| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Scheduler internal types and methods: |
| */ |
| #include <linux/sched.h> |
| |
| #include <linux/sched/autogroup.h> |
| #include <linux/sched/clock.h> |
| #include <linux/sched/coredump.h> |
| #include <linux/sched/cpufreq.h> |
| #include <linux/sched/cputime.h> |
| #include <linux/sched/deadline.h> |
| #include <linux/sched/debug.h> |
| #include <linux/sched/hotplug.h> |
| #include <linux/sched/idle.h> |
| #include <linux/sched/init.h> |
| #include <linux/sched/isolation.h> |
| #include <linux/sched/jobctl.h> |
| #include <linux/sched/loadavg.h> |
| #include <linux/sched/mm.h> |
| #include <linux/sched/nohz.h> |
| #include <linux/sched/numa_balancing.h> |
| #include <linux/sched/prio.h> |
| #include <linux/sched/rt.h> |
| #include <linux/sched/signal.h> |
| #include <linux/sched/stat.h> |
| #include <linux/sched/sysctl.h> |
| #include <linux/sched/task.h> |
| #include <linux/sched/task_stack.h> |
| #include <linux/sched/topology.h> |
| #include <linux/sched/user.h> |
| #include <linux/sched/wake_q.h> |
| #include <linux/sched/xacct.h> |
| |
| #include <uapi/linux/sched/types.h> |
| |
| #include <linux/binfmts.h> |
| #include <linux/blkdev.h> |
| #include <linux/compat.h> |
| #include <linux/context_tracking.h> |
| #include <linux/cpufreq.h> |
| #include <linux/cpuidle.h> |
| #include <linux/cpuset.h> |
| #include <linux/ctype.h> |
| #include <linux/debugfs.h> |
| #include <linux/delayacct.h> |
| #include <linux/init_task.h> |
| #include <linux/kprobes.h> |
| #include <linux/kthread.h> |
| #include <linux/membarrier.h> |
| #include <linux/migrate.h> |
| #include <linux/mmu_context.h> |
| #include <linux/nmi.h> |
| #include <linux/proc_fs.h> |
| #include <linux/prefetch.h> |
| #include <linux/profile.h> |
| #include <linux/rcupdate_wait.h> |
| #include <linux/security.h> |
| #include <linux/stackprotector.h> |
| #include <linux/stop_machine.h> |
| #include <linux/suspend.h> |
| #include <linux/swait.h> |
| #include <linux/syscalls.h> |
| #include <linux/task_work.h> |
| #include <linux/tsacct_kern.h> |
| |
| #include <asm/tlb.h> |
| |
| #ifdef CONFIG_PARAVIRT |
| # include <asm/paravirt.h> |
| #endif |
| |
| #include "cpupri.h" |
| #include "cpudeadline.h" |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| # define SCHED_WARN_ON(x) WARN_ONCE(x, #x) |
| #else |
| # define SCHED_WARN_ON(x) ({ (void)(x), 0; }) |
| #endif |
| |
| struct rq; |
| struct cpuidle_state; |
| |
| /* task_struct::on_rq states: */ |
| #define TASK_ON_RQ_QUEUED 1 |
| #define TASK_ON_RQ_MIGRATING 2 |
| |
| extern __read_mostly int scheduler_running; |
| |
| extern unsigned long calc_load_update; |
| extern atomic_long_t calc_load_tasks; |
| |
| extern void calc_global_load_tick(struct rq *this_rq); |
| extern long calc_load_fold_active(struct rq *this_rq, long adjust); |
| |
| #ifdef CONFIG_SMP |
| extern void cpu_load_update_active(struct rq *this_rq); |
| #else |
| static inline void cpu_load_update_active(struct rq *this_rq) { } |
| #endif |
| |
| /* |
| * Helpers for converting nanosecond timing to jiffy resolution |
| */ |
| #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) |
| |
| /* |
| * Increase resolution of nice-level calculations for 64-bit architectures. |
| * The extra resolution improves shares distribution and load balancing of |
| * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup |
| * hierarchies, especially on larger systems. This is not a user-visible change |
| * and does not change the user-interface for setting shares/weights. |
| * |
| * We increase resolution only if we have enough bits to allow this increased |
| * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit |
| * are pretty high and the returns do not justify the increased costs. |
| * |
| * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to |
| * increase coverage and consistency always enable it on 64-bit platforms. |
| */ |
| #ifdef CONFIG_64BIT |
| # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) |
| # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) |
| # define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT) |
| #else |
| # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) |
| # define scale_load(w) (w) |
| # define scale_load_down(w) (w) |
| #endif |
| |
| /* |
| * Task weight (visible to users) and its load (invisible to users) have |
| * independent resolution, but they should be well calibrated. We use |
| * scale_load() and scale_load_down(w) to convert between them. The |
| * following must be true: |
| * |
| * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD |
| * |
| */ |
| #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) |
| |
| /* |
| * Single value that decides SCHED_DEADLINE internal math precision. |
| * 10 -> just above 1us |
| * 9 -> just above 0.5us |
| */ |
| #define DL_SCALE 10 |
| |
| /* |
| * Single value that denotes runtime == period, ie unlimited time. |
| */ |
| #define RUNTIME_INF ((u64)~0ULL) |
| |
| static inline int idle_policy(int policy) |
| { |
| return policy == SCHED_IDLE; |
| } |
| static inline int fair_policy(int policy) |
| { |
| return policy == SCHED_NORMAL || policy == SCHED_BATCH; |
| } |
| |
| static inline int rt_policy(int policy) |
| { |
| return policy == SCHED_FIFO || policy == SCHED_RR; |
| } |
| |
| static inline int dl_policy(int policy) |
| { |
| return policy == SCHED_DEADLINE; |
| } |
| static inline bool valid_policy(int policy) |
| { |
| return idle_policy(policy) || fair_policy(policy) || |
| rt_policy(policy) || dl_policy(policy); |
| } |
| |
| static inline int task_has_rt_policy(struct task_struct *p) |
| { |
| return rt_policy(p->policy); |
| } |
| |
| static inline int task_has_dl_policy(struct task_struct *p) |
| { |
| return dl_policy(p->policy); |
| } |
| |
| #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) |
| |
| /* |
| * !! For sched_setattr_nocheck() (kernel) only !! |
| * |
| * This is actually gross. :( |
| * |
| * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE |
| * tasks, but still be able to sleep. We need this on platforms that cannot |
| * atomically change clock frequency. Remove once fast switching will be |
| * available on such platforms. |
| * |
| * SUGOV stands for SchedUtil GOVernor. |
| */ |
| #define SCHED_FLAG_SUGOV 0x10000000 |
| |
| static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se) |
| { |
| #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL |
| return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); |
| #else |
| return false; |
| #endif |
| } |
| |
| /* |
| * Tells if entity @a should preempt entity @b. |
| */ |
| static inline bool |
| dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b) |
| { |
| return dl_entity_is_special(a) || |
| dl_time_before(a->deadline, b->deadline); |
| } |
| |
| /* |
| * This is the priority-queue data structure of the RT scheduling class: |
| */ |
| struct rt_prio_array { |
| DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ |
| struct list_head queue[MAX_RT_PRIO]; |
| }; |
| |
| struct rt_bandwidth { |
| /* nests inside the rq lock: */ |
| raw_spinlock_t rt_runtime_lock; |
| ktime_t rt_period; |
| u64 rt_runtime; |
| struct hrtimer rt_period_timer; |
| unsigned int rt_period_active; |
| }; |
| |
| void __dl_clear_params(struct task_struct *p); |
| |
| /* |
| * To keep the bandwidth of -deadline tasks and groups under control |
| * we need some place where: |
| * - store the maximum -deadline bandwidth of the system (the group); |
| * - cache the fraction of that bandwidth that is currently allocated. |
| * |
| * This is all done in the data structure below. It is similar to the |
| * one used for RT-throttling (rt_bandwidth), with the main difference |
| * that, since here we are only interested in admission control, we |
| * do not decrease any runtime while the group "executes", neither we |
| * need a timer to replenish it. |
| * |
| * With respect to SMP, the bandwidth is given on a per-CPU basis, |
| * meaning that: |
| * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU; |
