| /* via-rhine.c: A Linux Ethernet device driver for VIA Rhine family chips. */ | 
 | /* | 
 | 	Written 1998-2001 by Donald Becker. | 
 |  | 
 | 	Current Maintainer: Roger Luethi <rl@hellgate.ch> | 
 |  | 
 | 	This software may be used and distributed according to the terms of | 
 | 	the GNU General Public License (GPL), incorporated herein by reference. | 
 | 	Drivers based on or derived from this code fall under the GPL and must | 
 | 	retain the authorship, copyright and license notice.  This file is not | 
 | 	a complete program and may only be used when the entire operating | 
 | 	system is licensed under the GPL. | 
 |  | 
 | 	This driver is designed for the VIA VT86C100A Rhine-I. | 
 | 	It also works with the Rhine-II (6102) and Rhine-III (6105/6105L/6105LOM | 
 | 	and management NIC 6105M). | 
 |  | 
 | 	The author may be reached as becker@scyld.com, or C/O | 
 | 	Scyld Computing Corporation | 
 | 	410 Severn Ave., Suite 210 | 
 | 	Annapolis MD 21403 | 
 |  | 
 |  | 
 | 	This driver contains some changes from the original Donald Becker | 
 | 	version. He may or may not be interested in bug reports on this | 
 | 	code. You can find his versions at: | 
 | 	http://www.scyld.com/network/via-rhine.html | 
 | 	[link no longer provides useful info -jgarzik] | 
 |  | 
 | */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #define DRV_NAME	"via-rhine" | 
 | #define DRV_VERSION	"1.5.0" | 
 | #define DRV_RELDATE	"2010-10-09" | 
 |  | 
 | #include <linux/types.h> | 
 |  | 
 | /* A few user-configurable values. | 
 |    These may be modified when a driver module is loaded. */ | 
 | static int debug = 0; | 
 | #define RHINE_MSG_DEFAULT \ | 
 |         (0x0000) | 
 |  | 
 | /* Set the copy breakpoint for the copy-only-tiny-frames scheme. | 
 |    Setting to > 1518 effectively disables this feature. */ | 
 | #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ | 
 | 	defined(CONFIG_SPARC) || defined(__ia64__) ||		   \ | 
 | 	defined(__sh__) || defined(__mips__) | 
 | static int rx_copybreak = 1518; | 
 | #else | 
 | static int rx_copybreak; | 
 | #endif | 
 |  | 
 | /* Work-around for broken BIOSes: they are unable to get the chip back out of | 
 |    power state D3 so PXE booting fails. bootparam(7): via-rhine.avoid_D3=1 */ | 
 | static bool avoid_D3; | 
 |  | 
 | /* | 
 |  * In case you are looking for 'options[]' or 'full_duplex[]', they | 
 |  * are gone. Use ethtool(8) instead. | 
 |  */ | 
 |  | 
 | /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). | 
 |    The Rhine has a 64 element 8390-like hash table. */ | 
 | static const int multicast_filter_limit = 32; | 
 |  | 
 |  | 
 | /* Operational parameters that are set at compile time. */ | 
 |  | 
 | /* Keep the ring sizes a power of two for compile efficiency. | 
 |    The compiler will convert <unsigned>'%'<2^N> into a bit mask. | 
 |    Making the Tx ring too large decreases the effectiveness of channel | 
 |    bonding and packet priority. | 
 |    There are no ill effects from too-large receive rings. */ | 
 | #define TX_RING_SIZE	16 | 
 | #define TX_QUEUE_LEN	10	/* Limit ring entries actually used. */ | 
 | #define RX_RING_SIZE	64 | 
 |  | 
 | /* Operational parameters that usually are not changed. */ | 
 |  | 
 | /* Time in jiffies before concluding the transmitter is hung. */ | 
 | #define TX_TIMEOUT	(2*HZ) | 
 |  | 
 | #define PKT_BUF_SZ	1536	/* Size of each temporary Rx buffer.*/ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/string.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/skbuff.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/mii.h> | 
 | #include <linux/ethtool.h> | 
 | #include <linux/crc32.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/workqueue.h> | 
 | #include <asm/processor.h>	/* Processor type for cache alignment. */ | 
 | #include <asm/io.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/uaccess.h> | 
 | #include <linux/dmi.h> | 
 |  | 
 | /* These identify the driver base version and may not be removed. */ | 
 | static const char version[] = | 
 | 	"v1.10-LK" DRV_VERSION " " DRV_RELDATE " Written by Donald Becker"; | 
 |  | 
 | /* This driver was written to use PCI memory space. Some early versions | 
 |    of the Rhine may only work correctly with I/O space accesses. */ | 
 | #ifdef CONFIG_VIA_RHINE_MMIO | 
 | #define USE_MMIO | 
 | #else | 
 | #endif | 
 |  | 
 | MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); | 
 | MODULE_DESCRIPTION("VIA Rhine PCI Fast Ethernet driver"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | module_param(debug, int, 0); | 
 | module_param(rx_copybreak, int, 0); | 
 | module_param(avoid_D3, bool, 0); | 
 | MODULE_PARM_DESC(debug, "VIA Rhine debug message flags"); | 
 | MODULE_PARM_DESC(rx_copybreak, "VIA Rhine copy breakpoint for copy-only-tiny-frames"); | 
 | MODULE_PARM_DESC(avoid_D3, "Avoid power state D3 (work-around for broken BIOSes)"); | 
 |  | 
 | #define MCAM_SIZE	32 | 
 | #define VCAM_SIZE	32 | 
 |  | 
 | /* | 
 | 		Theory of Operation | 
 |  | 
 | I. Board Compatibility | 
 |  | 
 | This driver is designed for the VIA 86c100A Rhine-II PCI Fast Ethernet | 
 | controller. | 
 |  | 
 | II. Board-specific settings | 
 |  | 
 | Boards with this chip are functional only in a bus-master PCI slot. | 
 |  | 
 | Many operational settings are loaded from the EEPROM to the Config word at | 
 | offset 0x78. For most of these settings, this driver assumes that they are | 
 | correct. | 
 | If this driver is compiled to use PCI memory space operations the EEPROM | 
 | must be configured to enable memory ops. | 
 |  | 
 | III. Driver operation | 
 |  | 
 | IIIa. Ring buffers | 
 |  | 
 | This driver uses two statically allocated fixed-size descriptor lists | 
 | formed into rings by a branch from the final descriptor to the beginning of | 
 | the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. | 
 |  | 
 | IIIb/c. Transmit/Receive Structure | 
 |  | 
 | This driver attempts to use a zero-copy receive and transmit scheme. | 
 |  | 
 | Alas, all data buffers are required to start on a 32 bit boundary, so | 
 | the driver must often copy transmit packets into bounce buffers. | 
 |  | 
 | The driver allocates full frame size skbuffs for the Rx ring buffers at | 
 | open() time and passes the skb->data field to the chip as receive data | 
 | buffers. When an incoming frame is less than RX_COPYBREAK bytes long, | 
 | a fresh skbuff is allocated and the frame is copied to the new skbuff. | 
 | When the incoming frame is larger, the skbuff is passed directly up the | 
 | protocol stack. Buffers consumed this way are replaced by newly allocated | 
 | skbuffs in the last phase of rhine_rx(). | 
 |  | 
 | The RX_COPYBREAK value is chosen to trade-off the memory wasted by | 
 | using a full-sized skbuff for small frames vs. the copying costs of larger | 
 | frames. New boards are typically used in generously configured machines | 
 | and the underfilled buffers have negligible impact compared to the benefit of | 
 | a single allocation size, so the default value of zero results in never | 
 | copying packets. When copying is done, the cost is usually mitigated by using | 
 | a combined copy/checksum routine. Copying also preloads the cache, which is | 
 | most useful with small frames. | 
 |  | 
 | Since the VIA chips are only able to transfer data to buffers on 32 bit | 
 | boundaries, the IP header at offset 14 in an ethernet frame isn't | 
 | longword aligned for further processing. Copying these unaligned buffers | 
 | has the beneficial effect of 16-byte aligning the IP header. | 
 |  | 
 | IIId. Synchronization | 
 |  | 
 | The driver runs as two independent, single-threaded flows of control. One | 
 | is the send-packet routine, which enforces single-threaded use by the | 
