|  | /* Intel(R) Gigabit Ethernet Linux driver | 
|  | * Copyright(c) 2007-2014 Intel Corporation. | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms and conditions of the GNU General Public License, | 
|  | * version 2, as published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | * | 
|  | * The full GNU General Public License is included in this distribution in | 
|  | * the file called "COPYING". | 
|  | * | 
|  | * Contact Information: | 
|  | * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | */ | 
|  |  | 
|  | #include <linux/if_ether.h> | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include "e1000_mac.h" | 
|  | #include "e1000_nvm.h" | 
|  |  | 
|  | /** | 
|  | *  igb_raise_eec_clk - Raise EEPROM clock | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @eecd: pointer to the EEPROM | 
|  | * | 
|  | *  Enable/Raise the EEPROM clock bit. | 
|  | **/ | 
|  | static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) | 
|  | { | 
|  | *eecd = *eecd | E1000_EECD_SK; | 
|  | wr32(E1000_EECD, *eecd); | 
|  | wrfl(); | 
|  | udelay(hw->nvm.delay_usec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_lower_eec_clk - Lower EEPROM clock | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @eecd: pointer to the EEPROM | 
|  | * | 
|  | *  Clear/Lower the EEPROM clock bit. | 
|  | **/ | 
|  | static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) | 
|  | { | 
|  | *eecd = *eecd & ~E1000_EECD_SK; | 
|  | wr32(E1000_EECD, *eecd); | 
|  | wrfl(); | 
|  | udelay(hw->nvm.delay_usec); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: data to send to the EEPROM | 
|  | *  @count: number of bits to shift out | 
|  | * | 
|  | *  We need to shift 'count' bits out to the EEPROM.  So, the value in the | 
|  | *  "data" parameter will be shifted out to the EEPROM one bit at a time. | 
|  | *  In order to do this, "data" must be broken down into bits. | 
|  | **/ | 
|  | static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = rd32(E1000_EECD); | 
|  | u32 mask; | 
|  |  | 
|  | mask = 0x01 << (count - 1); | 
|  | if (nvm->type == e1000_nvm_eeprom_spi) | 
|  | eecd |= E1000_EECD_DO; | 
|  |  | 
|  | do { | 
|  | eecd &= ~E1000_EECD_DI; | 
|  |  | 
|  | if (data & mask) | 
|  | eecd |= E1000_EECD_DI; | 
|  |  | 
|  | wr32(E1000_EECD, eecd); | 
|  | wrfl(); | 
|  |  | 
|  | udelay(nvm->delay_usec); | 
|  |  | 
|  | igb_raise_eec_clk(hw, &eecd); | 
|  | igb_lower_eec_clk(hw, &eecd); | 
|  |  | 
|  | mask >>= 1; | 
|  | } while (mask); | 
|  |  | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | wr32(E1000_EECD, eecd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @count: number of bits to shift in | 
|  | * | 
|  | *  In order to read a register from the EEPROM, we need to shift 'count' bits | 
|  | *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to | 
|  | *  the EEPROM (setting the SK bit), and then reading the value of the data out | 
|  | *  "DO" bit.  During this "shifting in" process the data in "DI" bit should | 
|  | *  always be clear. | 
|  | **/ | 
|  | static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count) | 
|  | { | 
|  | u32 eecd; | 
|  | u32 i; | 
|  | u16 data; | 
|  |  | 
|  | eecd = rd32(E1000_EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|  | data = 0; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | data <<= 1; | 
|  | igb_raise_eec_clk(hw, &eecd); | 
|  |  | 
|  | eecd = rd32(E1000_EECD); | 
|  |  | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | if (eecd & E1000_EECD_DO) | 
|  | data |= 1; | 
|  |  | 
|  | igb_lower_eec_clk(hw, &eecd); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @ee_reg: EEPROM flag for polling | 
|  | * | 
|  | *  Polls the EEPROM status bit for either read or write completion based | 
|  | *  upon the value of 'ee_reg'. | 
|  | **/ | 
|  | static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) | 
|  | { | 
|  | u32 attempts = 100000; | 
|  | u32 i, reg = 0; | 
|  | s32 ret_val = -E1000_ERR_NVM; | 
|  |  | 
|  | for (i = 0; i < attempts; i++) { | 
|  | if (ee_reg == E1000_NVM_POLL_READ) | 
|  | reg = rd32(E1000_EERD); | 
|  | else | 
|  | reg = rd32(E1000_EEWR); | 
|  |  | 
|  | if (reg & E1000_NVM_RW_REG_DONE) { | 
|  | ret_val = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_acquire_nvm - Generic request for access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Set the EEPROM access request bit and wait for EEPROM access grant bit. | 