| * - dl_total_bw array contains, in the i-eth element, the currently |
| * allocated bandwidth on the i-eth CPU. |
| * Moreover, groups consume bandwidth on each CPU, while tasks only |
| * consume bandwidth on the CPU they're running on. |
| * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw |
| * that will be shown the next time the proc or cgroup controls will |
| * be red. It on its turn can be changed by writing on its own |
| * control. |
| */ |
| struct dl_bandwidth { |
| raw_spinlock_t dl_runtime_lock; |
| u64 dl_runtime; |
| u64 dl_period; |
| }; |
| |
| static inline int dl_bandwidth_enabled(void) |
| { |
| return sysctl_sched_rt_runtime >= 0; |
| } |
| |
| struct dl_bw { |
| raw_spinlock_t lock; |
| u64 bw; |
| u64 total_bw; |
| }; |
| |
| static inline void __dl_update(struct dl_bw *dl_b, s64 bw); |
| |
| static inline |
| void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus) |
| { |
| dl_b->total_bw -= tsk_bw; |
| __dl_update(dl_b, (s32)tsk_bw / cpus); |
| } |
| |
| static inline |
| void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus) |
| { |
| dl_b->total_bw += tsk_bw; |
| __dl_update(dl_b, -((s32)tsk_bw / cpus)); |
| } |
| |
| static inline |
| bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) |
| { |
| return dl_b->bw != -1 && |
| dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; |
| } |
| |
| extern void dl_change_utilization(struct task_struct *p, u64 new_bw); |
| extern void init_dl_bw(struct dl_bw *dl_b); |
| extern int sched_dl_global_validate(void); |
| extern void sched_dl_do_global(void); |
| extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); |
| extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); |
| extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); |
| extern bool __checkparam_dl(const struct sched_attr *attr); |
| extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); |
| extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); |
| extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); |
| extern bool dl_cpu_busy(unsigned int cpu); |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| |
| #include <linux/cgroup.h> |
| |
| struct cfs_rq; |
| struct rt_rq; |
| |
| extern struct list_head task_groups; |
| |
| struct cfs_bandwidth { |
| #ifdef CONFIG_CFS_BANDWIDTH |
| raw_spinlock_t lock; |
| ktime_t period; |
| u64 quota; |
| u64 runtime; |
| s64 hierarchical_quota; |
| u64 runtime_expires; |
| int expires_seq; |
| |
| short idle; |
| short period_active; |
| struct hrtimer period_timer; |
| struct hrtimer slack_timer; |
| struct list_head throttled_cfs_rq; |
| |
| /* Statistics: */ |
| int nr_periods; |
| int nr_throttled; |
| u64 throttled_time; |
| #endif |
| }; |
| |
| /* Task group related information */ |
| struct task_group { |
| struct cgroup_subsys_state css; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* schedulable entities of this group on each CPU */ |
| struct sched_entity **se; |
| /* runqueue "owned" by this group on each CPU */ |
| struct cfs_rq **cfs_rq; |
| unsigned long shares; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * load_avg can be heavily contended at clock tick time, so put |
| * it in its own cacheline separated from the fields above which |
| * will also be accessed at each tick. |
| */ |
| atomic_long_t load_avg ____cacheline_aligned; |
| #endif |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| struct sched_rt_entity **rt_se; |
| struct rt_rq **rt_rq; |
| |
| struct rt_bandwidth rt_bandwidth; |
| #endif |
| |
| struct rcu_head rcu; |
| struct list_head list; |
| |
| struct task_group *parent; |
| struct list_head siblings; |
| struct list_head children; |
| |
| #ifdef CONFIG_SCHED_AUTOGROUP |
| struct autogroup *autogroup; |
| #endif |
| |
| struct cfs_bandwidth cfs_bandwidth; |
| }; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD |
| |
| /* |
| * A weight of 0 or 1 can cause arithmetics problems. |
| * A weight of a cfs_rq is the sum of weights of which entities |
| * are queued on this cfs_rq, so a weight of a entity should not be |
| * too large, so as the shares value of a task group. |
| * (The default weight is 1024 - so there's no practical |
| * limitation from this.) |
| */ |
| #define MIN_SHARES (1UL << 1) |
| #define MAX_SHARES (1UL << 18) |
| #endif |
| |
| typedef int (*tg_visitor)(struct task_group *, void *); |
| |
| extern int walk_tg_tree_from(struct task_group *from, |
| tg_visitor down, tg_visitor up, void *data); |
| |
| /* |
| * Iterate the full tree, calling @down when first entering a node and @up when |
| * leaving it for the final time. |
| * |
| * Caller must hold rcu_lock or sufficient equivalent. |
| */ |
| static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) |
| { |
| return walk_tg_tree_from(&root_task_group, down, up, data); |
| } |
| |
| extern int tg_nop(struct task_group *tg, void *data); |
| |
| extern void free_fair_sched_group(struct task_group *tg); |
| extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); |
| extern void online_fair_sched_group(struct task_group *tg); |
| extern void unregister_fair_sched_group(struct task_group *tg); |
| extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, |
| struct sched_entity *se, int cpu, |
| struct sched_entity *parent); |
| extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| |
| extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); |
| extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); |
| extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); |
| |
| extern void free_rt_sched_group(struct task_group *tg); |
| extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); |
| extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, |
| struct sched_rt_entity *rt_se, int cpu, |
| struct sched_rt_entity *parent); |
| extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); |
| extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); |
| extern long sched_group_rt_runtime(struct task_group *tg); |
| extern long sched_group_rt_period(struct task_group *tg); |
| extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); |
| |
| extern struct task_group *sched_create_group(struct task_group *parent); |
| extern void sched_online_group(struct task_group *tg, |
| struct task_group *parent); |
| extern void sched_destroy_group(struct task_group *tg); |
| extern void sched_offline_group(struct task_group *tg); |
| |
| extern void sched_move_task(struct task_struct *tsk); |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); |
| |
| #ifdef CONFIG_SMP |
| extern void set_task_rq_fair(struct sched_entity *se, |
| struct cfs_rq *prev, struct cfs_rq *next); |
| #else /* !CONFIG_SMP */ |
| static inline void set_task_rq_fair(struct sched_entity *se, |
| struct cfs_rq *prev, struct cfs_rq *next) { } |
| #endif /* CONFIG_SMP */ |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| #else /* CONFIG_CGROUP_SCHED */ |
| |
| struct cfs_bandwidth { }; |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| /* CFS-related fields in a runqueue */ |
| struct cfs_rq { |
| struct load_weight load; |
| unsigned long runnable_weight; |
| unsigned int nr_running; |
| unsigned int h_nr_running; |
| |
| u64 exec_clock; |
| u64 min_vruntime; |
| #ifndef CONFIG_64BIT |
| u64 min_vruntime_copy; |
| #endif |
| |
| struct rb_root_cached tasks_timeline; |
| |
| /* |
| * 'curr' points to currently running entity on this cfs_rq. |
| * It is set to NULL otherwise (i.e when none are currently running). |
| */ |
| struct sched_entity *curr; |
| struct sched_entity *next; |
| struct sched_entity *last; |
| struct sched_entity *skip; |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| unsigned int nr_spread_over; |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* |
| * CFS load tracking |
| */ |
| struct sched_avg avg; |
| #ifndef CONFIG_64BIT |
| u64 load_last_update_time_copy; |
| #endif |
| struct { |
| raw_spinlock_t lock ____cacheline_aligned; |
| int nr; |
| unsigned long load_avg; |
| unsigned long util_avg; |
| unsigned long runnable_sum; |
| } removed; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| unsigned long tg_load_avg_contrib; |