 | netdev_priv(dev)->lock spinlock. The other thread is the interrupt handler, | 
 | which is single threaded by the hardware and interrupt handling software. | 
 |  | 
 | The send packet thread has partial control over the Tx ring. It locks the | 
 | netdev_priv(dev)->lock whenever it's queuing a Tx packet. If the next slot in | 
 | the ring is not available it stops the transmit queue by | 
 | calling netif_stop_queue. | 
 |  | 
 | The interrupt handler has exclusive control over the Rx ring and records stats | 
 | from the Tx ring. After reaping the stats, it marks the Tx queue entry as | 
 | empty by incrementing the dirty_tx mark. If at least half of the entries in | 
 | the Rx ring are available the transmit queue is woken up if it was stopped. | 
 |  | 
 | IV. Notes | 
 |  | 
 | IVb. References | 
 |  | 
 | Preliminary VT86C100A manual from http://www.via.com.tw/ | 
 | http://www.scyld.com/expert/100mbps.html | 
 | http://www.scyld.com/expert/NWay.html | 
 | ftp://ftp.via.com.tw/public/lan/Products/NIC/VT86C100A/Datasheet/VT86C100A03.pdf | 
 | ftp://ftp.via.com.tw/public/lan/Products/NIC/VT6102/Datasheet/VT6102_021.PDF | 
 |  | 
 |  | 
 | IVc. Errata | 
 |  | 
 | The VT86C100A manual is not reliable information. | 
 | The 3043 chip does not handle unaligned transmit or receive buffers, resulting | 
 | in significant performance degradation for bounce buffer copies on transmit | 
 | and unaligned IP headers on receive. | 
 | The chip does not pad to minimum transmit length. | 
 |  | 
 | */ | 
 |  | 
 |  | 
 | /* This table drives the PCI probe routines. It's mostly boilerplate in all | 
 |    of the drivers, and will likely be provided by some future kernel. | 
 |    Note the matching code -- the first table entry matchs all 56** cards but | 
 |    second only the 1234 card. | 
 | */ | 
 |  | 
 | enum rhine_revs { | 
 | 	VT86C100A	= 0x00, | 
 | 	VTunknown0	= 0x20, | 
 | 	VT6102		= 0x40, | 
 | 	VT8231		= 0x50,	/* Integrated MAC */ | 
 | 	VT8233		= 0x60,	/* Integrated MAC */ | 
 | 	VT8235		= 0x74,	/* Integrated MAC */ | 
 | 	VT8237		= 0x78,	/* Integrated MAC */ | 
 | 	VTunknown1	= 0x7C, | 
 | 	VT6105		= 0x80, | 
 | 	VT6105_B0	= 0x83, | 
 | 	VT6105L		= 0x8A, | 
 | 	VT6107		= 0x8C, | 
 | 	VTunknown2	= 0x8E, | 
 | 	VT6105M		= 0x90,	/* Management adapter */ | 
 | }; | 
 |  | 
 | enum rhine_quirks { | 
 | 	rqWOL		= 0x0001,	/* Wake-On-LAN support */ | 
 | 	rqForceReset	= 0x0002, | 
 | 	rq6patterns	= 0x0040,	/* 6 instead of 4 patterns for WOL */ | 
 | 	rqStatusWBRace	= 0x0080,	/* Tx Status Writeback Error possible */ | 
 | 	rqRhineI	= 0x0100,	/* See comment below */ | 
 | }; | 
 | /* | 
 |  * rqRhineI: VT86C100A (aka Rhine-I) uses different bits to enable | 
 |  * MMIO as well as for the collision counter and the Tx FIFO underflow | 
 |  * indicator. In addition, Tx and Rx buffers need to 4 byte aligned. | 
 |  */ | 
 |  | 
 | /* Beware of PCI posted writes */ | 
 | #define IOSYNC	do { ioread8(ioaddr + StationAddr); } while (0) | 
 |  | 
 | static DEFINE_PCI_DEVICE_TABLE(rhine_pci_tbl) = { | 
 | 	{ 0x1106, 0x3043, PCI_ANY_ID, PCI_ANY_ID, },	/* VT86C100A */ | 
 | 	{ 0x1106, 0x3065, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6102 */ | 
 | 	{ 0x1106, 0x3106, PCI_ANY_ID, PCI_ANY_ID, },	/* 6105{,L,LOM} */ | 
 | 	{ 0x1106, 0x3053, PCI_ANY_ID, PCI_ANY_ID, },	/* VT6105M */ | 
 | 	{ }	/* terminate list */ | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, rhine_pci_tbl); | 
 |  | 
 |  | 
 | /* Offsets to the device registers. */ | 
 | enum register_offsets { | 
 | 	StationAddr=0x00, RxConfig=0x06, TxConfig=0x07, ChipCmd=0x08, | 
 | 	ChipCmd1=0x09, TQWake=0x0A, | 
 | 	IntrStatus=0x0C, IntrEnable=0x0E, | 
 | 	MulticastFilter0=0x10, MulticastFilter1=0x14, | 
 | 	RxRingPtr=0x18, TxRingPtr=0x1C, GFIFOTest=0x54, | 
 | 	MIIPhyAddr=0x6C, MIIStatus=0x6D, PCIBusConfig=0x6E, PCIBusConfig1=0x6F, | 
 | 	MIICmd=0x70, MIIRegAddr=0x71, MIIData=0x72, MACRegEEcsr=0x74, | 
 | 	ConfigA=0x78, ConfigB=0x79, ConfigC=0x7A, ConfigD=0x7B, | 
 | 	RxMissed=0x7C, RxCRCErrs=0x7E, MiscCmd=0x81, | 
 | 	StickyHW=0x83, IntrStatus2=0x84, | 
 | 	CamMask=0x88, CamCon=0x92, CamAddr=0x93, | 
 | 	WOLcrSet=0xA0, PwcfgSet=0xA1, WOLcgSet=0xA3, WOLcrClr=0xA4, | 
 | 	WOLcrClr1=0xA6, WOLcgClr=0xA7, | 
 | 	PwrcsrSet=0xA8, PwrcsrSet1=0xA9, PwrcsrClr=0xAC, PwrcsrClr1=0xAD, | 
 | }; | 
 |  | 
 | /* Bits in ConfigD */ | 
 | enum backoff_bits { | 
 | 	BackOptional=0x01, BackModify=0x02, | 
 | 	BackCaptureEffect=0x04, BackRandom=0x08 | 
 | }; | 
 |  | 
 | /* Bits in the TxConfig (TCR) register */ | 
 | enum tcr_bits { | 
 | 	TCR_PQEN=0x01, | 
 | 	TCR_LB0=0x02,		/* loopback[0] */ | 
 | 	TCR_LB1=0x04,		/* loopback[1] */ | 
 | 	TCR_OFSET=0x08, | 
 | 	TCR_RTGOPT=0x10, | 
 | 	TCR_RTFT0=0x20, | 
 | 	TCR_RTFT1=0x40, | 
 | 	TCR_RTSF=0x80, | 
 | }; | 
 |  | 
 | /* Bits in the CamCon (CAMC) register */ | 
 | enum camcon_bits { | 
 | 	CAMC_CAMEN=0x01, | 
 | 	CAMC_VCAMSL=0x02, | 
 | 	CAMC_CAMWR=0x04, | 
 | 	CAMC_CAMRD=0x08, | 
 | }; | 
 |  | 
 | /* Bits in the PCIBusConfig1 (BCR1) register */ | 
 | enum bcr1_bits { | 
 | 	BCR1_POT0=0x01, | 
 | 	BCR1_POT1=0x02, | 
 | 	BCR1_POT2=0x04, | 
 | 	BCR1_CTFT0=0x08, | 
 | 	BCR1_CTFT1=0x10, | 
 | 	BCR1_CTSF=0x20, | 
 | 	BCR1_TXQNOBK=0x40,	/* for VT6105 */ | 
 | 	BCR1_VIDFR=0x80,	/* for VT6105 */ | 
 | 	BCR1_MED0=0x40,		/* for VT6102 */ | 
 | 	BCR1_MED1=0x80,		/* for VT6102 */ | 
 | }; | 
 |  | 
 | #ifdef USE_MMIO | 
 | /* Registers we check that mmio and reg are the same. */ | 
 | static const int mmio_verify_registers[] = { | 
 | 	RxConfig, TxConfig, IntrEnable, ConfigA, ConfigB, ConfigC, ConfigD, | 
 | 	0 | 
 | }; | 
 | #endif | 
 |  | 
 | /* Bits in the interrupt status/mask registers. */ | 
 | enum intr_status_bits { | 
 | 	IntrRxDone	= 0x0001, | 
 | 	IntrTxDone	= 0x0002, | 
 | 	IntrRxErr	= 0x0004, | 
 | 	IntrTxError	= 0x0008, | 
 | 	IntrRxEmpty	= 0x0020, | 
 | 	IntrPCIErr	= 0x0040, | 
 | 	IntrStatsMax	= 0x0080, | 
 | 	IntrRxEarly	= 0x0100, | 
 | 	IntrTxUnderrun	= 0x0210, | 
 | 	IntrRxOverflow	= 0x0400, | 
 | 	IntrRxDropped	= 0x0800, | 
 | 	IntrRxNoBuf	= 0x1000, | 
 | 	IntrTxAborted	= 0x2000, | 
 | 	IntrLinkChange	= 0x4000, | 
 | 	IntrRxWakeUp	= 0x8000, | 
 | 	IntrTxDescRace		= 0x080000,	/* mapped from IntrStatus2 */ | 
 | 	IntrNormalSummary	= IntrRxDone | IntrTxDone, | 
 | 	IntrTxErrSummary	= IntrTxDescRace | IntrTxAborted | IntrTxError | | 
 | 				  IntrTxUnderrun, | 
 | }; | 
 |  | 
 | /* Bits in WOLcrSet/WOLcrClr and PwrcsrSet/PwrcsrClr */ | 
 | enum wol_bits { | 
 | 	WOLucast	= 0x10, | 
 | 	WOLmagic	= 0x20, | 
 | 	WOLbmcast	= 0x30, | 
 | 	WOLlnkon	= 0x40, | 
 | 	WOLlnkoff	= 0x80, | 
 | }; | 
 |  | 
 | /* The Rx and Tx buffer descriptors. */ | 
 | struct rx_desc { | 
 | 	__le32 rx_status; | 
 | 	__le32 desc_length; /* Chain flag, Buffer/frame length */ | 
 | 	__le32 addr; | 
 | 	__le32 next_desc; | 
 | }; | 
 | struct tx_desc { | 
 | 	__le32 tx_status; | 
 | 	__le32 desc_length; /* Chain flag, Tx Config, Frame length */ | 
 | 	__le32 addr; | 
 | 	__le32 next_desc; | 
 | }; | 
 |  | 
 | /* Initial value for tx_desc.desc_length, Buffer size goes to bits 0-10 */ | 
 | #define TXDESC		0x00e08000 | 
 |  | 
 | enum rx_status_bits { | 
 | 	RxOK=0x8000, RxWholePkt=0x0300, RxErr=0x008F | 
 | }; | 
 |  | 
 | /* Bits in *_desc.*_status */ | 
 | enum desc_status_bits { | 
 | 	DescOwn=0x80000000 | 
 | }; | 
 |  | 
 | /* Bits in *_desc.*_length */ | 
 | enum desc_length_bits { | 
 | 	DescTag=0x00010000 | 
 | }; | 
 |  | 
 | /* Bits in ChipCmd. */ | 
 | enum chip_cmd_bits { | 
 | 	CmdInit=0x01, CmdStart=0x02, CmdStop=0x04, CmdRxOn=0x08, | 
 | 	CmdTxOn=0x10, Cmd1TxDemand=0x20, CmdRxDemand=0x40, | 
 | 	Cmd1EarlyRx=0x01, Cmd1EarlyTx=0x02, Cmd1FDuplex=0x04, | 
 | 	Cmd1NoTxPoll=0x08, Cmd1Reset=0x80, | 
 | }; | 
 |  | 
 | struct rhine_stats { | 
 | 	u64		packets; | 
 | 	u64		bytes; | 
