|  | /* | 
|  | *  Copyright (C) 1994 Linus Torvalds | 
|  | * | 
|  | *  Pentium III FXSR, SSE support | 
|  | *  General FPU state handling cleanups | 
|  | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/regset.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <asm/sigcontext.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/math_emu.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/ptrace.h> | 
|  | #include <asm/i387.h> | 
|  | #include <asm/fpu-internal.h> | 
|  | #include <asm/user.h> | 
|  |  | 
|  | /* | 
|  | * Were we in an interrupt that interrupted kernel mode? | 
|  | * | 
|  | * For now, with eagerfpu we will return interrupted kernel FPU | 
|  | * state as not-idle. TBD: Ideally we can change the return value | 
|  | * to something like __thread_has_fpu(current). But we need to | 
|  | * be careful of doing __thread_clear_has_fpu() before saving | 
|  | * the FPU etc for supporting nested uses etc. For now, take | 
|  | * the simple route! | 
|  | * | 
|  | * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that | 
|  | * pair does nothing at all: the thread must not have fpu (so | 
|  | * that we don't try to save the FPU state), and TS must | 
|  | * be set (so that the clts/stts pair does nothing that is | 
|  | * visible in the interrupted kernel thread). | 
|  | */ | 
|  | static inline bool interrupted_kernel_fpu_idle(void) | 
|  | { | 
|  | if (use_eager_fpu()) | 
|  | return 0; | 
|  |  | 
|  | return !__thread_has_fpu(current) && | 
|  | (read_cr0() & X86_CR0_TS); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Were we in user mode (or vm86 mode) when we were | 
|  | * interrupted? | 
|  | * | 
|  | * Doing kernel_fpu_begin/end() is ok if we are running | 
|  | * in an interrupt context from user mode - we'll just | 
|  | * save the FPU state as required. | 
|  | */ | 
|  | static inline bool interrupted_user_mode(void) | 
|  | { | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  | return regs && user_mode_vm(regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Can we use the FPU in kernel mode with the | 
|  | * whole "kernel_fpu_begin/end()" sequence? | 
|  | * | 
|  | * It's always ok in process context (ie "not interrupt") | 
|  | * but it is sometimes ok even from an irq. | 
|  | */ | 
|  | bool irq_fpu_usable(void) | 
|  | { | 
|  | return !in_interrupt() || | 
|  | interrupted_user_mode() || | 
|  | interrupted_kernel_fpu_idle(); | 
|  | } | 
|  | EXPORT_SYMBOL(irq_fpu_usable); | 
|  |  | 
|  | void __kernel_fpu_begin(void) | 
|  | { | 
|  | struct task_struct *me = current; | 
|  |  | 
|  | if (__thread_has_fpu(me)) { | 
|  | __save_init_fpu(me); | 
|  | __thread_clear_has_fpu(me); | 
|  | /* We do 'stts()' in __kernel_fpu_end() */ | 
|  | } else if (!use_eager_fpu()) { | 
|  | this_cpu_write(fpu_owner_task, NULL); | 
|  | clts(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(__kernel_fpu_begin); | 
|  |  | 
|  | void __kernel_fpu_end(void) | 
|  | { | 
|  | if (use_eager_fpu()) | 
|  | math_state_restore(); | 
|  | else | 
|  | stts(); | 
|  | } | 
|  | EXPORT_SYMBOL(__kernel_fpu_end); | 
|  |  | 
|  | void unlazy_fpu(struct task_struct *tsk) | 
|  | { | 
|  | preempt_disable(); | 
|  | if (__thread_has_fpu(tsk)) { | 
|  | __save_init_fpu(tsk); | 
|  | __thread_fpu_end(tsk); | 
|  | } else | 
|  | tsk->fpu_counter = 0; | 
|  | preempt_enable(); | 
|  | } | 
|  | EXPORT_SYMBOL(unlazy_fpu); | 
|  |  | 
|  | unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu; | 
|  | unsigned int xstate_size; | 
|  | EXPORT_SYMBOL_GPL(xstate_size); | 