| long propagate; |
| long prop_runnable_sum; |
| |
| /* |
| * h_load = weight * f(tg) |
| * |
| * Where f(tg) is the recursive weight fraction assigned to |
| * this group. |
| */ |
| unsigned long h_load; |
| u64 last_h_load_update; |
| struct sched_entity *h_load_next; |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| #endif /* CONFIG_SMP */ |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ |
| |
| /* |
| * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in |
| * a hierarchy). Non-leaf lrqs hold other higher schedulable entities |
| * (like users, containers etc.) |
| * |
| * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. |
| * This list is used during load balance. |
| */ |
| int on_list; |
| struct list_head leaf_cfs_rq_list; |
| struct task_group *tg; /* group that "owns" this runqueue */ |
| |
| #ifdef CONFIG_CFS_BANDWIDTH |
| int runtime_enabled; |
| int expires_seq; |
| u64 runtime_expires; |
| s64 runtime_remaining; |
| |
| u64 throttled_clock; |
| u64 throttled_clock_task; |
| u64 throttled_clock_task_time; |
| int throttled; |
| int throttle_count; |
| struct list_head throttled_list; |
| #endif /* CONFIG_CFS_BANDWIDTH */ |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| }; |
| |
| static inline int rt_bandwidth_enabled(void) |
| { |
| return sysctl_sched_rt_runtime >= 0; |
| } |
| |
| /* RT IPI pull logic requires IRQ_WORK */ |
| #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) |
| # define HAVE_RT_PUSH_IPI |
| #endif |
| |
| /* Real-Time classes' related field in a runqueue: */ |
| struct rt_rq { |
| struct rt_prio_array active; |
| unsigned int rt_nr_running; |
| unsigned int rr_nr_running; |
| #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED |
| struct { |
| int curr; /* highest queued rt task prio */ |
| #ifdef CONFIG_SMP |
| int next; /* next highest */ |
| #endif |
| } highest_prio; |
| #endif |
| #ifdef CONFIG_SMP |
| unsigned long rt_nr_migratory; |
| unsigned long rt_nr_total; |
| int overloaded; |
| struct plist_head pushable_tasks; |
| |
| #endif /* CONFIG_SMP */ |
| int rt_queued; |
| |
| int rt_throttled; |
| u64 rt_time; |
| u64 rt_runtime; |
| /* Nests inside the rq lock: */ |
| raw_spinlock_t rt_runtime_lock; |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| unsigned long rt_nr_boosted; |
| |
| struct rq *rq; |
| struct task_group *tg; |
| #endif |
| }; |
| |
| static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) |
| { |
| return rt_rq->rt_queued && rt_rq->rt_nr_running; |
| } |
| |
| /* Deadline class' related fields in a runqueue */ |
| struct dl_rq { |
| /* runqueue is an rbtree, ordered by deadline */ |
| struct rb_root_cached root; |
| |
| unsigned long dl_nr_running; |
| |
| #ifdef CONFIG_SMP |
| /* |
| * Deadline values of the currently executing and the |
| * earliest ready task on this rq. Caching these facilitates |
| * the decision wether or not a ready but not running task |
| * should migrate somewhere else. |
| */ |
| struct { |
| u64 curr; |
| u64 next; |
| } earliest_dl; |
| |
| unsigned long dl_nr_migratory; |
| int overloaded; |
| |
| /* |
| * Tasks on this rq that can be pushed away. They are kept in |
| * an rb-tree, ordered by tasks' deadlines, with caching |
| * of the leftmost (earliest deadline) element. |
| */ |
| struct rb_root_cached pushable_dl_tasks_root; |
| #else |
| struct dl_bw dl_bw; |
| #endif |
| /* |
| * "Active utilization" for this runqueue: increased when a |
| * task wakes up (becomes TASK_RUNNING) and decreased when a |
| * task blocks |
| */ |
| u64 running_bw; |
| |
| /* |
| * Utilization of the tasks "assigned" to this runqueue (including |
| * the tasks that are in runqueue and the tasks that executed on this |
| * CPU and blocked). Increased when a task moves to this runqueue, and |
| * decreased when the task moves away (migrates, changes scheduling |
| * policy, or terminates). |
| * This is needed to compute the "inactive utilization" for the |
| * runqueue (inactive utilization = this_bw - running_bw). |
| */ |
| u64 this_bw; |
| u64 extra_bw; |
| |
| /* |
| * Inverse of the fraction of CPU utilization that can be reclaimed |
| * by the GRUB algorithm. |
| */ |
| u64 bw_ratio; |
| }; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* An entity is a task if it doesn't "own" a runqueue */ |
| #define entity_is_task(se) (!se->my_q) |
| #else |
| #define entity_is_task(se) 1 |
| #endif |
| |
| #ifdef CONFIG_SMP |
| /* |
| * XXX we want to get rid of these helpers and use the full load resolution. |
| */ |
| static inline long se_weight(struct sched_entity *se) |
| { |
| return scale_load_down(se->load.weight); |
| } |
| |
| static inline long se_runnable(struct sched_entity *se) |
| { |
| return scale_load_down(se->runnable_weight); |
| } |
| |
| static inline bool sched_asym_prefer(int a, int b) |
| { |
| return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); |
| } |
| |
| /* |
| * We add the notion of a root-domain which will be used to define per-domain |
| * variables. Each exclusive cpuset essentially defines an island domain by |
| * fully partitioning the member CPUs from any other cpuset. Whenever a new |
| * exclusive cpuset is created, we also create and attach a new root-domain |
| * object. |
| * |
| */ |
| struct root_domain { |
| atomic_t refcount; |
| atomic_t rto_count; |
| struct rcu_head rcu; |
| cpumask_var_t span; |
| cpumask_var_t online; |
| |
| /* Indicate more than one runnable task for any CPU */ |
| bool overload; |
| |
| /* |
| * The bit corresponding to a CPU gets set here if such CPU has more |
| * than one runnable -deadline task (as it is below for RT tasks). |
| */ |
| cpumask_var_t dlo_mask; |
| atomic_t dlo_count; |
| struct dl_bw dl_bw; |
| struct cpudl cpudl; |
| |
| #ifdef HAVE_RT_PUSH_IPI |
| /* |
| * For IPI pull requests, loop across the rto_mask. |
| */ |
| struct irq_work rto_push_work; |
| raw_spinlock_t rto_lock; |
| /* These are only updated and read within rto_lock */ |
| int rto_loop; |
| int rto_cpu; |
| /* These atomics are updated outside of a lock */ |
| atomic_t rto_loop_next; |
| atomic_t rto_loop_start; |
| #endif |
| /* |
| * The "RT overload" flag: it gets set if a CPU has more than |
| * one runnable RT task. |
| */ |
| cpumask_var_t rto_mask; |
| struct cpupri cpupri; |
| |
| unsigned long max_cpu_capacity; |
| }; |
| |
| extern struct root_domain def_root_domain; |
| extern struct mutex sched_domains_mutex; |
| |
| extern void init_defrootdomain(void); |
| extern int sched_init_domains(const struct cpumask *cpu_map); |
| extern void rq_attach_root(struct rq *rq, struct root_domain *rd); |
| extern void sched_get_rd(struct root_domain *rd); |
| extern void sched_put_rd(struct root_domain *rd); |
| |
| #ifdef HAVE_RT_PUSH_IPI |
| extern void rto_push_irq_work_func(struct irq_work *work); |
| #endif |
| #endif /* CONFIG_SMP */ |
| |
| /* |
| * This is the main, per-CPU runqueue data structure. |
| * |
| * Locking rule: those places that want to lock multiple runqueues |
| * (such as the load balancing or the thread migration code), lock |
| * acquire operations must be ordered by ascending &runqueue. |
| */ |
| struct rq { |
| /* runqueue lock: */ |
| raw_spinlock_t lock; |
| |
| /* |
| * nr_running and cpu_load should be in the same cacheline because |
| * remote CPUs use both these fields when doing load calculation. |
| */ |
| unsigned int nr_running; |
| #ifdef CONFIG_NUMA_BALANCING |
| unsigned int nr_numa_running; |
| unsigned int nr_preferred_running; |
| unsigned int numa_migrate_on; |
| #endif |
| #define CPU_LOAD_IDX_MAX 5 |
| unsigned long cpu_load[CPU_LOAD_IDX_MAX]; |
| #ifdef CONFIG_NO_HZ_COMMON |
| #ifdef CONFIG_SMP |
| unsigned long last_load_update_tick; |
| unsigned long last_blocked_load_update_tick; |
| unsigned int has_blocked_load; |
| #endif /* CONFIG_SMP */ |
| unsigned int nohz_tick_stopped; |
| atomic_t nohz_flags; |
| #endif /* CONFIG_NO_HZ_COMMON */ |
| |
| /* capture load from *all* tasks on this CPU: */ |
| struct load_weight load; |
| unsigned long nr_load_updates; |
| u64 nr_switches; |
