|  | /* | 
|  | * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | 
|  | */ | 
|  |  | 
|  | #include <linux/string.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/reiserfs_fs.h> | 
|  | #include <linux/reiserfs_fs_sb.h> | 
|  |  | 
|  | // find where objectid map starts | 
|  | #define objectid_map(s,rs) (old_format_only (s) ? \ | 
|  | (__le32 *)((struct reiserfs_super_block_v1 *)(rs) + 1) :\ | 
|  | (__le32 *)((rs) + 1)) | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  |  | 
|  | static void check_objectid_map(struct super_block *s, __le32 * map) | 
|  | { | 
|  | if (le32_to_cpu(map[0]) != 1) | 
|  | reiserfs_panic(s, | 
|  | "vs-15010: check_objectid_map: map corrupted: %lx", | 
|  | (long unsigned int)le32_to_cpu(map[0])); | 
|  |  | 
|  | // FIXME: add something else here | 
|  | } | 
|  |  | 
|  | #else | 
|  | static void check_objectid_map(struct super_block *s, __le32 * map) | 
|  | {; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* When we allocate objectids we allocate the first unused objectid. | 
|  | Each sequence of objectids in use (the odd sequences) is followed | 
|  | by a sequence of objectids not in use (the even sequences).  We | 
|  | only need to record the last objectid in each of these sequences | 
|  | (both the odd and even sequences) in order to fully define the | 
|  | boundaries of the sequences.  A consequence of allocating the first | 
|  | objectid not in use is that under most conditions this scheme is | 
|  | extremely compact.  The exception is immediately after a sequence | 
|  | of operations which deletes a large number of objects of | 
|  | non-sequential objectids, and even then it will become compact | 
|  | again as soon as more objects are created.  Note that many | 
|  | interesting optimizations of layout could result from complicating | 
|  | objectid assignment, but we have deferred making them for now. */ | 
|  |  | 
|  | /* get unique object identifier */ | 
|  | __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th) | 
|  | { | 
|  | struct super_block *s = th->t_super; | 
|  | struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); | 
|  | __le32 *map = objectid_map(s, rs); | 
|  | __u32 unused_objectid; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  |  | 
|  | check_objectid_map(s, map); | 
|  |  | 
|  | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); | 
|  | /* comment needed -Hans */ | 
|  | unused_objectid = le32_to_cpu(map[1]); | 
|  | if (unused_objectid == U32_MAX) { | 
|  | reiserfs_warning(s, "%s: no more object ids", __FUNCTION__); | 
|  | reiserfs_restore_prepared_buffer(s, SB_BUFFER_WITH_SB(s)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This incrementation allocates the first unused objectid. That | 
|  | is to say, the first entry on the objectid map is the first | 
|  | unused objectid, and by incrementing it we use it.  See below | 
|  | where we check to see if we eliminated a sequence of unused | 
|  | objectids.... */ | 
|  | map[1] = cpu_to_le32(unused_objectid + 1); | 
|  |  | 
|  | /* Now we check to see if we eliminated the last remaining member of | 
|  | the first even sequence (and can eliminate the sequence by | 
|  | eliminating its last objectid from oids), and can collapse the | 
|  | first two odd sequences into one sequence.  If so, then the net | 
|  | result is to eliminate a pair of objectids from oids.  We do this | 
|  | by shifting the entire map to the left. */ | 
|  | if (sb_oid_cursize(rs) > 2 && map[1] == map[2]) { | 
|  | memmove(map + 1, map + 3, | 
|  | (sb_oid_cursize(rs) - 3) * sizeof(__u32)); | 
|  | set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); | 
|  | } | 
|  |  | 
|  | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s)); | 
|  | return unused_objectid; | 
|  | } | 
|  |  | 
|  | /* makes object identifier unused */ | 
|  | void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, | 
|  | __u32 objectid_to_release) | 
|  | { | 
|  | struct super_block *s = th->t_super; | 
|  | struct reiserfs_super_block *rs = SB_DISK_SUPER_BLOCK(s); | 
|  | __le32 *map = objectid_map(s, rs); | 
|  | int i = 0; | 
|  |  | 