|  | *  Return successful if access grant bit set, else clear the request for | 
|  | *  EEPROM access and return -E1000_ERR_NVM (-1). | 
|  | **/ | 
|  | s32 igb_acquire_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd = rd32(E1000_EECD); | 
|  | s32 timeout = E1000_NVM_GRANT_ATTEMPTS; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  |  | 
|  | wr32(E1000_EECD, eecd | E1000_EECD_REQ); | 
|  | eecd = rd32(E1000_EECD); | 
|  |  | 
|  | while (timeout) { | 
|  | if (eecd & E1000_EECD_GNT) | 
|  | break; | 
|  | udelay(5); | 
|  | eecd = rd32(E1000_EECD); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | wr32(E1000_EECD, eecd); | 
|  | hw_dbg("Could not acquire NVM grant\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_standby_nvm - Return EEPROM to standby state | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Return the EEPROM to a standby state. | 
|  | **/ | 
|  | static void igb_standby_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = rd32(E1000_EECD); | 
|  |  | 
|  | if (nvm->type == e1000_nvm_eeprom_spi) { | 
|  | /* Toggle CS to flush commands */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | wr32(E1000_EECD, eecd); | 
|  | wrfl(); | 
|  | udelay(nvm->delay_usec); | 
|  | eecd &= ~E1000_EECD_CS; | 
|  | wr32(E1000_EECD, eecd); | 
|  | wrfl(); | 
|  | udelay(nvm->delay_usec); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_stop_nvm - Terminate EEPROM command | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Terminates the current command by inverting the EEPROM's chip select pin. | 
|  | **/ | 
|  | static void e1000_stop_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  |  | 
|  | eecd = rd32(E1000_EECD); | 
|  | if (hw->nvm.type == e1000_nvm_eeprom_spi) { | 
|  | /* Pull CS high */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | igb_lower_eec_clk(hw, &eecd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_release_nvm - Release exclusive access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Stop any current commands to the EEPROM and clear the EEPROM request bit. | 
|  | **/ | 
|  | void igb_release_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  |  | 
|  | e1000_stop_nvm(hw); | 
|  |  | 
|  | eecd = rd32(E1000_EECD); | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | wr32(E1000_EECD, eecd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Setups the EEPROM for reading and writing. | 
|  | **/ | 
|  | static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = rd32(E1000_EECD); | 
|  | s32 ret_val = 0; | 
|  | u16 timeout = 0; | 
|  | u8 spi_stat_reg; | 
|  |  | 
|  |  | 
|  | if (nvm->type == e1000_nvm_eeprom_spi) { | 
|  | /* Clear SK and CS */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | wr32(E1000_EECD, eecd); | 
|  | wrfl(); | 
|  | udelay(1); | 
|  | timeout = NVM_MAX_RETRY_SPI; | 
|  |  | 
|  | /* Read "Status Register" repeatedly until the LSB is cleared. | 
|  | * The EEPROM will signal that the command has been completed | 
|  | * by clearing bit 0 of the internal status register.  If it's | 
|  | * not cleared within 'timeout', then error out. | 
|  | */ | 
|  | while (timeout) { | 
|  | igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, | 
|  | hw->nvm.opcode_bits); | 
|  | spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8); | 
|  | if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) | 
|  | break; | 
|  |  | 
|  | udelay(5); | 
|  | igb_standby_nvm(hw); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | hw_dbg("SPI NVM Status error\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_nvm_spi - Read EEPROM's using SPI | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset of word in the EEPROM to read | 
|  | *  @words: number of words to read | 
|  | *  @data: word read from the EEPROM | 
|  | * | 
|  | *  Reads a 16 bit word from the EEPROM. | 
|  | **/ | 
|  | s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i = 0; | 
|  | s32 ret_val; | 
|  | u16 word_in; | 
|  | u8 read_opcode = NVM_READ_OPCODE_SPI; | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | hw_dbg("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = nvm->ops.acquire(hw); | 
|  | if (ret_val) | 
|  | goto out; | 
|  |  | 
|  | ret_val = igb_ready_nvm_eeprom(hw); | 
|  | if (ret_val) | 