|  | static struct i387_fxsave_struct fx_scratch __cpuinitdata; | 
|  |  | 
|  | static void __cpuinit mxcsr_feature_mask_init(void) | 
|  | { | 
|  | unsigned long mask = 0; | 
|  |  | 
|  | if (cpu_has_fxsr) { | 
|  | memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct)); | 
|  | asm volatile("fxsave %0" : : "m" (fx_scratch)); | 
|  | mask = fx_scratch.mxcsr_mask; | 
|  | if (mask == 0) | 
|  | mask = 0x0000ffbf; | 
|  | } | 
|  | mxcsr_feature_mask &= mask; | 
|  | } | 
|  |  | 
|  | static void __cpuinit init_thread_xstate(void) | 
|  | { | 
|  | /* | 
|  | * Note that xstate_size might be overwriten later during | 
|  | * xsave_init(). | 
|  | */ | 
|  |  | 
|  | if (!HAVE_HWFP) { | 
|  | /* | 
|  | * Disable xsave as we do not support it if i387 | 
|  | * emulation is enabled. | 
|  | */ | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVE); | 
|  | setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT); | 
|  | xstate_size = sizeof(struct i387_soft_struct); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cpu_has_fxsr) | 
|  | xstate_size = sizeof(struct i387_fxsave_struct); | 
|  | else | 
|  | xstate_size = sizeof(struct i387_fsave_struct); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called at bootup to set up the initial FPU state that is later cloned | 
|  | * into all processes. | 
|  | */ | 
|  |  | 
|  | void __cpuinit fpu_init(void) | 
|  | { | 
|  | unsigned long cr0; | 
|  | unsigned long cr4_mask = 0; | 
|  |  | 
|  | if (cpu_has_fxsr) | 
|  | cr4_mask |= X86_CR4_OSFXSR; | 
|  | if (cpu_has_xmm) | 
|  | cr4_mask |= X86_CR4_OSXMMEXCPT; | 
|  | if (cr4_mask) | 
|  | set_in_cr4(cr4_mask); | 
|  |  | 
|  | cr0 = read_cr0(); | 
|  | cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */ | 
|  | if (!HAVE_HWFP) | 
|  | cr0 |= X86_CR0_EM; | 
|  | write_cr0(cr0); | 
|  |  | 
|  | /* | 
|  | * init_thread_xstate is only called once to avoid overriding | 
|  | * xstate_size during boot time or during CPU hotplug. | 
|  | */ | 
|  | if (xstate_size == 0) | 
|  | init_thread_xstate(); | 
|  |  | 
|  | mxcsr_feature_mask_init(); | 
|  | xsave_init(); | 
|  | eager_fpu_init(); | 
|  | } | 
|  |  | 
|  | void fpu_finit(struct fpu *fpu) | 
|  | { | 
|  | if (!HAVE_HWFP) { | 
|  | finit_soft_fpu(&fpu->state->soft); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cpu_has_fxsr) { | 
|  | fx_finit(&fpu->state->fxsave); | 
|  | } else { | 
|  | struct i387_fsave_struct *fp = &fpu->state->fsave; | 
|  | memset(fp, 0, xstate_size); | 
|  | fp->cwd = 0xffff037fu; | 
|  | fp->swd = 0xffff0000u; | 
|  | fp->twd = 0xffffffffu; | 
|  | fp->fos = 0xffff0000u; | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(fpu_finit); | 
|  |  | 
|  | /* | 
|  | * The _current_ task is using the FPU for the first time | 
|  | * so initialize it and set the mxcsr to its default | 
|  | * value at reset if we support XMM instructions and then | 
|  | * remember the current task has used the FPU. | 
|  | */ | 
|  | int init_fpu(struct task_struct *tsk) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (tsk_used_math(tsk)) { | 
|  | if (HAVE_HWFP && tsk == current) | 
|  | unlazy_fpu(tsk); | 
|  | tsk->thread.fpu.last_cpu = ~0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Memory allocation at the first usage of the FPU and other state. | 
|  | */ | 
|  | ret = fpu_alloc(&tsk->thread.fpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | fpu_finit(&tsk->thread.fpu); | 
|  |  | 
|  | set_stopped_child_used_math(tsk); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(init_fpu); | 