| |
| struct cfs_rq cfs; |
| struct rt_rq rt; |
| struct dl_rq dl; |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| /* list of leaf cfs_rq on this CPU: */ |
| struct list_head leaf_cfs_rq_list; |
| struct list_head *tmp_alone_branch; |
| #endif /* CONFIG_FAIR_GROUP_SCHED */ |
| |
| /* |
| * This is part of a global counter where only the total sum |
| * over all CPUs matters. A task can increase this counter on |
| * one CPU and if it got migrated afterwards it may decrease |
| * it on another CPU. Always updated under the runqueue lock: |
| */ |
| unsigned long nr_uninterruptible; |
| |
| struct task_struct *curr; |
| struct task_struct *idle; |
| struct task_struct *stop; |
| unsigned long next_balance; |
| struct mm_struct *prev_mm; |
| |
| unsigned int clock_update_flags; |
| u64 clock; |
| u64 clock_task; |
| |
| atomic_t nr_iowait; |
| |
| #ifdef CONFIG_SMP |
| struct root_domain *rd; |
| struct sched_domain *sd; |
| |
| unsigned long cpu_capacity; |
| unsigned long cpu_capacity_orig; |
| |
| struct callback_head *balance_callback; |
| |
| unsigned char idle_balance; |
| |
| /* For active balancing */ |
| int active_balance; |
| int push_cpu; |
| struct cpu_stop_work active_balance_work; |
| |
| /* CPU of this runqueue: */ |
| int cpu; |
| int online; |
| |
| struct list_head cfs_tasks; |
| |
| struct sched_avg avg_rt; |
| struct sched_avg avg_dl; |
| #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING) |
| #define HAVE_SCHED_AVG_IRQ |
| struct sched_avg avg_irq; |
| #endif |
| u64 idle_stamp; |
| u64 avg_idle; |
| |
| /* This is used to determine avg_idle's max value */ |
| u64 max_idle_balance_cost; |
| #endif |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| u64 prev_irq_time; |
| #endif |
| #ifdef CONFIG_PARAVIRT |
| u64 prev_steal_time; |
| #endif |
| #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING |
| u64 prev_steal_time_rq; |
| #endif |
| |
| /* calc_load related fields */ |
| unsigned long calc_load_update; |
| long calc_load_active; |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| #ifdef CONFIG_SMP |
| int hrtick_csd_pending; |
| call_single_data_t hrtick_csd; |
| #endif |
| struct hrtimer hrtick_timer; |
| #endif |
| |
| #ifdef CONFIG_SCHEDSTATS |
| /* latency stats */ |
| struct sched_info rq_sched_info; |
| unsigned long long rq_cpu_time; |
| /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */ |
| |
| /* sys_sched_yield() stats */ |
| unsigned int yld_count; |
| |
| /* schedule() stats */ |
| unsigned int sched_count; |
| unsigned int sched_goidle; |
| |
| /* try_to_wake_up() stats */ |
| unsigned int ttwu_count; |
| unsigned int ttwu_local; |
| #endif |
| |
| #ifdef CONFIG_SMP |
| struct llist_head wake_list; |
| #endif |
| |
| #ifdef CONFIG_CPU_IDLE |
| /* Must be inspected within a rcu lock section */ |
| struct cpuidle_state *idle_state; |
| #endif |
| }; |
| |
| static inline int cpu_of(struct rq *rq) |
| { |
| #ifdef CONFIG_SMP |
| return rq->cpu; |
| #else |
| return 0; |
| #endif |
| } |
| |
| |
| #ifdef CONFIG_SCHED_SMT |
| |
| extern struct static_key_false sched_smt_present; |
| |
| extern void __update_idle_core(struct rq *rq); |
| |
| static inline void update_idle_core(struct rq *rq) |
| { |
| if (static_branch_unlikely(&sched_smt_present)) |
| __update_idle_core(rq); |
| } |
| |
| #else |
| static inline void update_idle_core(struct rq *rq) { } |
| #endif |
| |
| DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); |
| |
| #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) |
| #define this_rq() this_cpu_ptr(&runqueues) |
| #define task_rq(p) cpu_rq(task_cpu(p)) |
| #define cpu_curr(cpu) (cpu_rq(cpu)->curr) |
| #define raw_rq() raw_cpu_ptr(&runqueues) |
| |
| static inline u64 __rq_clock_broken(struct rq *rq) |
| { |
| return READ_ONCE(rq->clock); |
| } |
| |
| /* |
| * rq::clock_update_flags bits |
| * |
| * %RQCF_REQ_SKIP - will request skipping of clock update on the next |
| * call to __schedule(). This is an optimisation to avoid |
| * neighbouring rq clock updates. |
| * |
| * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is |
| * in effect and calls to update_rq_clock() are being ignored. |
| * |
| * %RQCF_UPDATED - is a debug flag that indicates whether a call has been |
| * made to update_rq_clock() since the last time rq::lock was pinned. |
| * |
| * If inside of __schedule(), clock_update_flags will have been |
| * shifted left (a left shift is a cheap operation for the fast path |
| * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, |
| * |
| * if (rq-clock_update_flags >= RQCF_UPDATED) |
| * |
| * to check if %RQCF_UPADTED is set. It'll never be shifted more than |
| * one position though, because the next rq_unpin_lock() will shift it |
| * back. |
| */ |
| #define RQCF_REQ_SKIP 0x01 |
| #define RQCF_ACT_SKIP 0x02 |
| #define RQCF_UPDATED 0x04 |
| |
| static inline void assert_clock_updated(struct rq *rq) |
| { |
| /* |
| * The only reason for not seeing a clock update since the |
| * last rq_pin_lock() is if we're currently skipping updates. |
| */ |
| SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP); |
| } |
| |
| static inline u64 rq_clock(struct rq *rq) |
| { |
| lockdep_assert_held(&rq->lock); |
| assert_clock_updated(rq); |
| |
| return rq->clock; |
| } |
| |
| static inline u64 rq_clock_task(struct rq *rq) |
| { |
| lockdep_assert_held(&rq->lock); |
| assert_clock_updated(rq); |
| |
| return rq->clock_task; |
| } |
| |
| static inline void rq_clock_skip_update(struct rq *rq) |
| { |
| lockdep_assert_held(&rq->lock); |
| rq->clock_update_flags |= RQCF_REQ_SKIP; |
| } |
| |
| /* |
| * See rt task throttling, which is the only time a skip |
| * request is cancelled. |
| */ |
| static inline void rq_clock_cancel_skipupdate(struct rq *rq) |
| { |
| lockdep_assert_held(&rq->lock); |
| rq->clock_update_flags &= ~RQCF_REQ_SKIP; |
| } |
| |
| struct rq_flags { |
| unsigned long flags; |
| struct pin_cookie cookie; |
| #ifdef CONFIG_SCHED_DEBUG |
| /* |
| * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the |
| * current pin context is stashed here in case it needs to be |
| * restored in rq_repin_lock(). |
| */ |
| unsigned int clock_update_flags; |
| #endif |
| }; |
| |
| static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) |
| { |
| rf->cookie = lockdep_pin_lock(&rq->lock); |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); |
| rf->clock_update_flags = 0; |
| #endif |
| } |
| |
| static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) |
| { |
| #ifdef CONFIG_SCHED_DEBUG |
| if (rq->clock_update_flags > RQCF_ACT_SKIP) |
| rf->clock_update_flags = RQCF_UPDATED; |
| #endif |
| |
| lockdep_unpin_lock(&rq->lock, rf->cookie); |
| } |
| |
| static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) |
| { |
| lockdep_repin_lock(&rq->lock, rf->cookie); |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| /* |
| * Restore the value we stashed in @rf for this pin context. |
| */ |
| rq->clock_update_flags |= rf->clock_update_flags; |
| #endif |
| } |
| |
| #ifdef CONFIG_NUMA |
| enum numa_topology_type { |
| NUMA_DIRECT, |
| NUMA_GLUELESS_MESH, |
| NUMA_BACKPLANE, |
| }; |
| extern enum numa_topology_type sched_numa_topology_type; |
| extern int sched_max_numa_distance; |
| extern bool find_numa_distance(int distance); |
| #endif |
| |
| #ifdef CONFIG_NUMA |
| extern void sched_init_numa(void); |
| extern void sched_domains_numa_masks_set(unsigned int cpu); |
| extern void sched_domains_numa_masks_clear(unsigned int cpu); |
| #else |
| static inline void sched_init_numa(void) { } |
| static inline void sched_domains_numa_masks_set(unsigned int cpu) { } |
| static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } |
| #endif |
| |
| #ifdef CONFIG_NUMA_BALANCING |
| /* The regions in numa_faults array from task_struct */ |
| enum numa_faults_stats { |
| NUMA_MEM = 0, |
| NUMA_CPU, |
| NUMA_MEMBUF, |
| NUMA_CPUBUF |
| }; |
| extern void sched_setnuma(struct task_struct *p, int node); |
| extern int migrate_task_to(struct task_struct *p, int cpu); |
| extern int migrate_swap(struct task_struct *p, struct task_struct *t, |
