - cpu poke not supported |
| * - cpu not idle |
| * - send_cpu_poke() returns with error |
| */ |
| send_cpu_ipi(cpu); |
| } |
| |
| void smp_init_cpu_poke(void) |
| { |
| unsigned long major; |
| unsigned long minor; |
| int ret; |
| |
| if (tlb_type != hypervisor) |
| return; |
| |
| ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor); |
| if (ret) { |
| pr_debug("HV_GRP_CORE is not registered\n"); |
| return; |
| } |
| |
| if (major == 1 && minor >= 6) { |
| /* CPU POKE is registered. */ |
| cpu_poke = true; |
| return; |
| } |
| |
| pr_debug("CPU_POKE not supported\n"); |
| } |
| |
| void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs) |
| { |
| clear_softint(1 << irq); |
| scheduler_ipi(); |
| } |
| |
| static void stop_this_cpu(void *dummy) |
| { |
| set_cpu_online(smp_processor_id(), false); |
| prom_stopself(); |
| } |
| |
| void smp_send_stop(void) |
| { |
| int cpu; |
| |
| if (tlb_type == hypervisor) { |
| int this_cpu = smp_processor_id(); |
| #ifdef CONFIG_SERIAL_SUNHV |
| sunhv_migrate_hvcons_irq(this_cpu); |
| #endif |
| for_each_online_cpu(cpu) { |
| if (cpu == this_cpu) |
| continue; |
| |
| set_cpu_online(cpu, false); |
| #ifdef CONFIG_SUN_LDOMS |
| if (ldom_domaining_enabled) { |
| unsigned long hv_err; |
| hv_err = sun4v_cpu_stop(cpu); |
| if (hv_err) |
| printk(KERN_ERR "sun4v_cpu_stop() " |
| "failed err=%lu\n", hv_err); |
| } else |
| #endif |
| prom_stopcpu_cpuid(cpu); |
| } |
| } else |
| smp_call_function(stop_this_cpu, NULL, 0); |
| } |
| |
| /** |
| * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu |
| * @cpu: cpu to allocate for |
| * @size: size allocation in bytes |
| * @align: alignment |
| * |
| * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper |
| * does the right thing for NUMA regardless of the current |
| * configuration. |
| * |
| * RETURNS: |
| * Pointer to the allocated area on success, NULL on failure. |
| */ |
| static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size, |
| size_t align) |
| { |
| const unsigned long goal = __pa(MAX_DMA_ADDRESS); |
| #ifdef CONFIG_NEED_MULTIPLE_NODES |
| int node = cpu_to_node(cpu); |
| void *ptr; |
| |
| if (!node_online(node) || !NODE_DATA(node)) { |
| ptr = __alloc_bootmem(size, align, goal); |
| pr_info("cpu %d has no node %d or node-local memory\n", |
| cpu, node); |
| pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n", |
| cpu, size, __pa(ptr)); |
| } else { |
| ptr = __alloc_bootmem_node(NODE_DATA(node), |
| size, align, goal); |
| pr_debug("per cpu data for cpu%d %lu bytes on node%d at " |
| "%016lx\n", cpu, size, node, __pa(ptr)); |
| } |
| return ptr; |
| #else |
| return __alloc_bootmem(size, align, goal); |
| #endif |
| } |
| |
| static void __init pcpu_free_bootmem(void *ptr, size_t size) |
| { |
| free_bootmem(__pa(ptr), size); |
| } |
| |
| static int __init pcpu_cpu_distance(unsigned int from, unsigned int to) |
| { |
| if (cpu_to_node(from) == cpu_to_node(to)) |
| return LOCAL_DISTANCE; |
| else |
| return REMOTE_DISTANCE; |
| } |
| |
| static void __init pcpu_populate_pte(unsigned long addr) |
| { |
| pgd_t *pgd = pgd_offset_k(addr); |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| if (pgd_none(*pgd)) { |
| pud_t *new; |
| |
| new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); |
| pgd_populate(&init_mm, pgd, new); |
| } |
| |
| pud = pud_offset(pgd, addr); |
| if (pud_none(*pud)) { |
| pmd_t *new; |
| |
| new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); |
| pud_populate(&init_mm, pud, new); |
| } |
| |
| pmd = pmd_offset(pud, addr); |
| if (!pmd_present(*pmd)) { |
| pte_t *new; |
| |
| new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE); |
| pmd_populate_kernel(&init_mm, pmd, new); |
| } |
| } |
| |
| void __init setup_per_cpu_areas(void) |
| { |
| unsigned long delta; |
| unsigned int cpu; |
| int rc = -EINVAL; |
| |
| if (pcpu_chosen_fc != PCPU_FC_PAGE) { |
| rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, |
| PERCPU_DYNAMIC_RESERVE, 4 << 20, |
| pcpu_cpu_distance, |
| pcpu_alloc_bootmem, |
| pcpu_free_bootmem); |
| if (rc) |
| pr_warning("PERCPU: %s allocator failed (%d), " |
| "falling back to page size\n", |
| pcpu_fc_names[pcpu_chosen_fc], rc); |
| } |
| if (rc < 0) |
| rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE, |
| pcpu_alloc_bootmem, |
| pcpu_free_bootmem, |
| pcpu_populate_pte); |
| if (rc < 0) |
| panic("cannot initialize percpu area (err=%d)", rc); |
| |
| delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; |
| for_each_possible_cpu(cpu) |
| __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu]; |
| |
| /* Setup %g5 for the boot cpu. */ |
| __local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); |
| |
| of_fill_in_cpu_data(); |
| if (tlb_type == hypervisor) |
| mdesc_fill_in_cpu_data(cpu_all_mask); |
| } |