|  |  | 
|  | /* | 
|  | * The xstateregs_active() routine is the same as the fpregs_active() routine, | 
|  | * as the "regset->n" for the xstate regset will be updated based on the feature | 
|  | * capabilites supported by the xsave. | 
|  | */ | 
|  | int fpregs_active(struct task_struct *target, const struct user_regset *regset) | 
|  | { | 
|  | return tsk_used_math(target) ? regset->n : 0; | 
|  | } | 
|  |  | 
|  | int xfpregs_active(struct task_struct *target, const struct user_regset *regset) | 
|  | { | 
|  | return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0; | 
|  | } | 
|  |  | 
|  | int xfpregs_get(struct task_struct *target, const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | void *kbuf, void __user *ubuf) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!cpu_has_fxsr) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = init_fpu(target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sanitize_i387_state(target); | 
|  |  | 
|  | return user_regset_copyout(&pos, &count, &kbuf, &ubuf, | 
|  | &target->thread.fpu.state->fxsave, 0, -1); | 
|  | } | 
|  |  | 
|  | int xfpregs_set(struct task_struct *target, const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | const void *kbuf, const void __user *ubuf) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!cpu_has_fxsr) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = init_fpu(target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sanitize_i387_state(target); | 
|  |  | 
|  | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, | 
|  | &target->thread.fpu.state->fxsave, 0, -1); | 
|  |  | 
|  | /* | 
|  | * mxcsr reserved bits must be masked to zero for security reasons. | 
|  | */ | 
|  | target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask; | 
|  |  | 
|  | /* | 
|  | * update the header bits in the xsave header, indicating the | 
|  | * presence of FP and SSE state. | 
|  | */ | 
|  | if (cpu_has_xsave) | 
|  | target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int xstateregs_get(struct task_struct *target, const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | void *kbuf, void __user *ubuf) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!cpu_has_xsave) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = init_fpu(target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Copy the 48bytes defined by the software first into the xstate | 
|  | * memory layout in the thread struct, so that we can copy the entire | 
|  | * xstateregs to the user using one user_regset_copyout(). | 
|  | */ | 
|  | memcpy(&target->thread.fpu.state->fxsave.sw_reserved, | 
|  | xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes)); | 
|  |  | 
|  | /* | 
|  | * Copy the xstate memory layout. | 
|  | */ | 
|  | ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, | 
|  | &target->thread.fpu.state->xsave, 0, -1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int xstateregs_set(struct task_struct *target, const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | const void *kbuf, const void __user *ubuf) | 
|  | { | 
|  | int ret; | 
|  | struct xsave_hdr_struct *xsave_hdr; | 
|  |  | 
|  | if (!cpu_has_xsave) | 
|  | return -ENODEV; | 
|  |  | 
|  | ret = init_fpu(target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, | 
|  | &target->thread.fpu.state->xsave, 0, -1); | 
|  |  | 
|  | /* | 
|  | * mxcsr reserved bits must be masked to zero for security reasons. | 
|  | */ | 
|  | target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask; | 