| int cpu, int scpu); |
| extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); |
| #else |
| static inline void |
| init_numa_balancing(unsigned long clone_flags, struct task_struct *p) |
| { |
| } |
| #endif /* CONFIG_NUMA_BALANCING */ |
| |
| #ifdef CONFIG_SMP |
| |
| static inline void |
| queue_balance_callback(struct rq *rq, |
| struct callback_head *head, |
| void (*func)(struct rq *rq)) |
| { |
| lockdep_assert_held(&rq->lock); |
| |
| if (unlikely(head->next)) |
| return; |
| |
| head->func = (void (*)(struct callback_head *))func; |
| head->next = rq->balance_callback; |
| rq->balance_callback = head; |
| } |
| |
| extern void sched_ttwu_pending(void); |
| |
| #define rcu_dereference_check_sched_domain(p) \ |
| rcu_dereference_check((p), \ |
| lockdep_is_held(&sched_domains_mutex)) |
| |
| /* |
| * The domain tree (rq->sd) is protected by RCU's quiescent state transition. |
| * See detach_destroy_domains: synchronize_sched for details. |
| * |
| * The domain tree of any CPU may only be accessed from within |
| * preempt-disabled sections. |
| */ |
| #define for_each_domain(cpu, __sd) \ |
| for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ |
| __sd; __sd = __sd->parent) |
| |
| #define for_each_lower_domain(sd) for (; sd; sd = sd->child) |
| |
| /** |
| * highest_flag_domain - Return highest sched_domain containing flag. |
| * @cpu: The CPU whose highest level of sched domain is to |
| * be returned. |
| * @flag: The flag to check for the highest sched_domain |
| * for the given CPU. |
| * |
| * Returns the highest sched_domain of a CPU which contains the given flag. |
| */ |
| static inline struct sched_domain *highest_flag_domain(int cpu, int flag) |
| { |
| struct sched_domain *sd, *hsd = NULL; |
| |
| for_each_domain(cpu, sd) { |
| if (!(sd->flags & flag)) |
| break; |
| hsd = sd; |
| } |
| |
| return hsd; |
| } |
| |
| static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) |
| { |
| struct sched_domain *sd; |
| |
| for_each_domain(cpu, sd) { |
| if (sd->flags & flag) |
| break; |
| } |
| |
| return sd; |
| } |
| |
| DECLARE_PER_CPU(struct sched_domain *, sd_llc); |
| DECLARE_PER_CPU(int, sd_llc_size); |
| DECLARE_PER_CPU(int, sd_llc_id); |
| DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); |
| DECLARE_PER_CPU(struct sched_domain *, sd_numa); |
| DECLARE_PER_CPU(struct sched_domain *, sd_asym); |
| |
| struct sched_group_capacity { |
| atomic_t ref; |
| /* |
| * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity |
| * for a single CPU. |
| */ |
| unsigned long capacity; |
| unsigned long min_capacity; /* Min per-CPU capacity in group */ |
| unsigned long next_update; |
| int imbalance; /* XXX unrelated to capacity but shared group state */ |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| int id; |
| #endif |
| |
| unsigned long cpumask[0]; /* Balance mask */ |
| }; |
| |
| struct sched_group { |
| struct sched_group *next; /* Must be a circular list */ |
| atomic_t ref; |
| |
| unsigned int group_weight; |
| struct sched_group_capacity *sgc; |
| int asym_prefer_cpu; /* CPU of highest priority in group */ |
| |
| /* |
| * The CPUs this group covers. |
| * |
| * NOTE: this field is variable length. (Allocated dynamically |
| * by attaching extra space to the end of the structure, |
| * depending on how many CPUs the kernel has booted up with) |
| */ |
| unsigned long cpumask[0]; |
| }; |
| |
| static inline struct cpumask *sched_group_span(struct sched_group *sg) |
| { |
| return to_cpumask(sg->cpumask); |
| } |
| |
| /* |
| * See build_balance_mask(). |
| */ |
| static inline struct cpumask *group_balance_mask(struct sched_group *sg) |
| { |
| return to_cpumask(sg->sgc->cpumask); |
| } |
| |
| /** |
| * group_first_cpu - Returns the first CPU in the cpumask of a sched_group. |
| * @group: The group whose first CPU is to be returned. |
| */ |
| static inline unsigned int group_first_cpu(struct sched_group *group) |
| { |
| return cpumask_first(sched_group_span(group)); |
| } |
| |
| extern int group_balance_cpu(struct sched_group *sg); |
| |
| #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) |
| void register_sched_domain_sysctl(void); |
| void dirty_sched_domain_sysctl(int cpu); |
| void unregister_sched_domain_sysctl(void); |
| #else |
| static inline void register_sched_domain_sysctl(void) |
| { |
| } |
| static inline void dirty_sched_domain_sysctl(int cpu) |
| { |
| } |
| static inline void unregister_sched_domain_sysctl(void) |
| { |
| } |
| #endif |
| |
| #else |
| |
| static inline void sched_ttwu_pending(void) { } |
| |
| #endif /* CONFIG_SMP */ |
| |
| #include "stats.h" |
| #include "autogroup.h" |
| |
| #ifdef CONFIG_CGROUP_SCHED |
| |
| /* |
| * Return the group to which this tasks belongs. |
| * |
| * We cannot use task_css() and friends because the cgroup subsystem |
| * changes that value before the cgroup_subsys::attach() method is called, |
| * therefore we cannot pin it and might observe the wrong value. |
| * |
| * The same is true for autogroup's p->signal->autogroup->tg, the autogroup |
| * core changes this before calling sched_move_task(). |
| * |
| * Instead we use a 'copy' which is updated from sched_move_task() while |
| * holding both task_struct::pi_lock and rq::lock. |
| */ |
| static inline struct task_group *task_group(struct task_struct *p) |
| { |
| return p->sched_task_group; |
| } |
| |
| /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) |
| { |
| #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) |
| struct task_group *tg = task_group(p); |
| #endif |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); |
| p->se.cfs_rq = tg->cfs_rq[cpu]; |
| p->se.parent = tg->se[cpu]; |
| #endif |
| |
| #ifdef CONFIG_RT_GROUP_SCHED |
| p->rt.rt_rq = tg->rt_rq[cpu]; |
| p->rt.parent = tg->rt_se[cpu]; |
| #endif |
| } |
| |
| #else /* CONFIG_CGROUP_SCHED */ |
| |
| static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } |
| static inline struct task_group *task_group(struct task_struct *p) |
| { |
| return NULL; |
| } |
| |
| #endif /* CONFIG_CGROUP_SCHED */ |
| |
| static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) |
| { |
| set_task_rq(p, cpu); |
| #ifdef CONFIG_SMP |
| /* |
| * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be |
| * successfuly executed on another CPU. We must ensure that updates of |
| * per-task data have been completed by this moment. |
| */ |
| smp_wmb(); |
| #ifdef CONFIG_THREAD_INFO_IN_TASK |
| p->cpu = cpu; |
| #else |
| task_thread_info(p)->cpu = cpu; |
| #endif |
| p->wake_cpu = cpu; |
| #endif |
| } |
| |
| /* |
| * Tunables that become constants when CONFIG_SCHED_DEBUG is off: |
| */ |
| #ifdef CONFIG_SCHED_DEBUG |
| # include <linux/static_key.h> |
| # define const_debug __read_mostly |
| #else |
| # define const_debug const |
| #endif |
| |
| #define SCHED_FEAT(name, enabled) \ |
| __SCHED_FEAT_##name , |
| |
| enum { |
| #include "features.h" |
| __SCHED_FEAT_NR, |
| }; |
| |
| #undef SCHED_FEAT |
| |
| #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL) |
| |
| /* |
| * To support run-time toggling of sched features, all the translation units |
| * (but core.c) reference the sysctl_sched_features defined in core.c. |
| */ |
| extern const_debug unsigned int sysctl_sched_features; |
| |
| #define SCHED_FEAT(name, enabled) \ |
| static __always_inline bool static_branch_##name(struct static_key *key) \ |
| { \ |
| return static_key_##enabled(key); \ |
| } |
| |
| #include "features.h" |
| #undef SCHED_FEAT |
| |
| extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; |
| #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) |
| |
| #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */ |
| |
| /* |
| * Each translation unit has its own copy of sysctl_sched_features to allow |
| * constants propagation at compile time and compiler optimization based on |
| * features default. |
| */ |
| #define SCHED_FEAT(name, enabled) \ |
| (1UL << __SCHED_FEAT_##name) * enabled | |
| static const_debug __maybe_unused unsigned int sysctl_sched_features = |
| #include "features.h" |