|  | goto release; | 
|  |  | 
|  | igb_standby_nvm(hw); | 
|  |  | 
|  | if ((nvm->address_bits == 8) && (offset >= 128)) | 
|  | read_opcode |= NVM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the READ command (opcode + addr) */ | 
|  | igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits); | 
|  | igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits); | 
|  |  | 
|  | /* Read the data.  SPI NVMs increment the address with each byte | 
|  | * read and will roll over if reading beyond the end.  This allows | 
|  | * us to read the whole NVM from any offset | 
|  | */ | 
|  | for (i = 0; i < words; i++) { | 
|  | word_in = igb_shift_in_eec_bits(hw, 16); | 
|  | data[i] = (word_in >> 8) | (word_in << 8); | 
|  | } | 
|  |  | 
|  | release: | 
|  | nvm->ops.release(hw); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_nvm_eerd - Reads EEPROM using EERD register | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset of word in the EEPROM to read | 
|  | *  @words: number of words to read | 
|  | *  @data: word read from the EEPROM | 
|  | * | 
|  | *  Reads a 16 bit word from the EEPROM using the EERD register. | 
|  | **/ | 
|  | s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i, eerd = 0; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | hw_dbg("nvm parameter(s) out of bounds\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) + | 
|  | E1000_NVM_RW_REG_START; | 
|  |  | 
|  | wr32(E1000_EERD, eerd); | 
|  | ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); | 
|  | if (ret_val) | 
|  | break; | 
|  |  | 
|  | data[i] = (rd32(E1000_EERD) >> | 
|  | E1000_NVM_RW_REG_DATA); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_write_nvm_spi - Write to EEPROM using SPI | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the EEPROM | 
|  | * | 
|  | *  Writes data to EEPROM at offset using SPI interface. | 
|  | * | 
|  | *  If e1000_update_nvm_checksum is not called after this function , the | 
|  | *  EEPROM will most likley contain an invalid checksum. | 
|  | **/ | 
|  | s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | s32 ret_val = -E1000_ERR_NVM; | 
|  | u16 widx = 0; | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. | 
|  | */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | hw_dbg("nvm parameter(s) out of bounds\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | while (widx < words) { | 
|  | u8 write_opcode = NVM_WRITE_OPCODE_SPI; | 
|  |  | 
|  | ret_val = nvm->ops.acquire(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = igb_ready_nvm_eeprom(hw); | 
|  | if (ret_val) { | 
|  | nvm->ops.release(hw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | igb_standby_nvm(hw); | 
|  |  | 
|  | /* Send the WRITE ENABLE command (8 bit opcode) */ | 
|  | igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, | 
|  | nvm->opcode_bits); | 
|  |  | 
|  | igb_standby_nvm(hw); | 
|  |  | 
|  | /* Some SPI eeproms use the 8th address bit embedded in the | 
|  | * opcode | 
|  | */ | 
|  | if ((nvm->address_bits == 8) && (offset >= 128)) | 
|  | write_opcode |= NVM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the Write command (8-bit opcode + addr) */ | 
|  | igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); | 
|  | igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), | 
|  | nvm->address_bits); | 
|  |  | 
|  | /* Loop to allow for up to whole page write of eeprom */ | 
|  | while (widx < words) { | 
|  | u16 word_out = data[widx]; | 
|  |  | 
|  | word_out = (word_out >> 8) | (word_out << 8); | 
|  | igb_shift_out_eec_bits(hw, word_out, 16); | 
|  | widx++; | 
|  |  | 
|  | if ((((offset + widx) * 2) % nvm->page_size) == 0) { | 
|  | igb_standby_nvm(hw); | 
|  | break; | 
|  | } | 
|  | } | 
|  | usleep_range(1000, 2000); | 
|  | nvm->ops.release(hw); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_part_string - Read device part number | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @part_num: pointer to device part number | 
|  | *  @part_num_size: size of part number buffer | 
|  | * | 
|  | *  Reads the product board assembly (PBA) number from the EEPROM and stores | 
|  | *  the value in part_num. | 
|  | **/ | 
|  | s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 nvm_data; | 
|  | u16 pointer; | 
|  | u16 offset; | 
|  | u16 length; | 
|  |  | 
|  | if (part_num == NULL) { | 