|  |  | 
|  | xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr; | 
|  |  | 
|  | xsave_hdr->xstate_bv &= pcntxt_mask; | 
|  | /* | 
|  | * These bits must be zero. | 
|  | */ | 
|  | xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION | 
|  |  | 
|  | /* | 
|  | * FPU tag word conversions. | 
|  | */ | 
|  |  | 
|  | static inline unsigned short twd_i387_to_fxsr(unsigned short twd) | 
|  | { | 
|  | unsigned int tmp; /* to avoid 16 bit prefixes in the code */ | 
|  |  | 
|  | /* Transform each pair of bits into 01 (valid) or 00 (empty) */ | 
|  | tmp = ~twd; | 
|  | tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */ | 
|  | /* and move the valid bits to the lower byte. */ | 
|  | tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */ | 
|  | tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */ | 
|  | tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */ | 
|  |  | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | #define FPREG_ADDR(f, n)	((void *)&(f)->st_space + (n) * 16) | 
|  | #define FP_EXP_TAG_VALID	0 | 
|  | #define FP_EXP_TAG_ZERO		1 | 
|  | #define FP_EXP_TAG_SPECIAL	2 | 
|  | #define FP_EXP_TAG_EMPTY	3 | 
|  |  | 
|  | static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave) | 
|  | { | 
|  | struct _fpxreg *st; | 
|  | u32 tos = (fxsave->swd >> 11) & 7; | 
|  | u32 twd = (unsigned long) fxsave->twd; | 
|  | u32 tag; | 
|  | u32 ret = 0xffff0000u; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 8; i++, twd >>= 1) { | 
|  | if (twd & 0x1) { | 
|  | st = FPREG_ADDR(fxsave, (i - tos) & 7); | 
|  |  | 
|  | switch (st->exponent & 0x7fff) { | 
|  | case 0x7fff: | 
|  | tag = FP_EXP_TAG_SPECIAL; | 
|  | break; | 
|  | case 0x0000: | 
|  | if (!st->significand[0] && | 
|  | !st->significand[1] && | 
|  | !st->significand[2] && | 
|  | !st->significand[3]) | 
|  | tag = FP_EXP_TAG_ZERO; | 
|  | else | 
|  | tag = FP_EXP_TAG_SPECIAL; | 
|  | break; | 
|  | default: | 
|  | if (st->significand[3] & 0x8000) | 
|  | tag = FP_EXP_TAG_VALID; | 
|  | else | 
|  | tag = FP_EXP_TAG_SPECIAL; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | tag = FP_EXP_TAG_EMPTY; | 
|  | } | 
|  | ret |= tag << (2 * i); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FXSR floating point environment conversions. | 
|  | */ | 
|  |  | 
|  | void | 
|  | convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk) | 
|  | { | 
|  | struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave; | 
|  | struct _fpreg *to = (struct _fpreg *) &env->st_space[0]; | 
|  | struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0]; | 
|  | int i; | 
|  |  | 
|  | env->cwd = fxsave->cwd | 0xffff0000u; | 
|  | env->swd = fxsave->swd | 0xffff0000u; | 
|  | env->twd = twd_fxsr_to_i387(fxsave); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | env->fip = fxsave->rip; | 
|  | env->foo = fxsave->rdp; | 
|  | /* | 
|  | * should be actually ds/cs at fpu exception time, but | 
|  | * that information is not available in 64bit mode. | 
|  | */ | 
|  | env->fcs = task_pt_regs(tsk)->cs; | 
|  | if (tsk == current) { | 
|  | savesegment(ds, env->fos); | 
|  | } else { | 
|  | env->fos = tsk->thread.ds; | 
|  | } | 
|  | env->fos |= 0xffff0000; | 
|  | #else | 
|  | env->fip = fxsave->fip; | 
|  | env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16); | 
|  | env->foo = fxsave->foo; | 
|  | env->fos = fxsave->fos; | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < 8; ++i) | 
|  | memcpy(&to[i], &from[i], sizeof(to[0])); | 
|  | } | 
|  |  | 
|  | void convert_to_fxsr(struct task_struct *tsk, | 