| 0; |
| #undef SCHED_FEAT |
| |
| #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) |
| |
| #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */ |
| |
| extern struct static_key_false sched_numa_balancing; |
| extern struct static_key_false sched_schedstats; |
| |
| static inline u64 global_rt_period(void) |
| { |
| return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; |
| } |
| |
| static inline u64 global_rt_runtime(void) |
| { |
| if (sysctl_sched_rt_runtime < 0) |
| return RUNTIME_INF; |
| |
| return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; |
| } |
| |
| static inline int task_current(struct rq *rq, struct task_struct *p) |
| { |
| return rq->curr == p; |
| } |
| |
| static inline int task_running(struct rq *rq, struct task_struct *p) |
| { |
| #ifdef CONFIG_SMP |
| return p->on_cpu; |
| #else |
| return task_current(rq, p); |
| #endif |
| } |
| |
| static inline int task_on_rq_queued(struct task_struct *p) |
| { |
| return p->on_rq == TASK_ON_RQ_QUEUED; |
| } |
| |
| static inline int task_on_rq_migrating(struct task_struct *p) |
| { |
| return p->on_rq == TASK_ON_RQ_MIGRATING; |
| } |
| |
| /* |
| * wake flags |
| */ |
| #define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */ |
| #define WF_FORK 0x02 /* Child wakeup after fork */ |
| #define WF_MIGRATED 0x4 /* Internal use, task got migrated */ |
| |
| /* |
| * To aid in avoiding the subversion of "niceness" due to uneven distribution |
| * of tasks with abnormal "nice" values across CPUs the contribution that |
| * each task makes to its run queue's load is weighted according to its |
| * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a |
| * scaled version of the new time slice allocation that they receive on time |
| * slice expiry etc. |
| */ |
| |
| #define WEIGHT_IDLEPRIO 3 |
| #define WMULT_IDLEPRIO 1431655765 |
| |
| extern const int sched_prio_to_weight[40]; |
| extern const u32 sched_prio_to_wmult[40]; |
| |
| /* |
| * {de,en}queue flags: |
| * |
| * DEQUEUE_SLEEP - task is no longer runnable |
| * ENQUEUE_WAKEUP - task just became runnable |
| * |
| * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks |
| * are in a known state which allows modification. Such pairs |
| * should preserve as much state as possible. |
| * |
| * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location |
| * in the runqueue. |
| * |
| * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) |
| * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) |
| * ENQUEUE_MIGRATED - the task was migrated during wakeup |
| * |
| */ |
| |
| #define DEQUEUE_SLEEP 0x01 |
| #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ |
| #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ |
| #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ |
| |
| #define ENQUEUE_WAKEUP 0x01 |
| #define ENQUEUE_RESTORE 0x02 |
| #define ENQUEUE_MOVE 0x04 |
| #define ENQUEUE_NOCLOCK 0x08 |
| |
| #define ENQUEUE_HEAD 0x10 |
| #define ENQUEUE_REPLENISH 0x20 |
| #ifdef CONFIG_SMP |
| #define ENQUEUE_MIGRATED 0x40 |
| #else |
| #define ENQUEUE_MIGRATED 0x00 |
| #endif |
| |
| #define RETRY_TASK ((void *)-1UL) |
| |
| struct sched_class { |
| const struct sched_class *next; |
| |
| void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); |
| void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); |
| void (*yield_task) (struct rq *rq); |
| bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt); |
| |
| void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags); |
| |
| /* |
| * It is the responsibility of the pick_next_task() method that will |
| * return the next task to call put_prev_task() on the @prev task or |
| * something equivalent. |
| * |
| * May return RETRY_TASK when it finds a higher prio class has runnable |
| * tasks. |
| */ |
| struct task_struct * (*pick_next_task)(struct rq *rq, |
| struct task_struct *prev, |
| struct rq_flags *rf); |
| void (*put_prev_task)(struct rq *rq, struct task_struct *p); |
| |
| #ifdef CONFIG_SMP |
| int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags); |
| void (*migrate_task_rq)(struct task_struct *p, int new_cpu); |
| |
| void (*task_woken)(struct rq *this_rq, struct task_struct *task); |
| |
| void (*set_cpus_allowed)(struct task_struct *p, |
| const struct cpumask *newmask); |
| |
| void (*rq_online)(struct rq *rq); |
| void (*rq_offline)(struct rq *rq); |
| #endif |
| |
| void (*set_curr_task)(struct rq *rq); |
| void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); |
| void (*task_fork)(struct task_struct *p); |
| void (*task_dead)(struct task_struct *p); |
| |
| /* |
| * The switched_from() call is allowed to drop rq->lock, therefore we |
| * cannot assume the switched_from/switched_to pair is serliazed by |
| * rq->lock. They are however serialized by p->pi_lock. |
| */ |
| void (*switched_from)(struct rq *this_rq, struct task_struct *task); |
| void (*switched_to) (struct rq *this_rq, struct task_struct *task); |
| void (*prio_changed) (struct rq *this_rq, struct task_struct *task, |
| int oldprio); |
| |
| unsigned int (*get_rr_interval)(struct rq *rq, |
| struct task_struct *task); |
| |
| void (*update_curr)(struct rq *rq); |
| |
| #define TASK_SET_GROUP 0 |
| #define TASK_MOVE_GROUP 1 |
| |
| #ifdef CONFIG_FAIR_GROUP_SCHED |
| void (*task_change_group)(struct task_struct *p, int type); |
| #endif |
| }; |
| |
| static inline void put_prev_task(struct rq *rq, struct task_struct *prev) |
| { |
| prev->sched_class->put_prev_task(rq, prev); |
| } |
| |
| static inline void set_curr_task(struct rq *rq, struct task_struct *curr) |
| { |
| curr->sched_class->set_curr_task(rq); |
| } |
| |
| #ifdef CONFIG_SMP |
| #define sched_class_highest (&stop_sched_class) |
| #else |
| #define sched_class_highest (&dl_sched_class) |
| #endif |
| #define for_each_class(class) \ |
| for (class = sched_class_highest; class; class = class->next) |
| |
| extern const struct sched_class stop_sched_class; |
| extern const struct sched_class dl_sched_class; |
| extern const struct sched_class rt_sched_class; |
| extern const struct sched_class fair_sched_class; |
| extern const struct sched_class idle_sched_class; |
| |
| |
| #ifdef CONFIG_SMP |
| |
| extern void update_group_capacity(struct sched_domain *sd, int cpu); |
| |
| extern void trigger_load_balance(struct rq *rq); |
| |
| extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask); |
| |
| #endif |
| |
| #ifdef CONFIG_CPU_IDLE |
| static inline void idle_set_state(struct rq *rq, |
| struct cpuidle_state *idle_state) |
| { |
| rq->idle_state = idle_state; |
| } |
| |
| static inline struct cpuidle_state *idle_get_state(struct rq *rq) |
| { |
| SCHED_WARN_ON(!rcu_read_lock_held()); |
| |
| return rq->idle_state; |
| } |
| #else |
| static inline void idle_set_state(struct rq *rq, |
| struct cpuidle_state *idle_state) |
| { |
| } |
| |
| static inline struct cpuidle_state *idle_get_state(struct rq *rq) |
| { |
| return NULL; |
| } |
| #endif |
| |
| extern void schedule_idle(void); |
| |
| extern void sysrq_sched_debug_show(void); |
| extern void sched_init_granularity(void); |
| extern void update_max_interval(void); |
| |
| extern void init_sched_dl_class(void); |
| extern void init_sched_rt_class(void); |
| extern void init_sched_fair_class(void); |
| |
| extern void reweight_task(struct task_struct *p, int prio); |
| |
| extern void resched_curr(struct rq *rq); |
| extern void resched_cpu(int cpu); |
| |
| extern struct rt_bandwidth def_rt_bandwidth; |
| extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); |
| |
| extern struct dl_bandwidth def_dl_bandwidth; |
| extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime); |
| extern void init_dl_task_timer(struct sched_dl_entity *dl_se); |
| extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se); |
| extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq); |
| |
| #define BW_SHIFT 20 |
| #define BW_UNIT (1 << BW_SHIFT) |
| #define RATIO_SHIFT 8 |
| unsigned long to_ratio(u64 period, u64 runtime); |
| |
| extern void init_entity_runnable_average(struct sched_entity *se); |