 | 	struct u64_stats_sync syncp; | 
 | }; | 
 |  | 
 | struct rhine_private { | 
 | 	/* Bit mask for configured VLAN ids */ | 
 | 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; | 
 |  | 
 | 	/* Descriptor rings */ | 
 | 	struct rx_desc *rx_ring; | 
 | 	struct tx_desc *tx_ring; | 
 | 	dma_addr_t rx_ring_dma; | 
 | 	dma_addr_t tx_ring_dma; | 
 |  | 
 | 	/* The addresses of receive-in-place skbuffs. */ | 
 | 	struct sk_buff *rx_skbuff[RX_RING_SIZE]; | 
 | 	dma_addr_t rx_skbuff_dma[RX_RING_SIZE]; | 
 |  | 
 | 	/* The saved address of a sent-in-place packet/buffer, for later free(). */ | 
 | 	struct sk_buff *tx_skbuff[TX_RING_SIZE]; | 
 | 	dma_addr_t tx_skbuff_dma[TX_RING_SIZE]; | 
 |  | 
 | 	/* Tx bounce buffers (Rhine-I only) */ | 
 | 	unsigned char *tx_buf[TX_RING_SIZE]; | 
 | 	unsigned char *tx_bufs; | 
 | 	dma_addr_t tx_bufs_dma; | 
 |  | 
 | 	struct pci_dev *pdev; | 
 | 	long pioaddr; | 
 | 	struct net_device *dev; | 
 | 	struct napi_struct napi; | 
 | 	spinlock_t lock; | 
 | 	struct mutex task_lock; | 
 | 	bool task_enable; | 
 | 	struct work_struct slow_event_task; | 
 | 	struct work_struct reset_task; | 
 |  | 
 | 	u32 msg_enable; | 
 |  | 
 | 	/* Frequently used values: keep some adjacent for cache effect. */ | 
 | 	u32 quirks; | 
 | 	struct rx_desc *rx_head_desc; | 
 | 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */ | 
 | 	unsigned int cur_tx, dirty_tx; | 
 | 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */ | 
 | 	struct rhine_stats rx_stats; | 
 | 	struct rhine_stats tx_stats; | 
 | 	u8 wolopts; | 
 |  | 
 | 	u8 tx_thresh, rx_thresh; | 
 |  | 
 | 	struct mii_if_info mii_if; | 
 | 	void __iomem *base; | 
 | }; | 
 |  | 
 | #define BYTE_REG_BITS_ON(x, p)      do { iowrite8((ioread8((p))|(x)), (p)); } while (0) | 
 | #define WORD_REG_BITS_ON(x, p)      do { iowrite16((ioread16((p))|(x)), (p)); } while (0) | 
 | #define DWORD_REG_BITS_ON(x, p)     do { iowrite32((ioread32((p))|(x)), (p)); } while (0) | 
 |  | 
 | #define BYTE_REG_BITS_IS_ON(x, p)   (ioread8((p)) & (x)) | 
 | #define WORD_REG_BITS_IS_ON(x, p)   (ioread16((p)) & (x)) | 
 | #define DWORD_REG_BITS_IS_ON(x, p)  (ioread32((p)) & (x)) | 
 |  | 
 | #define BYTE_REG_BITS_OFF(x, p)     do { iowrite8(ioread8((p)) & (~(x)), (p)); } while (0) | 
 | #define WORD_REG_BITS_OFF(x, p)     do { iowrite16(ioread16((p)) & (~(x)), (p)); } while (0) | 
 | #define DWORD_REG_BITS_OFF(x, p)    do { iowrite32(ioread32((p)) & (~(x)), (p)); } while (0) | 
 |  | 
 | #define BYTE_REG_BITS_SET(x, m, p)   do { iowrite8((ioread8((p)) & (~(m)))|(x), (p)); } while (0) | 
 | #define WORD_REG_BITS_SET(x, m, p)   do { iowrite16((ioread16((p)) & (~(m)))|(x), (p)); } while (0) | 
 | #define DWORD_REG_BITS_SET(x, m, p)  do { iowrite32((ioread32((p)) & (~(m)))|(x), (p)); } while (0) | 
 |  | 
 |  | 
 | static int  mdio_read(struct net_device *dev, int phy_id, int location); | 
 | static void mdio_write(struct net_device *dev, int phy_id, int location, int value); | 
 | static int  rhine_open(struct net_device *dev); | 
 | static void rhine_reset_task(struct work_struct *work); | 
 | static void rhine_slow_event_task(struct work_struct *work); | 
 | static void rhine_tx_timeout(struct net_device *dev); | 
 | static netdev_tx_t rhine_start_tx(struct sk_buff *skb, | 
 | 				  struct net_device *dev); | 
 | static irqreturn_t rhine_interrupt(int irq, void *dev_instance); | 
 | static void rhine_tx(struct net_device *dev); | 
 | static int rhine_rx(struct net_device *dev, int limit); | 
 | static void rhine_set_rx_mode(struct net_device *dev); | 
 | static struct rtnl_link_stats64 *rhine_get_stats64(struct net_device *dev, | 
 | 	       struct rtnl_link_stats64 *stats); | 
 | static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); | 
 | static const struct ethtool_ops netdev_ethtool_ops; | 
 | static int  rhine_close(struct net_device *dev); | 
 | static int rhine_vlan_rx_add_vid(struct net_device *dev, | 
 | 				 __be16 proto, u16 vid); | 
 | static int rhine_vlan_rx_kill_vid(struct net_device *dev, | 
 | 				  __be16 proto, u16 vid); | 
 | static void rhine_restart_tx(struct net_device *dev); | 
 |  | 
 | static void rhine_wait_bit(struct rhine_private *rp, u8 reg, u8 mask, bool low) | 
 | { | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < 1024; i++) { | 
 | 		bool has_mask_bits = !!(ioread8(ioaddr + reg) & mask); | 
 |  | 
 | 		if (low ^ has_mask_bits) | 
 | 			break; | 
 | 		udelay(10); | 
 | 	} | 
 | 	if (i > 64) { | 
 | 		netif_dbg(rp, hw, rp->dev, "%s bit wait (%02x/%02x) cycle " | 
 | 			  "count: %04d\n", low ? "low" : "high", reg, mask, i); | 
 | 	} | 
 | } | 
 |  | 
 | static void rhine_wait_bit_high(struct rhine_private *rp, u8 reg, u8 mask) | 
 | { | 
 | 	rhine_wait_bit(rp, reg, mask, false); | 
 | } | 
 |  | 
 | static void rhine_wait_bit_low(struct rhine_private *rp, u8 reg, u8 mask) | 
 | { | 
 | 	rhine_wait_bit(rp, reg, mask, true); | 
 | } | 
 |  | 
 | static u32 rhine_get_events(struct rhine_private *rp) | 
 | { | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	u32 intr_status; | 
 |  | 
 | 	intr_status = ioread16(ioaddr + IntrStatus); | 
 | 	/* On Rhine-II, Bit 3 indicates Tx descriptor write-back race. */ | 
 | 	if (rp->quirks & rqStatusWBRace) | 
 | 		intr_status |= ioread8(ioaddr + IntrStatus2) << 16; | 
 | 	return intr_status; | 
 | } | 
 |  | 
 | static void rhine_ack_events(struct rhine_private *rp, u32 mask) | 
 | { | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	if (rp->quirks & rqStatusWBRace) | 
 | 		iowrite8(mask >> 16, ioaddr + IntrStatus2); | 
 | 	iowrite16(mask, ioaddr + IntrStatus); | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | /* | 
 |  * Get power related registers into sane state. | 
 |  * Notify user about past WOL event. | 
 |  */ | 
 | static void rhine_power_init(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	u16 wolstat; | 
 |  | 
 | 	if (rp->quirks & rqWOL) { | 
 | 		/* Make sure chip is in power state D0 */ | 
 | 		iowrite8(ioread8(ioaddr + StickyHW) & 0xFC, ioaddr + StickyHW); | 
 |  | 
 | 		/* Disable "force PME-enable" */ | 
 | 		iowrite8(0x80, ioaddr + WOLcgClr); | 
 |  | 
 | 		/* Clear power-event config bits (WOL) */ | 
 | 		iowrite8(0xFF, ioaddr + WOLcrClr); | 
 | 		/* More recent cards can manage two additional patterns */ | 
 | 		if (rp->quirks & rq6patterns) | 
 | 			iowrite8(0x03, ioaddr + WOLcrClr1); | 
 |  | 
 | 		/* Save power-event status bits */ | 
 | 		wolstat = ioread8(ioaddr + PwrcsrSet); | 
 | 		if (rp->quirks & rq6patterns) | 
 | 			wolstat |= (ioread8(ioaddr + PwrcsrSet1) & 0x03) << 8; | 
 |  | 
 | 		/* Clear power-event status bits */ | 
 | 		iowrite8(0xFF, ioaddr + PwrcsrClr); | 
 | 		if (rp->quirks & rq6patterns) | 
 | 			iowrite8(0x03, ioaddr + PwrcsrClr1); | 
 |  | 
 | 		if (wolstat) { | 
 | 			char *reason; | 
 | 			switch (wolstat) { | 
 | 			case WOLmagic: | 
 | 				reason = "Magic packet"; | 
 | 				break; | 
 | 			case WOLlnkon: | 
 | 				reason = "Link went up"; | 
 | 				break; | 
 | 			case WOLlnkoff: | 
 | 				reason = "Link went down"; | 
 | 				break; | 
 | 			case WOLucast: | 
 | 				reason = "Unicast packet"; | 
 | 				break; | 
 | 			case WOLbmcast: | 
 | 				reason = "Multicast/broadcast packet"; | 
 | 				break; | 
 | 			default: | 
 | 				reason = "Unknown"; | 
 | 			} | 
 | 			netdev_info(dev, "Woke system up. Reason: %s\n", | 
 | 				    reason); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void rhine_chip_reset(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	u8 cmd1; | 
 |  | 
 | 	iowrite8(Cmd1Reset, ioaddr + ChipCmd1); | 
 | 	IOSYNC; | 
 |  | 
 | 	if (ioread8(ioaddr + ChipCmd1) & Cmd1Reset) { | 
 | 		netdev_info(dev, "Reset not complete yet. Trying harder.\n"); | 
 |  | 
 | 		/* Force reset */ | 
 | 		if (rp->quirks & rqForceReset) | 