|  | const struct user_i387_ia32_struct *env) | 
|  |  | 
|  | { | 
|  | struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave; | 
|  | struct _fpreg *from = (struct _fpreg *) &env->st_space[0]; | 
|  | struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0]; | 
|  | int i; | 
|  |  | 
|  | fxsave->cwd = env->cwd; | 
|  | fxsave->swd = env->swd; | 
|  | fxsave->twd = twd_i387_to_fxsr(env->twd); | 
|  | fxsave->fop = (u16) ((u32) env->fcs >> 16); | 
|  | #ifdef CONFIG_X86_64 | 
|  | fxsave->rip = env->fip; | 
|  | fxsave->rdp = env->foo; | 
|  | /* cs and ds ignored */ | 
|  | #else | 
|  | fxsave->fip = env->fip; | 
|  | fxsave->fcs = (env->fcs & 0xffff); | 
|  | fxsave->foo = env->foo; | 
|  | fxsave->fos = env->fos; | 
|  | #endif | 
|  |  | 
|  | for (i = 0; i < 8; ++i) | 
|  | memcpy(&to[i], &from[i], sizeof(from[0])); | 
|  | } | 
|  |  | 
|  | int fpregs_get(struct task_struct *target, const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | void *kbuf, void __user *ubuf) | 
|  | { | 
|  | struct user_i387_ia32_struct env; | 
|  | int ret; | 
|  |  | 
|  | ret = init_fpu(target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (!HAVE_HWFP) | 
|  | return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf); | 
|  |  | 
|  | if (!cpu_has_fxsr) { | 
|  | return user_regset_copyout(&pos, &count, &kbuf, &ubuf, | 
|  | &target->thread.fpu.state->fsave, 0, | 
|  | -1); | 
|  | } | 
|  |  | 
|  | sanitize_i387_state(target); | 
|  |  | 
|  | if (kbuf && pos == 0 && count == sizeof(env)) { | 
|  | convert_from_fxsr(kbuf, target); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | convert_from_fxsr(&env, target); | 
|  |  | 
|  | return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1); | 
|  | } | 
|  |  | 
|  | int fpregs_set(struct task_struct *target, const struct user_regset *regset, | 
|  | unsigned int pos, unsigned int count, | 
|  | const void *kbuf, const void __user *ubuf) | 
|  | { | 
|  | struct user_i387_ia32_struct env; | 
|  | int ret; | 
|  |  | 
|  | ret = init_fpu(target); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | sanitize_i387_state(target); | 
|  |  | 
|  | if (!HAVE_HWFP) | 
|  | return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf); | 
|  |  | 
|  | if (!cpu_has_fxsr) { | 
|  | return user_regset_copyin(&pos, &count, &kbuf, &ubuf, | 
|  | &target->thread.fpu.state->fsave, 0, -1); | 
|  | } | 
|  |  | 
|  | if (pos > 0 || count < sizeof(env)) | 
|  | convert_from_fxsr(&env, target); | 
|  |  | 
|  | ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1); | 
|  | if (!ret) | 
|  | convert_to_fxsr(target, &env); | 
|  |  | 
|  | /* | 
|  | * update the header bit in the xsave header, indicating the | 
|  | * presence of FP. | 
|  | */ | 
|  | if (cpu_has_xsave) | 
|  | target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * FPU state for core dumps. | 
|  | * This is only used for a.out dumps now. | 
|  | * It is declared generically using elf_fpregset_t (which is | 
|  | * struct user_i387_struct) but is in fact only used for 32-bit | 
|  | * dumps, so on 64-bit it is really struct user_i387_ia32_struct. | 
|  | */ | 
|  | int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | int fpvalid; | 
|  |  | 
|  | fpvalid = !!used_math(); | 
|  | if (fpvalid) | 
|  | fpvalid = !fpregs_get(tsk, NULL, | 
|  | 0, sizeof(struct user_i387_ia32_struct), | 
|  | fpu, NULL); | 
|  |  | 
|  | return fpvalid; | 
|  | } | 
|  | EXPORT_SYMBOL(dump_fpu); | 
|  |  | 
|  | #endif	/* CONFIG_X86_32 || CONFIG_IA32_EMULATION */ |