| extern void post_init_entity_util_avg(struct sched_entity *se); |
| |
| #ifdef CONFIG_NO_HZ_FULL |
| extern bool sched_can_stop_tick(struct rq *rq); |
| extern int __init sched_tick_offload_init(void); |
| |
| /* |
| * Tick may be needed by tasks in the runqueue depending on their policy and |
| * requirements. If tick is needed, lets send the target an IPI to kick it out of |
| * nohz mode if necessary. |
| */ |
| static inline void sched_update_tick_dependency(struct rq *rq) |
| { |
| int cpu; |
| |
| if (!tick_nohz_full_enabled()) |
| return; |
| |
| cpu = cpu_of(rq); |
| |
| if (!tick_nohz_full_cpu(cpu)) |
| return; |
| |
| if (sched_can_stop_tick(rq)) |
| tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); |
| else |
| tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); |
| } |
| #else |
| static inline int sched_tick_offload_init(void) { return 0; } |
| static inline void sched_update_tick_dependency(struct rq *rq) { } |
| #endif |
| |
| static inline void add_nr_running(struct rq *rq, unsigned count) |
| { |
| unsigned prev_nr = rq->nr_running; |
| |
| rq->nr_running = prev_nr + count; |
| |
| if (prev_nr < 2 && rq->nr_running >= 2) { |
| #ifdef CONFIG_SMP |
| if (!rq->rd->overload) |
| rq->rd->overload = true; |
| #endif |
| } |
| |
| sched_update_tick_dependency(rq); |
| } |
| |
| static inline void sub_nr_running(struct rq *rq, unsigned count) |
| { |
| rq->nr_running -= count; |
| /* Check if we still need preemption */ |
| sched_update_tick_dependency(rq); |
| } |
| |
| extern void update_rq_clock(struct rq *rq); |
| |
| extern void activate_task(struct rq *rq, struct task_struct *p, int flags); |
| extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); |
| |
| extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags); |
| |
| extern const_debug unsigned int sysctl_sched_nr_migrate; |
| extern const_debug unsigned int sysctl_sched_migration_cost; |
| |
| #ifdef CONFIG_SCHED_HRTICK |
| |
| /* |
| * Use hrtick when: |
| * - enabled by features |
| * - hrtimer is actually high res |
| */ |
| static inline int hrtick_enabled(struct rq *rq) |
| { |
| if (!sched_feat(HRTICK)) |
| return 0; |
| if (!cpu_active(cpu_of(rq))) |
| return 0; |
| return hrtimer_is_hres_active(&rq->hrtick_timer); |
| } |
| |
| void hrtick_start(struct rq *rq, u64 delay); |
| |
| #else |
| |
| static inline int hrtick_enabled(struct rq *rq) |
| { |
| return 0; |
| } |
| |
| #endif /* CONFIG_SCHED_HRTICK */ |
| |
| #ifndef arch_scale_freq_capacity |
| static __always_inline |
| unsigned long arch_scale_freq_capacity(int cpu) |
| { |
| return SCHED_CAPACITY_SCALE; |
| } |
| #endif |
| |
| #ifdef CONFIG_SMP |
| #ifndef arch_scale_cpu_capacity |
| static __always_inline |
| unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu) |
| { |
| if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1)) |
| return sd->smt_gain / sd->span_weight; |
| |
| return SCHED_CAPACITY_SCALE; |
| } |
| #endif |
| #else |
| #ifndef arch_scale_cpu_capacity |
| static __always_inline |
| unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu) |
| { |
| return SCHED_CAPACITY_SCALE; |
| } |
| #endif |
| #endif |
| |
| struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| __acquires(rq->lock); |
| |
| struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) |
| __acquires(p->pi_lock) |
| __acquires(rq->lock); |
| |
| static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) |
| __releases(rq->lock) |
| { |
| rq_unpin_lock(rq, rf); |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| static inline void |
| task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) |
| __releases(rq->lock) |
| __releases(p->pi_lock) |
| { |
| rq_unpin_lock(rq, rf); |
| raw_spin_unlock(&rq->lock); |
| raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); |
| } |
| |
| static inline void |
| rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) |
| __acquires(rq->lock) |
| { |
| raw_spin_lock_irqsave(&rq->lock, rf->flags); |
| rq_pin_lock(rq, rf); |
| } |
| |
| static inline void |
| rq_lock_irq(struct rq *rq, struct rq_flags *rf) |
| __acquires(rq->lock) |
| { |
| raw_spin_lock_irq(&rq->lock); |
| rq_pin_lock(rq, rf); |
| } |
| |
| static inline void |
| rq_lock(struct rq *rq, struct rq_flags *rf) |
| __acquires(rq->lock) |
| { |
| raw_spin_lock(&rq->lock); |
| rq_pin_lock(rq, rf); |
| } |
| |
| static inline void |
| rq_relock(struct rq *rq, struct rq_flags *rf) |
| __acquires(rq->lock) |
| { |
| raw_spin_lock(&rq->lock); |
| rq_repin_lock(rq, rf); |
| } |
| |
| static inline void |
| rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) |
| __releases(rq->lock) |
| { |
| rq_unpin_lock(rq, rf); |
| raw_spin_unlock_irqrestore(&rq->lock, rf->flags); |
| } |
| |
| static inline void |
| rq_unlock_irq(struct rq *rq, struct rq_flags *rf) |
| __releases(rq->lock) |
| { |
| rq_unpin_lock(rq, rf); |
| raw_spin_unlock_irq(&rq->lock); |
| } |
| |
| static inline void |
| rq_unlock(struct rq *rq, struct rq_flags *rf) |
| __releases(rq->lock) |
| { |
| rq_unpin_lock(rq, rf); |
| raw_spin_unlock(&rq->lock); |
| } |
| |
| #ifdef CONFIG_SMP |
| #ifdef CONFIG_PREEMPT |
| |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2); |
| |
| /* |
| * fair double_lock_balance: Safely acquires both rq->locks in a fair |
| * way at the expense of forcing extra atomic operations in all |
| * invocations. This assures that the double_lock is acquired using the |
| * same underlying policy as the spinlock_t on this architecture, which |
| * reduces latency compared to the unfair variant below. However, it |
| * also adds more overhead and therefore may reduce throughput. |
| */ |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(this_rq->lock) |
| __acquires(busiest->lock) |
| __acquires(this_rq->lock) |
| { |
| raw_spin_unlock(&this_rq->lock); |
| double_rq_lock(this_rq, busiest); |
| |
| return 1; |
| } |
| |
| #else |
| /* |
| * Unfair double_lock_balance: Optimizes throughput at the expense of |
| * latency by eliminating extra atomic operations when the locks are |
| * already in proper order on entry. This favors lower CPU-ids and will |
| * grant the double lock to lower CPUs over higher ids under contention, |
| * regardless of entry order into the function. |
| */ |
| static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(this_rq->lock) |
| __acquires(busiest->lock) |
| __acquires(this_rq->lock) |
| { |
| int ret = 0; |
| |
| if (unlikely(!raw_spin_trylock(&busiest->lock))) { |
| if (busiest < this_rq) { |
| raw_spin_unlock(&this_rq->lock); |
| raw_spin_lock(&busiest->lock); |
| raw_spin_lock_nested(&this_rq->lock, |
| SINGLE_DEPTH_NESTING); |
| ret = 1; |
| } else |
| raw_spin_lock_nested(&busiest->lock, |
| SINGLE_DEPTH_NESTING); |
| } |
| return ret; |
| } |
| |
| #endif /* CONFIG_PREEMPT */ |
| |
| /* |
| * double_lock_balance - lock the busiest runqueue, this_rq is locked already. |
| */ |
| static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) |
| { |
| if (unlikely(!irqs_disabled())) { |
| /* printk() doesn't work well under rq->lock */ |
| raw_spin_unlock(&this_rq->lock); |
| BUG_ON(1); |
| } |
| |
| return _double_lock_balance(this_rq, busiest); |
| } |
| |
| static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) |
| __releases(busiest->lock) |
| { |
| raw_spin_unlock(&busiest->lock); |
| lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); |
| } |
| |
| static inline void double_lock(spinlock_t *l1, spinlock_t *l2) |
| { |
| if (l1 > l2) |
| swap(l1, l2); |
| |
| spin_lock(l1); |
| spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| } |
| |
| static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) |
| { |
| if (l1 > l2) |
| swap(l1, l2); |
| |
| spin_lock_irq(l1); |
| spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| } |
| |
| static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) |
| { |
| if (l1 > l2) |
| swap(l1, l2); |
| |
| raw_spin_lock(l1); |
| raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); |
| } |
| |
| /* |
| * double_rq_lock - safely lock two runqueues |
| * |
| * Note this does not disable interrupts like task_rq_lock, |