|  | hw_dbg("PBA string buffer was null\n"); | 
|  | ret_val = E1000_ERR_INVALID_ARGUMENT; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* if nvm_data is not ptr guard the PBA must be in legacy format which | 
|  | * means pointer is actually our second data word for the PBA number | 
|  | * and we can decode it into an ascii string | 
|  | */ | 
|  | if (nvm_data != NVM_PBA_PTR_GUARD) { | 
|  | hw_dbg("NVM PBA number is not stored as string\n"); | 
|  |  | 
|  | /* we will need 11 characters to store the PBA */ | 
|  | if (part_num_size < 11) { | 
|  | hw_dbg("PBA string buffer too small\n"); | 
|  | return E1000_ERR_NO_SPACE; | 
|  | } | 
|  |  | 
|  | /* extract hex string from data and pointer */ | 
|  | part_num[0] = (nvm_data >> 12) & 0xF; | 
|  | part_num[1] = (nvm_data >> 8) & 0xF; | 
|  | part_num[2] = (nvm_data >> 4) & 0xF; | 
|  | part_num[3] = nvm_data & 0xF; | 
|  | part_num[4] = (pointer >> 12) & 0xF; | 
|  | part_num[5] = (pointer >> 8) & 0xF; | 
|  | part_num[6] = '-'; | 
|  | part_num[7] = 0; | 
|  | part_num[8] = (pointer >> 4) & 0xF; | 
|  | part_num[9] = pointer & 0xF; | 
|  |  | 
|  | /* put a null character on the end of our string */ | 
|  | part_num[10] = '\0'; | 
|  |  | 
|  | /* switch all the data but the '-' to hex char */ | 
|  | for (offset = 0; offset < 10; offset++) { | 
|  | if (part_num[offset] < 0xA) | 
|  | part_num[offset] += '0'; | 
|  | else if (part_num[offset] < 0x10) | 
|  | part_num[offset] += 'A' - 0xA; | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret_val = hw->nvm.ops.read(hw, pointer, 1, &length); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (length == 0xFFFF || length == 0) { | 
|  | hw_dbg("NVM PBA number section invalid length\n"); | 
|  | ret_val = E1000_ERR_NVM_PBA_SECTION; | 
|  | goto out; | 
|  | } | 
|  | /* check if part_num buffer is big enough */ | 
|  | if (part_num_size < (((u32)length * 2) - 1)) { | 
|  | hw_dbg("PBA string buffer too small\n"); | 
|  | ret_val = E1000_ERR_NO_SPACE; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* trim pba length from start of string */ | 
|  | pointer++; | 
|  | length--; | 
|  |  | 
|  | for (offset = 0; offset < length; offset++) { | 
|  | ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  | part_num[offset * 2] = (u8)(nvm_data >> 8); | 
|  | part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); | 
|  | } | 
|  | part_num[offset * 2] = '\0'; | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_read_mac_addr - Read device MAC address | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the device MAC address from the EEPROM and stores the value. | 
|  | *  Since devices with two ports use the same EEPROM, we increment the | 
|  | *  last bit in the MAC address for the second port. | 
|  | **/ | 
|  | s32 igb_read_mac_addr(struct e1000_hw *hw) | 
|  | { | 
|  | u32 rar_high; | 
|  | u32 rar_low; | 
|  | u16 i; | 
|  |  | 
|  | rar_high = rd32(E1000_RAH(0)); | 
|  | rar_low = rd32(E1000_RAL(0)); | 
|  |  | 
|  | for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) | 
|  | hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8)); | 
|  |  | 
|  | for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) | 
|  | hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8)); | 
|  |  | 
|  | for (i = 0; i < ETH_ALEN; i++) | 
|  | hw->mac.addr[i] = hw->mac.perm_addr[i]; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_validate_nvm_checksum - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  and then verifies that the sum of the EEPROM is equal to 0xBABA. | 
|  | **/ | 
|  | s32 igb_validate_nvm_checksum(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = 0; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { | 
|  | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error\n"); | 
|  | goto out; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  |  | 
|  | if (checksum != (u16) NVM_SUM) { | 
|  | hw_dbg("NVM Checksum Invalid\n"); | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_update_nvm_checksum - Update EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Updates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  up to the checksum.  Then calculates the EEPROM checksum and writes the | 
|  | *  value to the EEPROM. | 
|  | **/ | 
|  | s32 igb_update_nvm_checksum(struct e1000_hw *hw) | 
|  | { | 
|  | s32  ret_val; | 