 | 			iowrite8(0x40, ioaddr + MiscCmd); | 
 |  | 
 | 		/* Reset can take somewhat longer (rare) */ | 
 | 		rhine_wait_bit_low(rp, ChipCmd1, Cmd1Reset); | 
 | 	} | 
 |  | 
 | 	cmd1 = ioread8(ioaddr + ChipCmd1); | 
 | 	netif_info(rp, hw, dev, "Reset %s\n", (cmd1 & Cmd1Reset) ? | 
 | 		   "failed" : "succeeded"); | 
 | } | 
 |  | 
 | #ifdef USE_MMIO | 
 | static void enable_mmio(long pioaddr, u32 quirks) | 
 | { | 
 | 	int n; | 
 | 	if (quirks & rqRhineI) { | 
 | 		/* More recent docs say that this bit is reserved ... */ | 
 | 		n = inb(pioaddr + ConfigA) | 0x20; | 
 | 		outb(n, pioaddr + ConfigA); | 
 | 	} else { | 
 | 		n = inb(pioaddr + ConfigD) | 0x80; | 
 | 		outb(n, pioaddr + ConfigD); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Loads bytes 0x00-0x05, 0x6E-0x6F, 0x78-0x7B from EEPROM | 
 |  * (plus 0x6C for Rhine-I/II) | 
 |  */ | 
 | static void rhine_reload_eeprom(long pioaddr, struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	int i; | 
 |  | 
 | 	outb(0x20, pioaddr + MACRegEEcsr); | 
 | 	for (i = 0; i < 1024; i++) { | 
 | 		if (!(inb(pioaddr + MACRegEEcsr) & 0x20)) | 
 | 			break; | 
 | 	} | 
 | 	if (i > 512) | 
 | 		pr_info("%4d cycles used @ %s:%d\n", i, __func__, __LINE__); | 
 |  | 
 | #ifdef USE_MMIO | 
 | 	/* | 
 | 	 * Reloading from EEPROM overwrites ConfigA-D, so we must re-enable | 
 | 	 * MMIO. If reloading EEPROM was done first this could be avoided, but | 
 | 	 * it is not known if that still works with the "win98-reboot" problem. | 
 | 	 */ | 
 | 	enable_mmio(pioaddr, rp->quirks); | 
 | #endif | 
 |  | 
 | 	/* Turn off EEPROM-controlled wake-up (magic packet) */ | 
 | 	if (rp->quirks & rqWOL) | 
 | 		iowrite8(ioread8(ioaddr + ConfigA) & 0xFC, ioaddr + ConfigA); | 
 |  | 
 | } | 
 |  | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | static void rhine_poll(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	const int irq = rp->pdev->irq; | 
 |  | 
 | 	disable_irq(irq); | 
 | 	rhine_interrupt(irq, dev); | 
 | 	enable_irq(irq); | 
 | } | 
 | #endif | 
 |  | 
 | static void rhine_kick_tx_threshold(struct rhine_private *rp) | 
 | { | 
 | 	if (rp->tx_thresh < 0xe0) { | 
 | 		void __iomem *ioaddr = rp->base; | 
 |  | 
 | 		rp->tx_thresh += 0x20; | 
 | 		BYTE_REG_BITS_SET(rp->tx_thresh, 0x80, ioaddr + TxConfig); | 
 | 	} | 
 | } | 
 |  | 
 | static void rhine_tx_err(struct rhine_private *rp, u32 status) | 
 | { | 
 | 	struct net_device *dev = rp->dev; | 
 |  | 
 | 	if (status & IntrTxAborted) { | 
 | 		netif_info(rp, tx_err, dev, | 
 | 			   "Abort %08x, frame dropped\n", status); | 
 | 	} | 
 |  | 
 | 	if (status & IntrTxUnderrun) { | 
 | 		rhine_kick_tx_threshold(rp); | 
 | 		netif_info(rp, tx_err ,dev, "Transmitter underrun, " | 
 | 			   "Tx threshold now %02x\n", rp->tx_thresh); | 
 | 	} | 
 |  | 
 | 	if (status & IntrTxDescRace) | 
 | 		netif_info(rp, tx_err, dev, "Tx descriptor write-back race\n"); | 
 |  | 
 | 	if ((status & IntrTxError) && | 
 | 	    (status & (IntrTxAborted | IntrTxUnderrun | IntrTxDescRace)) == 0) { | 
 | 		rhine_kick_tx_threshold(rp); | 
 | 		netif_info(rp, tx_err, dev, "Unspecified error. " | 
 | 			   "Tx threshold now %02x\n", rp->tx_thresh); | 
 | 	} | 
 |  | 
 | 	rhine_restart_tx(dev); | 
 | } | 
 |  | 
 | static void rhine_update_rx_crc_and_missed_errord(struct rhine_private *rp) | 
 | { | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	struct net_device_stats *stats = &rp->dev->stats; | 
 |  | 
 | 	stats->rx_crc_errors    += ioread16(ioaddr + RxCRCErrs); | 
 | 	stats->rx_missed_errors += ioread16(ioaddr + RxMissed); | 
 |  | 
 | 	/* | 
 | 	 * Clears the "tally counters" for CRC errors and missed frames(?). | 
 | 	 * It has been reported that some chips need a write of 0 to clear | 
 | 	 * these, for others the counters are set to 1 when written to and | 
 | 	 * instead cleared when read. So we clear them both ways ... | 
 | 	 */ | 
 | 	iowrite32(0, ioaddr + RxMissed); | 
 | 	ioread16(ioaddr + RxCRCErrs); | 
 | 	ioread16(ioaddr + RxMissed); | 
 | } | 
 |  | 
 | #define RHINE_EVENT_NAPI_RX	(IntrRxDone | \ | 
 | 				 IntrRxErr | \ | 
 | 				 IntrRxEmpty | \ | 
 | 				 IntrRxOverflow	| \ | 
 | 				 IntrRxDropped | \ | 
 | 				 IntrRxNoBuf | \ | 
 | 				 IntrRxWakeUp) | 
 |  | 
 | #define RHINE_EVENT_NAPI_TX_ERR	(IntrTxError | \ | 
 | 				 IntrTxAborted | \ | 
 | 				 IntrTxUnderrun | \ | 
 | 				 IntrTxDescRace) | 
 | #define RHINE_EVENT_NAPI_TX	(IntrTxDone | RHINE_EVENT_NAPI_TX_ERR) | 
 |  | 
 | #define RHINE_EVENT_NAPI	(RHINE_EVENT_NAPI_RX | \ | 
 | 				 RHINE_EVENT_NAPI_TX | \ | 
 | 				 IntrStatsMax) | 
 | #define RHINE_EVENT_SLOW	(IntrPCIErr | IntrLinkChange) | 
 | #define RHINE_EVENT		(RHINE_EVENT_NAPI | RHINE_EVENT_SLOW) | 
 |  | 
 | static int rhine_napipoll(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct rhine_private *rp = container_of(napi, struct rhine_private, napi); | 
 | 	struct net_device *dev = rp->dev; | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	u16 enable_mask = RHINE_EVENT & 0xffff; | 
 | 	int work_done = 0; | 
 | 	u32 status; | 
 |  | 
 | 	status = rhine_get_events(rp); | 
 | 	rhine_ack_events(rp, status & ~RHINE_EVENT_SLOW); | 
 |  | 
 | 	if (status & RHINE_EVENT_NAPI_RX) | 
 | 		work_done += rhine_rx(dev, budget); | 
 |  | 
 | 	if (status & RHINE_EVENT_NAPI_TX) { | 
 | 		if (status & RHINE_EVENT_NAPI_TX_ERR) { | 
 | 			/* Avoid scavenging before Tx engine turned off */ | 
 | 			rhine_wait_bit_low(rp, ChipCmd, CmdTxOn); | 
 | 			if (ioread8(ioaddr + ChipCmd) & CmdTxOn) | 
 | 				netif_warn(rp, tx_err, dev, "Tx still on\n"); | 
 | 		} | 
 |  | 
 | 		rhine_tx(dev); | 
 |  | 
 | 		if (status & RHINE_EVENT_NAPI_TX_ERR) | 
 | 			rhine_tx_err(rp, status); | 
 | 	} | 
 |  | 
 | 	if (status & IntrStatsMax) { | 
 | 		spin_lock(&rp->lock); | 
 | 		rhine_update_rx_crc_and_missed_errord(rp); | 
 | 		spin_unlock(&rp->lock); | 
 | 	} | 
 |  | 
 | 	if (status & RHINE_EVENT_SLOW) { | 
 | 		enable_mask &= ~RHINE_EVENT_SLOW; | 
 | 		schedule_work(&rp->slow_event_task); | 
 | 	} | 
 |  | 
 | 	if (work_done < budget) { | 
 | 		napi_complete(napi); | 
 | 		iowrite16(enable_mask, ioaddr + IntrEnable); | 
 | 		mmiowb(); | 
 | 	} | 
 | 	return work_done; | 
 | } | 
 |  | 
 | static void rhine_hw_init(struct net_device *dev, long pioaddr) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	/* Reset the chip to erase previous misconfiguration. */ | 
 | 	rhine_chip_reset(dev); | 
 |  | 
 | 	/* Rhine-I needs extra time to recuperate before EEPROM reload */ | 
 | 	if (rp->quirks & rqRhineI) | 
 | 		msleep(5); | 
 |  | 
 | 	/* Reload EEPROM controlled bytes cleared by soft reset */ | 
 | 	rhine_reload_eeprom(pioaddr, dev); | 
 | } | 
 |  | 
 | static const struct net_device_ops rhine_netdev_ops = { | 
 | 	.ndo_open		 = rhine_open, | 
 | 	.ndo_stop		 = rhine_close, | 
 | 	.ndo_start_xmit		 = rhine_start_tx, | 
 | 	.ndo_get_stats64	 = rhine_get_stats64, | 
 | 	.ndo_set_rx_mode	 = rhine_set_rx_mode, | 
 | 	.ndo_change_mtu		 = eth_change_mtu, | 
 | 	.ndo_validate_addr	 = eth_validate_addr, | 
 | 	.ndo_set_mac_address 	 = eth_mac_addr, | 
 | 	.ndo_do_ioctl		 = netdev_ioctl, | 
 | 	.ndo_tx_timeout 	 = rhine_tx_timeout, | 
 | 	.ndo_vlan_rx_add_vid	 = rhine_vlan_rx_add_vid, | 
 | 	.ndo_vlan_rx_kill_vid	 = rhine_vlan_rx_kill_vid, | 
 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 	.ndo_poll_controller	 = rhine_poll, | 
 | #endif | 
 | }; | 
 |  | 
 | static int rhine_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) | 
 | { | 
 | 	struct net_device *dev; | 
 | 	struct rhine_private *rp; | 
 | 	int i, rc; | 
 | 	u32 quirks; | 
 | 	long pioaddr; | 
 | 	long memaddr; | 
 | 	void __iomem *ioaddr; | 
 | 	int io_size, phy_id; | 
 | 	const char *name; | 
 | #ifdef USE_MMIO | 
 | 	int bar = 1; | 
 | #else | 
 | 	int bar = 0; | 
 | #endif | 
 |  | 