| * you need to do so manually before calling. |
| */ |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| __acquires(rq1->lock) |
| __acquires(rq2->lock) |
| { |
| BUG_ON(!irqs_disabled()); |
| if (rq1 == rq2) { |
| raw_spin_lock(&rq1->lock); |
| __acquire(rq2->lock); /* Fake it out ;) */ |
| } else { |
| if (rq1 < rq2) { |
| raw_spin_lock(&rq1->lock); |
| raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); |
| } else { |
| raw_spin_lock(&rq2->lock); |
| raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); |
| } |
| } |
| } |
| |
| /* |
| * double_rq_unlock - safely unlock two runqueues |
| * |
| * Note this does not restore interrupts like task_rq_unlock, |
| * you need to do so manually after calling. |
| */ |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| __releases(rq1->lock) |
| __releases(rq2->lock) |
| { |
| raw_spin_unlock(&rq1->lock); |
| if (rq1 != rq2) |
| raw_spin_unlock(&rq2->lock); |
| else |
| __release(rq2->lock); |
| } |
| |
| extern void set_rq_online (struct rq *rq); |
| extern void set_rq_offline(struct rq *rq); |
| extern bool sched_smp_initialized; |
| |
| #else /* CONFIG_SMP */ |
| |
| /* |
| * double_rq_lock - safely lock two runqueues |
| * |
| * Note this does not disable interrupts like task_rq_lock, |
| * you need to do so manually before calling. |
| */ |
| static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) |
| __acquires(rq1->lock) |
| __acquires(rq2->lock) |
| { |
| BUG_ON(!irqs_disabled()); |
| BUG_ON(rq1 != rq2); |
| raw_spin_lock(&rq1->lock); |
| __acquire(rq2->lock); /* Fake it out ;) */ |
| } |
| |
| /* |
| * double_rq_unlock - safely unlock two runqueues |
| * |
| * Note this does not restore interrupts like task_rq_unlock, |
| * you need to do so manually after calling. |
| */ |
| static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) |
| __releases(rq1->lock) |
| __releases(rq2->lock) |
| { |
| BUG_ON(rq1 != rq2); |
| raw_spin_unlock(&rq1->lock); |
| __release(rq2->lock); |
| } |
| |
| #endif |
| |
| extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); |
| extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); |
| |
| #ifdef CONFIG_SCHED_DEBUG |
| extern bool sched_debug_enabled; |
| |
| extern void print_cfs_stats(struct seq_file *m, int cpu); |
| extern void print_rt_stats(struct seq_file *m, int cpu); |
| extern void print_dl_stats(struct seq_file *m, int cpu); |
| extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); |
| extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); |
| extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); |
| #ifdef CONFIG_NUMA_BALANCING |
| extern void |
| show_numa_stats(struct task_struct *p, struct seq_file *m); |
| extern void |
| print_numa_stats(struct seq_file *m, int node, unsigned long tsf, |
| unsigned long tpf, unsigned long gsf, unsigned long gpf); |
| #endif /* CONFIG_NUMA_BALANCING */ |
| #endif /* CONFIG_SCHED_DEBUG */ |
| |
| extern void init_cfs_rq(struct cfs_rq *cfs_rq); |
| extern void init_rt_rq(struct rt_rq *rt_rq); |
| extern void init_dl_rq(struct dl_rq *dl_rq); |
| |
| extern void cfs_bandwidth_usage_inc(void); |
| extern void cfs_bandwidth_usage_dec(void); |
| |
| #ifdef CONFIG_NO_HZ_COMMON |
| #define NOHZ_BALANCE_KICK_BIT 0 |
| #define NOHZ_STATS_KICK_BIT 1 |
| |
| #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) |
| #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) |
| |
| #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK) |
| |
| #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) |
| |
| extern void nohz_balance_exit_idle(struct rq *rq); |
| #else |
| static inline void nohz_balance_exit_idle(struct rq *rq) { } |
| #endif |
| |
| |
| #ifdef CONFIG_SMP |
| static inline |
| void __dl_update(struct dl_bw *dl_b, s64 bw) |
| { |
| struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw); |
| int i; |
| |
| RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(), |
| "sched RCU must be held"); |
| for_each_cpu_and(i, rd->span, cpu_active_mask) { |
| struct rq *rq = cpu_rq(i); |
| |
| rq->dl.extra_bw += bw; |
| } |
| } |
| #else |
| static inline |
| void __dl_update(struct dl_bw *dl_b, s64 bw) |
| { |
| struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw); |
| |
| dl->extra_bw += bw; |
| } |
| #endif |
| |
| |
| #ifdef CONFIG_IRQ_TIME_ACCOUNTING |
| struct irqtime { |
| u64 total; |
| u64 tick_delta; |
| u64 irq_start_time; |
| struct u64_stats_sync sync; |
| }; |
| |
| DECLARE_PER_CPU(struct irqtime, cpu_irqtime); |
| |
| /* |
| * Returns the irqtime minus the softirq time computed by ksoftirqd. |
| * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime |
| * and never move forward. |
| */ |
| static inline u64 irq_time_read(int cpu) |
| { |
| struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); |
| unsigned int seq; |
| u64 total; |
| |
| do { |
| seq = __u64_stats_fetch_begin(&irqtime->sync); |
| total = irqtime->total; |
| } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); |
| |
| return total; |
| } |
| #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ |
| |
| #ifdef CONFIG_CPU_FREQ |
| DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data); |
| |
| /** |
| * cpufreq_update_util - Take a note about CPU utilization changes. |
| * @rq: Runqueue to carry out the update for. |
| * @flags: Update reason flags. |
| * |
| * This function is called by the scheduler on the CPU whose utilization is |
| * being updated. |
| * |
| * It can only be called from RCU-sched read-side critical sections. |
| * |
| * The way cpufreq is currently arranged requires it to evaluate the CPU |
| * performance state (frequency/voltage) on a regular basis to prevent it from |
| * being stuck in a completely inadequate performance level for too long. |
| * That is not guaranteed to happen if the updates are only triggered from CFS |
| * and DL, though, because they may not be coming in if only RT tasks are |
| * active all the time (or there are RT tasks only). |
| * |
| * As a workaround for that issue, this function is called periodically by the |
| * RT sched class to trigger extra cpufreq updates to prevent it from stalling, |
| * but that really is a band-aid. Going forward it should be replaced with |
| * solutions targeted more specifically at RT tasks. |
| */ |
| static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) |
| { |
| struct update_util_data *data; |
| |
| data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, |
| cpu_of(rq))); |
| if (data) |
| data->func(data, rq_clock(rq), flags); |
| } |
| #else |
| static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {} |
| #endif /* CONFIG_CPU_FREQ */ |
| |
| #ifdef arch_scale_freq_capacity |
| # ifndef arch_scale_freq_invariant |
| # define arch_scale_freq_invariant() true |
| # endif |
| #else |
| # define arch_scale_freq_invariant() false |
| #endif |
| |
| #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL |
| static inline unsigned long cpu_bw_dl(struct rq *rq) |
| { |
| return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; |
| } |
| |
| static inline unsigned long cpu_util_dl(struct rq *rq) |
| { |
| return READ_ONCE(rq->avg_dl.util_avg); |
| } |
| |
| static inline unsigned long cpu_util_cfs(struct rq *rq) |
| { |
| unsigned long util = READ_ONCE(rq->cfs.avg.util_avg); |
| |
| if (sched_feat(UTIL_EST)) { |
| util = max_t(unsigned long, util, |
| READ_ONCE(rq->cfs.avg.util_est.enqueued)); |
| } |
| |
| return util; |
| } |
| |
| static inline unsigned long cpu_util_rt(struct rq *rq) |
| { |
| return READ_ONCE(rq->avg_rt.util_avg); |
| } |
| #endif |
| |
| #ifdef HAVE_SCHED_AVG_IRQ |
| static inline unsigned long cpu_util_irq(struct rq *rq) |
| { |
| return rq->avg_irq.util_avg; |
| } |
| |
| static inline |
| unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) |
| { |
| util *= (max - irq); |
| util /= max; |
| |
| return util; |
| |
| } |
| #else |
| static inline unsigned long cpu_util_irq(struct rq *rq) |
| { |
| return 0; |
| } |
| |
| static inline |
| unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) |
| { |
| return util; |
| } |
| #endif |