|  | u16 checksum = 0; | 
|  | u16 i, nvm_data; | 
|  |  | 
|  | for (i = 0; i < NVM_CHECKSUM_REG; i++) { | 
|  | ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data); | 
|  | if (ret_val) { | 
|  | hw_dbg("NVM Read Error while updating checksum.\n"); | 
|  | goto out; | 
|  | } | 
|  | checksum += nvm_data; | 
|  | } | 
|  | checksum = (u16) NVM_SUM - checksum; | 
|  | ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum); | 
|  | if (ret_val) | 
|  | hw_dbg("NVM Write Error while updating checksum.\n"); | 
|  |  | 
|  | out: | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  igb_get_fw_version - Get firmware version information | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @fw_vers: pointer to output structure | 
|  | * | 
|  | *  unsupported MAC types will return all 0 version structure | 
|  | **/ | 
|  | void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers) | 
|  | { | 
|  | u16 eeprom_verh, eeprom_verl, etrack_test, fw_version; | 
|  | u8 q, hval, rem, result; | 
|  | u16 comb_verh, comb_verl, comb_offset; | 
|  |  | 
|  | memset(fw_vers, 0, sizeof(struct e1000_fw_version)); | 
|  |  | 
|  | /* basic eeprom version numbers and bits used vary by part and by tool | 
|  | * used to create the nvm images. Check which data format we have. | 
|  | */ | 
|  | hw->nvm.ops.read(hw, NVM_ETRACK_HIWORD, 1, &etrack_test); | 
|  | switch (hw->mac.type) { | 
|  | case e1000_i211: | 
|  | igb_read_invm_version(hw, fw_vers); | 
|  | return; | 
|  | case e1000_82575: | 
|  | case e1000_82576: | 
|  | case e1000_82580: | 
|  | /* Use this format, unless EETRACK ID exists, | 
|  | * then use alternate format | 
|  | */ | 
|  | if ((etrack_test &  NVM_MAJOR_MASK) != NVM_ETRACK_VALID) { | 
|  | hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); | 
|  | fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) | 
|  | >> NVM_MAJOR_SHIFT; | 
|  | fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK) | 
|  | >> NVM_MINOR_SHIFT; | 
|  | fw_vers->eep_build = (fw_version & NVM_IMAGE_ID_MASK); | 
|  | goto etrack_id; | 
|  | } | 
|  | break; | 
|  | case e1000_i210: | 
|  | if (!(igb_get_flash_presence_i210(hw))) { | 
|  | igb_read_invm_version(hw, fw_vers); | 
|  | return; | 
|  | } | 
|  | /* fall through */ | 
|  | case e1000_i350: | 
|  | /* find combo image version */ | 
|  | hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset); | 
|  | if ((comb_offset != 0x0) && | 
|  | (comb_offset != NVM_VER_INVALID)) { | 
|  |  | 
|  | hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset | 
|  | + 1), 1, &comb_verh); | 
|  | hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset), | 
|  | 1, &comb_verl); | 
|  |  | 
|  | /* get Option Rom version if it exists and is valid */ | 
|  | if ((comb_verh && comb_verl) && | 
|  | ((comb_verh != NVM_VER_INVALID) && | 
|  | (comb_verl != NVM_VER_INVALID))) { | 
|  |  | 
|  | fw_vers->or_valid = true; | 
|  | fw_vers->or_major = | 
|  | comb_verl >> NVM_COMB_VER_SHFT; | 
|  | fw_vers->or_build = | 
|  | (comb_verl << NVM_COMB_VER_SHFT) | 
|  | | (comb_verh >> NVM_COMB_VER_SHFT); | 
|  | fw_vers->or_patch = | 
|  | comb_verh & NVM_COMB_VER_MASK; | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return; | 
|  | } | 
|  | hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version); | 
|  | fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) | 
|  | >> NVM_MAJOR_SHIFT; | 
|  |  | 
|  | /* check for old style version format in newer images*/ | 
|  | if ((fw_version & NVM_NEW_DEC_MASK) == 0x0) { | 
|  | eeprom_verl = (fw_version & NVM_COMB_VER_MASK); | 
|  | } else { | 
|  | eeprom_verl = (fw_version & NVM_MINOR_MASK) | 
|  | >> NVM_MINOR_SHIFT; | 
|  | } | 
|  | /* Convert minor value to hex before assigning to output struct | 
|  | * Val to be converted will not be higher than 99, per tool output | 
|  | */ | 
|  | q = eeprom_verl / NVM_HEX_CONV; | 
|  | hval = q * NVM_HEX_TENS; | 
|  | rem = eeprom_verl % NVM_HEX_CONV; | 
|  | result = hval + rem; | 
|  | fw_vers->eep_minor = result; | 
|  |  | 
|  | etrack_id: | 
|  | if ((etrack_test &  NVM_MAJOR_MASK) == NVM_ETRACK_VALID) { | 
|  | hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl); | 
|  | hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh); | 
|  | fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) | 
|  | | eeprom_verl; | 
|  | } | 
|  | } |