 | /* when built into the kernel, we only print version if device is found */ | 
 | #ifndef MODULE | 
 | 	pr_info_once("%s\n", version); | 
 | #endif | 
 |  | 
 | 	io_size = 256; | 
 | 	phy_id = 0; | 
 | 	quirks = 0; | 
 | 	name = "Rhine"; | 
 | 	if (pdev->revision < VTunknown0) { | 
 | 		quirks = rqRhineI; | 
 | 		io_size = 128; | 
 | 	} | 
 | 	else if (pdev->revision >= VT6102) { | 
 | 		quirks = rqWOL | rqForceReset; | 
 | 		if (pdev->revision < VT6105) { | 
 | 			name = "Rhine II"; | 
 | 			quirks |= rqStatusWBRace;	/* Rhine-II exclusive */ | 
 | 		} | 
 | 		else { | 
 | 			phy_id = 1;	/* Integrated PHY, phy_id fixed to 1 */ | 
 | 			if (pdev->revision >= VT6105_B0) | 
 | 				quirks |= rq6patterns; | 
 | 			if (pdev->revision < VT6105M) | 
 | 				name = "Rhine III"; | 
 | 			else | 
 | 				name = "Rhine III (Management Adapter)"; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rc = pci_enable_device(pdev); | 
 | 	if (rc) | 
 | 		goto err_out; | 
 |  | 
 | 	/* this should always be supported */ | 
 | 	rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | 
 | 	if (rc) { | 
 | 		dev_err(&pdev->dev, | 
 | 			"32-bit PCI DMA addresses not supported by the card!?\n"); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	/* sanity check */ | 
 | 	if ((pci_resource_len(pdev, 0) < io_size) || | 
 | 	    (pci_resource_len(pdev, 1) < io_size)) { | 
 | 		rc = -EIO; | 
 | 		dev_err(&pdev->dev, "Insufficient PCI resources, aborting\n"); | 
 | 		goto err_out; | 
 | 	} | 
 |  | 
 | 	pioaddr = pci_resource_start(pdev, 0); | 
 | 	memaddr = pci_resource_start(pdev, 1); | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	dev = alloc_etherdev(sizeof(struct rhine_private)); | 
 | 	if (!dev) { | 
 | 		rc = -ENOMEM; | 
 | 		goto err_out; | 
 | 	} | 
 | 	SET_NETDEV_DEV(dev, &pdev->dev); | 
 |  | 
 | 	rp = netdev_priv(dev); | 
 | 	rp->dev = dev; | 
 | 	rp->quirks = quirks; | 
 | 	rp->pioaddr = pioaddr; | 
 | 	rp->pdev = pdev; | 
 | 	rp->msg_enable = netif_msg_init(debug, RHINE_MSG_DEFAULT); | 
 |  | 
 | 	rc = pci_request_regions(pdev, DRV_NAME); | 
 | 	if (rc) | 
 | 		goto err_out_free_netdev; | 
 |  | 
 | 	ioaddr = pci_iomap(pdev, bar, io_size); | 
 | 	if (!ioaddr) { | 
 | 		rc = -EIO; | 
 | 		dev_err(&pdev->dev, | 
 | 			"ioremap failed for device %s, region 0x%X @ 0x%lX\n", | 
 | 			pci_name(pdev), io_size, memaddr); | 
 | 		goto err_out_free_res; | 
 | 	} | 
 |  | 
 | #ifdef USE_MMIO | 
 | 	enable_mmio(pioaddr, quirks); | 
 |  | 
 | 	/* Check that selected MMIO registers match the PIO ones */ | 
 | 	i = 0; | 
 | 	while (mmio_verify_registers[i]) { | 
 | 		int reg = mmio_verify_registers[i++]; | 
 | 		unsigned char a = inb(pioaddr+reg); | 
 | 		unsigned char b = readb(ioaddr+reg); | 
 | 		if (a != b) { | 
 | 			rc = -EIO; | 
 | 			dev_err(&pdev->dev, | 
 | 				"MMIO do not match PIO [%02x] (%02x != %02x)\n", | 
 | 				reg, a, b); | 
 | 			goto err_out_unmap; | 
 | 		} | 
 | 	} | 
 | #endif /* USE_MMIO */ | 
 |  | 
 | 	rp->base = ioaddr; | 
 |  | 
 | 	/* Get chip registers into a sane state */ | 
 | 	rhine_power_init(dev); | 
 | 	rhine_hw_init(dev, pioaddr); | 
 |  | 
 | 	for (i = 0; i < 6; i++) | 
 | 		dev->dev_addr[i] = ioread8(ioaddr + StationAddr + i); | 
 |  | 
 | 	if (!is_valid_ether_addr(dev->dev_addr)) { | 
 | 		/* Report it and use a random ethernet address instead */ | 
 | 		netdev_err(dev, "Invalid MAC address: %pM\n", dev->dev_addr); | 
 | 		eth_hw_addr_random(dev); | 
 | 		netdev_info(dev, "Using random MAC address: %pM\n", | 
 | 			    dev->dev_addr); | 
 | 	} | 
 |  | 
 | 	/* For Rhine-I/II, phy_id is loaded from EEPROM */ | 
 | 	if (!phy_id) | 
 | 		phy_id = ioread8(ioaddr + 0x6C); | 
 |  | 
 | 	spin_lock_init(&rp->lock); | 
 | 	mutex_init(&rp->task_lock); | 
 | 	INIT_WORK(&rp->reset_task, rhine_reset_task); | 
 | 	INIT_WORK(&rp->slow_event_task, rhine_slow_event_task); | 
 |  | 
 | 	rp->mii_if.dev = dev; | 
 | 	rp->mii_if.mdio_read = mdio_read; | 
 | 	rp->mii_if.mdio_write = mdio_write; | 
 | 	rp->mii_if.phy_id_mask = 0x1f; | 
 | 	rp->mii_if.reg_num_mask = 0x1f; | 
 |  | 
 | 	/* The chip-specific entries in the device structure. */ | 
 | 	dev->netdev_ops = &rhine_netdev_ops; | 
 | 	dev->ethtool_ops = &netdev_ethtool_ops, | 
 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 |  | 
 | 	netif_napi_add(dev, &rp->napi, rhine_napipoll, 64); | 
 |  | 
 | 	if (rp->quirks & rqRhineI) | 
 | 		dev->features |= NETIF_F_SG|NETIF_F_HW_CSUM; | 
 |  | 
 | 	if (pdev->revision >= VT6105M) | 
 | 		dev->features |= NETIF_F_HW_VLAN_CTAG_TX | | 
 | 				 NETIF_F_HW_VLAN_CTAG_RX | | 
 | 				 NETIF_F_HW_VLAN_CTAG_FILTER; | 
 |  | 
 | 	/* dev->name not defined before register_netdev()! */ | 
 | 	rc = register_netdev(dev); | 
 | 	if (rc) | 
 | 		goto err_out_unmap; | 
 |  | 
 | 	netdev_info(dev, "VIA %s at 0x%lx, %pM, IRQ %d\n", | 
 | 		    name, | 
 | #ifdef USE_MMIO | 
 | 		    memaddr, | 
 | #else | 
 | 		    (long)ioaddr, | 
 | #endif | 
 | 		    dev->dev_addr, pdev->irq); | 
 |  | 
 | 	pci_set_drvdata(pdev, dev); | 
 |  | 
 | 	{ | 
 | 		u16 mii_cmd; | 
 | 		int mii_status = mdio_read(dev, phy_id, 1); | 
 | 		mii_cmd = mdio_read(dev, phy_id, MII_BMCR) & ~BMCR_ISOLATE; | 
 | 		mdio_write(dev, phy_id, MII_BMCR, mii_cmd); | 
 | 		if (mii_status != 0xffff && mii_status != 0x0000) { | 
 | 			rp->mii_if.advertising = mdio_read(dev, phy_id, 4); | 
 | 			netdev_info(dev, | 
 | 				    "MII PHY found at address %d, status 0x%04x advertising %04x Link %04x\n", | 
 | 				    phy_id, | 
 | 				    mii_status, rp->mii_if.advertising, | 
 | 				    mdio_read(dev, phy_id, 5)); | 
 |  | 
 | 			/* set IFF_RUNNING */ | 
 | 			if (mii_status & BMSR_LSTATUS) | 
 | 				netif_carrier_on(dev); | 
 | 			else | 
 | 				netif_carrier_off(dev); | 
 |  | 
 | 		} | 
 | 	} | 
 | 	rp->mii_if.phy_id = phy_id; | 
 | 	if (avoid_D3) | 
 | 		netif_info(rp, probe, dev, "No D3 power state at shutdown\n"); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_out_unmap: | 
 | 	pci_iounmap(pdev, ioaddr); | 
 | err_out_free_res: | 
 | 	pci_release_regions(pdev); | 
 | err_out_free_netdev: | 
 | 	free_netdev(dev); | 
 | err_out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int alloc_ring(struct net_device* dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void *ring; | 
 | 	dma_addr_t ring_dma; | 
 |  | 
 | 	ring = pci_alloc_consistent(rp->pdev, | 
 | 				    RX_RING_SIZE * sizeof(struct rx_desc) + | 
 | 				    TX_RING_SIZE * sizeof(struct tx_desc), | 
 | 				    &ring_dma); | 
 | 	if (!ring) { | 
 | 		netdev_err(dev, "Could not allocate DMA memory\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	if (rp->quirks & rqRhineI) { | 
 | 		rp->tx_bufs = pci_alloc_consistent(rp->pdev, | 
 | 						   PKT_BUF_SZ * TX_RING_SIZE, | 
 | 						   &rp->tx_bufs_dma); | 
 | 		if (rp->tx_bufs == NULL) { | 
 | 			pci_free_consistent(rp->pdev, | 
 | 				    RX_RING_SIZE * sizeof(struct rx_desc) + | 
 | 				    TX_RING_SIZE * sizeof(struct tx_desc), | 
 | 				    ring, ring_dma); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	rp->rx_ring = ring; | 
 | 	rp->tx_ring = ring + RX_RING_SIZE * sizeof(struct rx_desc); | 
 | 	rp->rx_ring_dma = ring_dma; | 
 | 	rp->tx_ring_dma = ring_dma + RX_RING_SIZE * sizeof(struct rx_desc); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void free_ring(struct net_device* dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	pci_free_consistent(rp->pdev, | 
 | 			    RX_RING_SIZE * sizeof(struct rx_desc) + | 
 | 			    TX_RING_SIZE * sizeof(struct tx_desc), | 
 | 			    rp->rx_ring, rp->rx_ring_dma); | 
 | 	rp->tx_ring = NULL; | 
 |  | 
 | 	if (rp->tx_bufs) | 
 | 		pci_free_consistent(rp->pdev, PKT_BUF_SZ * TX_RING_SIZE, | 
 | 				    rp->tx_bufs, rp->tx_bufs_dma); | 
 |  | 
 | 	rp->tx_bufs = NULL; | 
 |  | 
 | } | 
 |  | 
 | static void alloc_rbufs(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	dma_addr_t next; | 