|  | BUG_ON(!th->t_trans_id); | 
|  | //return; | 
|  | check_objectid_map(s, map); | 
|  |  | 
|  | reiserfs_prepare_for_journal(s, SB_BUFFER_WITH_SB(s), 1); | 
|  | journal_mark_dirty(th, s, SB_BUFFER_WITH_SB(s)); | 
|  |  | 
|  | /* start at the beginning of the objectid map (i = 0) and go to | 
|  | the end of it (i = disk_sb->s_oid_cursize).  Linear search is | 
|  | what we use, though it is possible that binary search would be | 
|  | more efficient after performing lots of deletions (which is | 
|  | when oids is large.)  We only check even i's. */ | 
|  | while (i < sb_oid_cursize(rs)) { | 
|  | if (objectid_to_release == le32_to_cpu(map[i])) { | 
|  | /* This incrementation unallocates the objectid. */ | 
|  | //map[i]++; | 
|  | map[i] = cpu_to_le32(le32_to_cpu(map[i]) + 1); | 
|  |  | 
|  | /* Did we unallocate the last member of an odd sequence, and can shrink oids? */ | 
|  | if (map[i] == map[i + 1]) { | 
|  | /* shrink objectid map */ | 
|  | memmove(map + i, map + i + 2, | 
|  | (sb_oid_cursize(rs) - i - | 
|  | 2) * sizeof(__u32)); | 
|  | //disk_sb->s_oid_cursize -= 2; | 
|  | set_sb_oid_cursize(rs, sb_oid_cursize(rs) - 2); | 
|  |  | 
|  | RFALSE(sb_oid_cursize(rs) < 2 || | 
|  | sb_oid_cursize(rs) > sb_oid_maxsize(rs), | 
|  | "vs-15005: objectid map corrupted cur_size == %d (max == %d)", | 
|  | sb_oid_cursize(rs), sb_oid_maxsize(rs)); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (objectid_to_release > le32_to_cpu(map[i]) && | 
|  | objectid_to_release < le32_to_cpu(map[i + 1])) { | 
|  | /* size of objectid map is not changed */ | 
|  | if (objectid_to_release + 1 == le32_to_cpu(map[i + 1])) { | 
|  | //objectid_map[i+1]--; | 
|  | map[i + 1] = | 
|  | cpu_to_le32(le32_to_cpu(map[i + 1]) - 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* JDM comparing two little-endian values for equality -- safe */ | 
|  | if (sb_oid_cursize(rs) == sb_oid_maxsize(rs)) { | 
|  | /* objectid map must be expanded, but there is no space */ | 
|  | PROC_INFO_INC(s, leaked_oid); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* expand the objectid map */ | 
|  | memmove(map + i + 3, map + i + 1, | 
|  | (sb_oid_cursize(rs) - i - 1) * sizeof(__u32)); | 
|  | map[i + 1] = cpu_to_le32(objectid_to_release); | 
|  | map[i + 2] = cpu_to_le32(objectid_to_release + 1); | 
|  | set_sb_oid_cursize(rs, sb_oid_cursize(rs) + 2); | 
|  | return; | 
|  | } | 
|  | i += 2; | 
|  | } | 
|  |  | 
|  | reiserfs_warning(s, | 
|  | "vs-15011: reiserfs_release_objectid: tried to free free object id (%lu)", | 
|  | (long unsigned)objectid_to_release); | 
|  | } | 
|  |  | 
|  | int reiserfs_convert_objectid_map_v1(struct super_block *s) | 
|  | { | 
|  | struct reiserfs_super_block *disk_sb = SB_DISK_SUPER_BLOCK(s); | 
|  | int cur_size = sb_oid_cursize(disk_sb); | 
|  | int new_size = (s->s_blocksize - SB_SIZE) / sizeof(__u32) / 2 * 2; | 
|  | int old_max = sb_oid_maxsize(disk_sb); | 
|  | struct reiserfs_super_block_v1 *disk_sb_v1; | 
|  | __le32 *objectid_map, *new_objectid_map; | 
|  | int i; | 
|  |  | 
|  | disk_sb_v1 = | 
|  | (struct reiserfs_super_block_v1 *)(SB_BUFFER_WITH_SB(s)->b_data); | 
|  | objectid_map = (__le32 *) (disk_sb_v1 + 1); | 
|  | new_objectid_map = (__le32 *) (disk_sb + 1); | 
|  |  | 
|  | if (cur_size > new_size) { | 
|  | /* mark everyone used that was listed as free at the end of the objectid | 
|  | ** map | 
|  | */ | 
|  | objectid_map[new_size - 1] = objectid_map[cur_size - 1]; | 
|  | set_sb_oid_cursize(disk_sb, new_size); | 
|  | } | 
|  | /* move the smaller objectid map past the end of the new super */ | 
|  | for (i = new_size - 1; i >= 0; i--) { | 
|  | objectid_map[i + (old_max - new_size)] = objectid_map[i]; | 
|  | } | 
|  |  | 
|  | /* set the max size so we don't overflow later */ | 
|  | set_sb_oid_maxsize(disk_sb, new_size); | 
|  |  | 
|  | /* Zero out label and generate random UUID */ | 
|  | memset(disk_sb->s_label, 0, sizeof(disk_sb->s_label)); | 
|  | generate_random_uuid(disk_sb->s_uuid); | 
|  |  | 
|  | /* finally, zero out the unused chunk of the new super */ | 
|  | memset(disk_sb->s_unused, 0, sizeof(disk_sb->s_unused)); | 
|  | return 0; | 
|  | } |