 | 	int i; | 
 |  | 
 | 	rp->dirty_rx = rp->cur_rx = 0; | 
 |  | 
 | 	rp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); | 
 | 	rp->rx_head_desc = &rp->rx_ring[0]; | 
 | 	next = rp->rx_ring_dma; | 
 |  | 
 | 	/* Init the ring entries */ | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 		rp->rx_ring[i].rx_status = 0; | 
 | 		rp->rx_ring[i].desc_length = cpu_to_le32(rp->rx_buf_sz); | 
 | 		next += sizeof(struct rx_desc); | 
 | 		rp->rx_ring[i].next_desc = cpu_to_le32(next); | 
 | 		rp->rx_skbuff[i] = NULL; | 
 | 	} | 
 | 	/* Mark the last entry as wrapping the ring. */ | 
 | 	rp->rx_ring[i-1].next_desc = cpu_to_le32(rp->rx_ring_dma); | 
 |  | 
 | 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */ | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 		struct sk_buff *skb = netdev_alloc_skb(dev, rp->rx_buf_sz); | 
 | 		rp->rx_skbuff[i] = skb; | 
 | 		if (skb == NULL) | 
 | 			break; | 
 |  | 
 | 		rp->rx_skbuff_dma[i] = | 
 | 			pci_map_single(rp->pdev, skb->data, rp->rx_buf_sz, | 
 | 				       PCI_DMA_FROMDEVICE); | 
 | 		if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[i])) { | 
 | 			rp->rx_skbuff_dma[i] = 0; | 
 | 			dev_kfree_skb(skb); | 
 | 			break; | 
 | 		} | 
 | 		rp->rx_ring[i].addr = cpu_to_le32(rp->rx_skbuff_dma[i]); | 
 | 		rp->rx_ring[i].rx_status = cpu_to_le32(DescOwn); | 
 | 	} | 
 | 	rp->dirty_rx = (unsigned int)(i - RX_RING_SIZE); | 
 | } | 
 |  | 
 | static void free_rbufs(struct net_device* dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	int i; | 
 |  | 
 | 	/* Free all the skbuffs in the Rx queue. */ | 
 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 		rp->rx_ring[i].rx_status = 0; | 
 | 		rp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ | 
 | 		if (rp->rx_skbuff[i]) { | 
 | 			pci_unmap_single(rp->pdev, | 
 | 					 rp->rx_skbuff_dma[i], | 
 | 					 rp->rx_buf_sz, PCI_DMA_FROMDEVICE); | 
 | 			dev_kfree_skb(rp->rx_skbuff[i]); | 
 | 		} | 
 | 		rp->rx_skbuff[i] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void alloc_tbufs(struct net_device* dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	dma_addr_t next; | 
 | 	int i; | 
 |  | 
 | 	rp->dirty_tx = rp->cur_tx = 0; | 
 | 	next = rp->tx_ring_dma; | 
 | 	for (i = 0; i < TX_RING_SIZE; i++) { | 
 | 		rp->tx_skbuff[i] = NULL; | 
 | 		rp->tx_ring[i].tx_status = 0; | 
 | 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); | 
 | 		next += sizeof(struct tx_desc); | 
 | 		rp->tx_ring[i].next_desc = cpu_to_le32(next); | 
 | 		if (rp->quirks & rqRhineI) | 
 | 			rp->tx_buf[i] = &rp->tx_bufs[i * PKT_BUF_SZ]; | 
 | 	} | 
 | 	rp->tx_ring[i-1].next_desc = cpu_to_le32(rp->tx_ring_dma); | 
 |  | 
 | } | 
 |  | 
 | static void free_tbufs(struct net_device* dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < TX_RING_SIZE; i++) { | 
 | 		rp->tx_ring[i].tx_status = 0; | 
 | 		rp->tx_ring[i].desc_length = cpu_to_le32(TXDESC); | 
 | 		rp->tx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */ | 
 | 		if (rp->tx_skbuff[i]) { | 
 | 			if (rp->tx_skbuff_dma[i]) { | 
 | 				pci_unmap_single(rp->pdev, | 
 | 						 rp->tx_skbuff_dma[i], | 
 | 						 rp->tx_skbuff[i]->len, | 
 | 						 PCI_DMA_TODEVICE); | 
 | 			} | 
 | 			dev_kfree_skb(rp->tx_skbuff[i]); | 
 | 		} | 
 | 		rp->tx_skbuff[i] = NULL; | 
 | 		rp->tx_buf[i] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void rhine_check_media(struct net_device *dev, unsigned int init_media) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	mii_check_media(&rp->mii_if, netif_msg_link(rp), init_media); | 
 |  | 
 | 	if (rp->mii_if.full_duplex) | 
 | 	    iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1FDuplex, | 
 | 		   ioaddr + ChipCmd1); | 
 | 	else | 
 | 	    iowrite8(ioread8(ioaddr + ChipCmd1) & ~Cmd1FDuplex, | 
 | 		   ioaddr + ChipCmd1); | 
 |  | 
 | 	netif_info(rp, link, dev, "force_media %d, carrier %d\n", | 
 | 		   rp->mii_if.force_media, netif_carrier_ok(dev)); | 
 | } | 
 |  | 
 | /* Called after status of force_media possibly changed */ | 
 | static void rhine_set_carrier(struct mii_if_info *mii) | 
 | { | 
 | 	struct net_device *dev = mii->dev; | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	if (mii->force_media) { | 
 | 		/* autoneg is off: Link is always assumed to be up */ | 
 | 		if (!netif_carrier_ok(dev)) | 
 | 			netif_carrier_on(dev); | 
 | 	} else	/* Let MMI library update carrier status */ | 
 | 		rhine_check_media(dev, 0); | 
 |  | 
 | 	netif_info(rp, link, dev, "force_media %d, carrier %d\n", | 
 | 		   mii->force_media, netif_carrier_ok(dev)); | 
 | } | 
 |  | 
 | /** | 
 |  * rhine_set_cam - set CAM multicast filters | 
 |  * @ioaddr: register block of this Rhine | 
 |  * @idx: multicast CAM index [0..MCAM_SIZE-1] | 
 |  * @addr: multicast address (6 bytes) | 
 |  * | 
 |  * Load addresses into multicast filters. | 
 |  */ | 
 | static void rhine_set_cam(void __iomem *ioaddr, int idx, u8 *addr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	iowrite8(CAMC_CAMEN, ioaddr + CamCon); | 
 | 	wmb(); | 
 |  | 
 | 	/* Paranoid -- idx out of range should never happen */ | 
 | 	idx &= (MCAM_SIZE - 1); | 
 |  | 
 | 	iowrite8((u8) idx, ioaddr + CamAddr); | 
 |  | 
 | 	for (i = 0; i < 6; i++, addr++) | 
 | 		iowrite8(*addr, ioaddr + MulticastFilter0 + i); | 
 | 	udelay(10); | 
 | 	wmb(); | 
 |  | 
 | 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); | 
 | 	udelay(10); | 
 |  | 
 | 	iowrite8(0, ioaddr + CamCon); | 
 | } | 
 |  | 
 | /** | 
 |  * rhine_set_vlan_cam - set CAM VLAN filters | 
 |  * @ioaddr: register block of this Rhine | 
 |  * @idx: VLAN CAM index [0..VCAM_SIZE-1] | 
 |  * @addr: VLAN ID (2 bytes) | 
 |  * | 
 |  * Load addresses into VLAN filters. | 
 |  */ | 
 | static void rhine_set_vlan_cam(void __iomem *ioaddr, int idx, u8 *addr) | 
 | { | 
 | 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); | 
 | 	wmb(); | 
 |  | 
 | 	/* Paranoid -- idx out of range should never happen */ | 
 | 	idx &= (VCAM_SIZE - 1); | 
 |  | 
 | 	iowrite8((u8) idx, ioaddr + CamAddr); | 
 |  | 
 | 	iowrite16(*((u16 *) addr), ioaddr + MulticastFilter0 + 6); | 
 | 	udelay(10); | 
 | 	wmb(); | 
 |  | 
 | 	iowrite8(CAMC_CAMWR | CAMC_CAMEN, ioaddr + CamCon); | 
 | 	udelay(10); | 
 |  | 
 | 	iowrite8(0, ioaddr + CamCon); | 
 | } | 
 |  | 
 | /** | 
 |  * rhine_set_cam_mask - set multicast CAM mask | 
 |  * @ioaddr: register block of this Rhine | 
 |  * @mask: multicast CAM mask | 
 |  * | 
 |  * Mask sets multicast filters active/inactive. | 
 |  */ | 
 | static void rhine_set_cam_mask(void __iomem *ioaddr, u32 mask) | 
 | { | 
 | 	iowrite8(CAMC_CAMEN, ioaddr + CamCon); | 
 | 	wmb(); | 
 |  | 
 | 	/* write mask */ | 
 | 	iowrite32(mask, ioaddr + CamMask); | 
 |  | 
 | 	/* disable CAMEN */ | 
 | 	iowrite8(0, ioaddr + CamCon); | 
 | } | 
 |  | 
 | /** | 
 |  * rhine_set_vlan_cam_mask - set VLAN CAM mask | 
 |  * @ioaddr: register block of this Rhine | 
 |  * @mask: VLAN CAM mask | 
 |  * | 
 |  * Mask sets VLAN filters active/inactive. | 
 |  */ | 
 | static void rhine_set_vlan_cam_mask(void __iomem *ioaddr, u32 mask) | 
 | { | 
 | 	iowrite8(CAMC_CAMEN | CAMC_VCAMSL, ioaddr + CamCon); | 
 | 	wmb(); | 
 |  | 
 | 	/* write mask */ | 
 | 	iowrite32(mask, ioaddr + CamMask); | 
 |  | 
 | 	/* disable CAMEN */ | 
 | 	iowrite8(0, ioaddr + CamCon); | 
 | } | 
 |  | 
 | /** | 
 |  * rhine_init_cam_filter - initialize CAM filters | 
 |  * @dev: network device | 
 |  * | 
 |  * Initialize (disable) hardware VLAN and multicast support on this | 
 |  * Rhine. | 
 |  */ | 
 | static void rhine_init_cam_filter(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	/* Disable all CAMs */ | 
 | 	rhine_set_vlan_cam_mask(ioaddr, 0); | 
 | 	rhine_set_cam_mask(ioaddr, 0); | 
 |  | 
 | 	/* disable hardware VLAN support */ | 
 | 	BYTE_REG_BITS_ON(TCR_PQEN, ioaddr + TxConfig); | 
 | 	BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); | 
 | } | 
 |  | 
 | /** | 
 |  * rhine_update_vcam - update VLAN CAM filters | 
 |  * @rp: rhine_private data of this Rhine | 
 |  * | 
 |  * Update VLAN CAM filters to match configuration change. | 
 |  */ | 
 | static void rhine_update_vcam(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	u16 vid; | 
 | 	u32 vCAMmask = 0;	/* 32 vCAMs (6105M and better) */ | 
 | 	unsigned int i = 0; | 
 |  | 
 | 	for_each_set_bit(vid, rp->active_vlans, VLAN_N_VID) { | 
 | 		rhine_set_vlan_cam(ioaddr, i, (u8 *)&vid); | 
 | 		vCAMmask |= 1 << i; | 
 | 		if (++i >= VCAM_SIZE) | 
 | 			break; | 
 | 	} | 
 | 	rhine_set_vlan_cam_mask(ioaddr, vCAMmask); | 
 | } | 
 |  | 
 | static int rhine_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	spin_lock_bh(&rp->lock); | 
 | 	set_bit(vid, rp->active_vlans); | 
 | 	rhine_update_vcam(dev); | 
 | 	spin_unlock_bh(&rp->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rhine_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	spin_lock_bh(&rp->lock); | 
 | 	clear_bit(vid, rp->active_vlans); | 
 | 	rhine_update_vcam(dev); | 
 | 	spin_unlock_bh(&rp->lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void init_registers(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < 6; i++) | 
 | 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); | 
 |  | 
 | 	/* Initialize other registers. */ | 
 | 	iowrite16(0x0006, ioaddr + PCIBusConfig);	/* Tune configuration??? */ | 
 | 	/* Configure initial FIFO thresholds. */ | 
 | 	iowrite8(0x20, ioaddr + TxConfig); | 
 | 	rp->tx_thresh = 0x20; | 
 | 	rp->rx_thresh = 0x60;		/* Written in rhine_set_rx_mode(). */ | 
 |  | 
 | 	iowrite32(rp->rx_ring_dma, ioaddr + RxRingPtr); | 
 | 	iowrite32(rp->tx_ring_dma, ioaddr + TxRingPtr); | 
 |  | 
 | 	rhine_set_rx_mode(dev); | 
 |  | 
 | 	if (rp->pdev->revision >= VT6105M) | 
 | 		rhine_init_cam_filter(dev); | 
 |  | 
 | 	napi_enable(&rp->napi); | 
 |  | 
 | 	iowrite16(RHINE_EVENT & 0xffff, ioaddr + IntrEnable); | 
 |  | 
 | 	iowrite16(CmdStart | CmdTxOn | CmdRxOn | (Cmd1NoTxPoll << 8), | 
 | 	       ioaddr + ChipCmd); | 
 | 	rhine_check_media(dev, 1); | 
 | } | 
 |  | 
 | /* Enable MII link status auto-polling (required for IntrLinkChange) */ | 
 | static void rhine_enable_linkmon(struct rhine_private *rp) | 
 | { | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	iowrite8(0, ioaddr + MIICmd); | 
 | 	iowrite8(MII_BMSR, ioaddr + MIIRegAddr); | 
 | 	iowrite8(0x80, ioaddr + MIICmd); | 
 |  | 
 | 	rhine_wait_bit_high(rp, MIIRegAddr, 0x20); | 
 |  | 
 | 	iowrite8(MII_BMSR | 0x40, ioaddr + MIIRegAddr); | 
 | } | 
 |  | 
 | /* Disable MII link status auto-polling (required for MDIO access) */ | 
 | static void rhine_disable_linkmon(struct rhine_private *rp) | 
 | { | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	iowrite8(0, ioaddr + MIICmd); | 
 |  | 
 | 	if (rp->quirks & rqRhineI) { | 
 | 		iowrite8(0x01, ioaddr + MIIRegAddr);	// MII_BMSR | 
 |  | 
 | 		/* Can be called from ISR. Evil. */ | 
 | 		mdelay(1); | 
 |  | 
 | 		/* 0x80 must be set immediately before turning it off */ | 
 | 		iowrite8(0x80, ioaddr + MIICmd); | 
 |  | 
 | 		rhine_wait_bit_high(rp, MIIRegAddr, 0x20); | 
 |  | 
 | 		/* Heh. Now clear 0x80 again. */ | 
 | 		iowrite8(0, ioaddr + MIICmd); | 
 | 	} | 
 | 	else | 
 | 		rhine_wait_bit_high(rp, MIIRegAddr, 0x80); | 
 | } | 
 |  | 
 | /* Read and write over the MII Management Data I/O (MDIO) interface. */ | 
 |  | 
 | static int mdio_read(struct net_device *dev, int phy_id, int regnum) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	int result; | 
 |  | 
 | 	rhine_disable_linkmon(rp); | 
 |  | 
 | 	/* rhine_disable_linkmon already cleared MIICmd */ | 
 | 	iowrite8(phy_id, ioaddr + MIIPhyAddr); | 
 | 	iowrite8(regnum, ioaddr + MIIRegAddr); | 
 | 	iowrite8(0x40, ioaddr + MIICmd);		/* Trigger read */ | 
 | 	rhine_wait_bit_low(rp, MIICmd, 0x40); | 
 | 	result = ioread16(ioaddr + MIIData); | 
 |  | 
 | 	rhine_enable_linkmon(rp); | 
 | 	return result; | 
 | } | 
 |  | 
 | static void mdio_write(struct net_device *dev, int phy_id, int regnum, int value) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	rhine_disable_linkmon(rp); | 
 |  | 
 | 	/* rhine_disable_linkmon already cleared MIICmd */ | 
 | 	iowrite8(phy_id, ioaddr + MIIPhyAddr); | 
 | 	iowrite8(regnum, ioaddr + MIIRegAddr); | 
 | 	iowrite16(value, ioaddr + MIIData); | 
 | 	iowrite8(0x20, ioaddr + MIICmd);		/* Trigger write */ | 
 | 	rhine_wait_bit_low(rp, MIICmd, 0x20); | 
 |  | 
 | 	rhine_enable_linkmon(rp); | 
 | } | 
 |  | 
 | static void rhine_task_disable(struct rhine_private *rp) | 
 | { | 
 | 	mutex_lock(&rp->task_lock); | 
 | 	rp->task_enable = false; | 
 | 	mutex_unlock(&rp->task_lock); | 
 |  | 
 | 	cancel_work_sync(&rp->slow_event_task); | 
 | 	cancel_work_sync(&rp->reset_task); | 
 | } | 
 |  | 
 | static void rhine_task_enable(struct rhine_private *rp) | 
 | { | 
 | 	mutex_lock(&rp->task_lock); | 
 | 	rp->task_enable = true; | 
 | 	mutex_unlock(&rp->task_lock); | 
 | } | 
 |  | 
 | static int rhine_open(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	int rc; | 
 |  | 
 | 	rc = request_irq(rp->pdev->irq, rhine_interrupt, IRQF_SHARED, dev->name, | 
 | 			dev); | 
 | 	if (rc) | 
 | 		return rc; | 
 |  | 
 | 	netif_dbg(rp, ifup, dev, "%s() irq %d\n", __func__, rp->pdev->irq); | 
 |  | 
 | 	rc = alloc_ring(dev); | 
 | 	if (rc) { | 
 | 		free_irq(rp->pdev->irq, dev); | 
 | 		return rc; | 
 | 	} | 
 | 	alloc_rbufs(dev); | 
 | 	alloc_tbufs(dev); | 
 | 	rhine_chip_reset(dev); | 
 | 	rhine_task_enable(rp); | 
 | 	init_registers(dev); | 
 |  | 
 | 	netif_dbg(rp, ifup, dev, "%s() Done - status %04x MII status: %04x\n", | 
 | 		  __func__, ioread16(ioaddr + ChipCmd), | 
 | 		  mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); | 
 |  | 
 | 	netif_start_queue(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void rhine_reset_task(struct work_struct *work) | 
 | { | 
 | 	struct rhine_private *rp = container_of(work, struct rhine_private, | 
 | 						reset_task); | 
 | 	struct net_device *dev = rp->dev; | 
 |  | 
 | 	mutex_lock(&rp->task_lock); | 
 |  | 
 | 	if (!rp->task_enable) | 
 | 		goto out_unlock; | 
 |  | 
 | 	napi_disable(&rp->napi); | 
 | 	spin_lock_bh(&rp->lock); | 
 |  | 
 | 	/* clear all descriptors */ | 
 | 	free_tbufs(dev); | 
 | 	free_rbufs(dev); | 
 | 	alloc_tbufs(dev); | 
 | 	alloc_rbufs(dev); | 
 |  | 
 | 	/* Reinitialize the hardware. */ | 
 | 	rhine_chip_reset(dev); | 
 | 	init_registers(dev); | 
 |  | 
 | 	spin_unlock_bh(&rp->lock); | 
 |  | 
 | 	dev->trans_start = jiffies; /* prevent tx timeout */ | 
 | 	dev->stats.tx_errors++; | 
 | 	netif_wake_queue(dev); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&rp->task_lock); | 
 | } | 
 |  | 
 | static void rhine_tx_timeout(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	netdev_warn(dev, "Transmit timed out, status %04x, PHY status %04x, resetting...\n", | 
 | 		    ioread16(ioaddr + IntrStatus), | 
 | 		    mdio_read(dev, rp->mii_if.phy_id, MII_BMSR)); | 
 |  | 
 | 	schedule_work(&rp->reset_task); | 
 | } | 
 |  | 
 | static netdev_tx_t rhine_start_tx(struct sk_buff *skb, | 
 | 				  struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	unsigned entry; | 
 |  | 
 | 	/* Caution: the write order is important here, set the field | 
 | 	   with the "ownership" bits last. */ | 
 |  | 
 | 	/* Calculate the next Tx descriptor entry. */ | 
 | 	entry = rp->cur_tx % TX_RING_SIZE; | 
 |  | 
 | 	if (skb_padto(skb, ETH_ZLEN)) | 
 | 		return NETDEV_TX_OK; | 
 |  | 
 | 	rp->tx_skbuff[entry] = skb; | 
 |  | 
 | 	if ((rp->quirks & rqRhineI) && | 
 | 	    (((unsigned long)skb->data & 3) || skb_shinfo(skb)->nr_frags != 0 || skb->ip_summed == CHECKSUM_PARTIAL)) { | 
 | 		/* Must use alignment buffer. */ | 
 | 		if (skb->len > PKT_BUF_SZ) { | 
 | 			/* packet too long, drop it */ | 
 | 			dev_kfree_skb(skb); | 
 | 			rp->tx_skbuff[entry] = NULL; | 
 | 			dev->stats.tx_dropped++; | 
 | 			return NETDEV_TX_OK; | 
 | 		} | 
 |  | 
 | 		/* Padding is not copied and so must be redone. */ | 
 | 		skb_copy_and_csum_dev(skb, rp->tx_buf[entry]); | 
 | 		if (skb->len < ETH_ZLEN) | 
 | 			memset(rp->tx_buf[entry] + skb->len, 0, | 
 | 			       ETH_ZLEN - skb->len); | 
 | 		rp->tx_skbuff_dma[entry] = 0; | 
 | 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_bufs_dma + | 
 | 						      (rp->tx_buf[entry] - | 
 | 						       rp->tx_bufs)); | 
 | 	} else { | 
 | 		rp->tx_skbuff_dma[entry] = | 
 | 			pci_map_single(rp->pdev, skb->data, skb->len, | 
 | 				       PCI_DMA_TODEVICE); | 
 | 		if (dma_mapping_error(&rp->pdev->dev, rp->tx_skbuff_dma[entry])) { | 
 | 			dev_kfree_skb(skb); | 
 | 			rp->tx_skbuff_dma[entry] = 0; | 
 | 			dev->stats.tx_dropped++; | 
 | 			return NETDEV_TX_OK; | 
 | 		} | 
 | 		rp->tx_ring[entry].addr = cpu_to_le32(rp->tx_skbuff_dma[entry]); | 
 | 	} | 
 |  | 
 | 	rp->tx_ring[entry].desc_length = | 
 | 		cpu_to_le32(TXDESC | (skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN)); | 
 |  | 
 | 	if (unlikely(vlan_tx_tag_present(skb))) { | 
 | 		rp->tx_ring[entry].tx_status = cpu_to_le32((vlan_tx_tag_get(skb)) << 16); | 
 | 		/* request tagging */ | 
 | 		rp->tx_ring[entry].desc_length |= cpu_to_le32(0x020000); | 
 | 	} | 
 | 	else | 
 | 		rp->tx_ring[entry].tx_status = 0; | 
 |  | 
 | 	/* lock eth irq */ | 
 | 	wmb(); | 
 | 	rp->tx_ring[entry].tx_status |= cpu_to_le32(DescOwn); | 
 | 	wmb(); | 
 |  | 
 | 	rp->cur_tx++; | 
 |  | 
 | 	/* Non-x86 Todo: explicitly flush cache lines here. */ | 
 |  | 
 | 	if (vlan_tx_tag_present(skb)) | 
 | 		/* Tx queues are bits 7-0 (first Tx queue: bit 7) */ | 
 | 		BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); | 
 |  | 
 | 	/* Wake the potentially-idle transmit channel */ | 
 | 	iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, | 
 | 	       ioaddr + ChipCmd1); | 
 | 	IOSYNC; | 
 |  | 
 | 	if (rp->cur_tx == rp->dirty_tx + TX_QUEUE_LEN) | 
 | 		netif_stop_queue(dev); | 
 |  | 
 | 	netif_dbg(rp, tx_queued, dev, "Transmit frame #%d queued in slot %d\n", | 
 | 		  rp->cur_tx - 1, entry); | 
 |  | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | static void rhine_irq_disable(struct rhine_private *rp) | 
 | { | 
 | 	iowrite16(0x0000, rp->base + IntrEnable); | 
 | 	mmiowb(); | 
 | } | 
 |  | 
 | /* The interrupt handler does all of the Rx thread work and cleans up | 
 |    after the Tx thread. */ | 
 | static irqreturn_t rhine_interrupt(int irq, void *dev_instance) | 
 | { | 
 | 	struct net_device *dev = dev_instance; | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	u32 status; | 
 | 	int handled = 0; | 
 |  | 
 | 	status = rhine_get_events(rp); | 
 |  | 
 | 	netif_dbg(rp, intr, dev, "Interrupt, status %08x\n", status); | 
 |  | 
 | 	if (status & RHINE_EVENT) { | 
 | 		handled = 1; | 
 |  | 
 | 		rhine_irq_disable(rp); | 
 | 		napi_schedule(&rp->napi); | 
 | 	} | 
 |  | 
 | 	if (status & ~(IntrLinkChange | IntrStatsMax | RHINE_EVENT_NAPI)) { | 
 | 		netif_err(rp, intr, dev, "Something Wicked happened! %08x\n", | 
 | 			  status); | 
 | 	} | 
 |  | 
 | 	return IRQ_RETVAL(handled); | 
 | } | 
 |  | 
 | /* This routine is logically part of the interrupt handler, but isolated | 
 |    for clarity. */ | 
 | static void rhine_tx(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	int txstatus = 0, entry = rp->dirty_tx % TX_RING_SIZE; | 
 |  | 
 | 	/* find and cleanup dirty tx descriptors */ | 
 | 	while (rp->dirty_tx != rp->cur_tx) { | 
 | 		txstatus = le32_to_cpu(rp->tx_ring[entry].tx_status); | 
 | 		netif_dbg(rp, tx_done, dev, "Tx scavenge %d status %08x\n", | 
 | 			  entry, txstatus); | 
 | 		if (txstatus & DescOwn) | 
 | 			break; | 
 | 		if (txstatus & 0x8000) { | 
 | 			netif_dbg(rp, tx_done, dev, | 
 | 				  "Transmit error, Tx status %08x\n", txstatus); | 
 | 			dev->stats.tx_errors++; | 
 | 			if (txstatus & 0x0400) | 
 | 				dev->stats.tx_carrier_errors++; | 
 | 			if (txstatus & 0x0200) | 
 | 				dev->stats.tx_window_errors++; | 
 | 			if (txstatus & 0x0100) | 
 | 				dev->stats.tx_aborted_errors++; | 
 | 			if (txstatus & 0x0080) | 
 | 				dev->stats.tx_heartbeat_errors++; | 
 | 			if (((rp->quirks & rqRhineI) && txstatus & 0x0002) || | 
 | 			    (txstatus & 0x0800) || (txstatus & 0x1000)) { | 
 | 				dev->stats.tx_fifo_errors++; | 
 | 				rp->tx_ring[entry].tx_status = cpu_to_le32(DescOwn); | 
 | 				break; /* Keep the skb - we try again */ | 
 | 			} | 
 | 			/* Transmitter restarted in 'abnormal' handler. */ | 
 | 		} else { | 
 | 			if (rp->quirks & rqRhineI) | 
 | 				dev->stats.collisions += (txstatus >> 3) & 0x0F; | 
 | 			else | 
 | 				dev->stats.collisions += txstatus & 0x0F; | 
 | 			netif_dbg(rp, tx_done, dev, "collisions: %1.1x:%1.1x\n", | 
 | 				  (txstatus >> 3) & 0xF, txstatus & 0xF); | 
 |  | 
 | 			u64_stats_update_begin(&rp->tx_stats.syncp); | 
 | 			rp->tx_stats.bytes += rp->tx_skbuff[entry]->len; | 
 | 			rp->tx_stats.packets++; | 
 | 			u64_stats_update_end(&rp->tx_stats.syncp); | 
 | 		} | 
 | 		/* Free the original skb. */ | 
 | 		if (rp->tx_skbuff_dma[entry]) { | 
 | 			pci_unmap_single(rp->pdev, | 
 | 					 rp->tx_skbuff_dma[entry], | 
 | 					 rp->tx_skbuff[entry]->len, | 
 | 					 PCI_DMA_TODEVICE); | 
 | 		} | 
 | 		dev_kfree_skb(rp->tx_skbuff[entry]); | 
 | 		rp->tx_skbuff[entry] = NULL; | 
 | 		entry = (++rp->dirty_tx) % TX_RING_SIZE; | 
 | 	} | 
 | 	if ((rp->cur_tx - rp->dirty_tx) < TX_QUEUE_LEN - 4) | 
 | 		netif_wake_queue(dev); | 
 | } | 
 |  | 
 | /** | 
 |  * rhine_get_vlan_tci - extract TCI from Rx data buffer | 
 |  * @skb: pointer to sk_buff | 
 |  * @data_size: used data area of the buffer including CRC | 
 |  * | 
 |  * If hardware VLAN tag extraction is enabled and the chip indicates a 802.1Q | 
 |  * packet, the extracted 802.1Q header (2 bytes TPID + 2 bytes TCI) is 4-byte | 
 |  * aligned following the CRC. | 
 |  */ | 
 | static inline u16 rhine_get_vlan_tci(struct sk_buff *skb, int data_size) | 
 | { | 
 | 	u8 *trailer = (u8 *)skb->data + ((data_size + 3) & ~3) + 2; | 
 | 	return be16_to_cpup((__be16 *)trailer); | 
 | } | 
 |  | 
 | /* Process up to limit frames from receive ring */ | 
 | static int rhine_rx(struct net_device *dev, int limit) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	int count; | 
 | 	int entry = rp->cur_rx % RX_RING_SIZE; | 
 |  | 
 | 	netif_dbg(rp, rx_status, dev, "%s(), entry %d status %08x\n", __func__, | 
 | 		  entry, le32_to_cpu(rp->rx_head_desc->rx_status)); | 
 |  | 
 | 	/* If EOP is set on the next entry, it's a new packet. Send it up. */ | 
 | 	for (count = 0; count < limit; ++count) { | 
 | 		struct rx_desc *desc = rp->rx_head_desc; | 
 | 		u32 desc_status = le32_to_cpu(desc->rx_status); | 
 | 		u32 desc_length = le32_to_cpu(desc->desc_length); | 
 | 		int data_size = desc_status >> 16; | 
 |  | 
 | 		if (desc_status & DescOwn) | 
 | 			break; | 
 |  | 
 | 		netif_dbg(rp, rx_status, dev, "%s() status %08x\n", __func__, | 
 | 			  desc_status); | 
 |  | 
 | 		if ((desc_status & (RxWholePkt | RxErr)) != RxWholePkt) { | 
 | 			if ((desc_status & RxWholePkt) != RxWholePkt) { | 
 | 				netdev_warn(dev, | 
 | 	"Oversized Ethernet frame spanned multiple buffers, " | 
 | 	"entry %#x length %d status %08x!\n", | 
 | 					    entry, data_size, | 
 | 					    desc_status); | 
 | 				netdev_warn(dev, | 
 | 					    "Oversized Ethernet frame %p vs %p\n", | 
 | 					    rp->rx_head_desc, | 
 | 					    &rp->rx_ring[entry]); | 
 | 				dev->stats.rx_length_errors++; | 
 | 			} else if (desc_status & RxErr) { | 
 | 				/* There was a error. */ | 
 | 				netif_dbg(rp, rx_err, dev, | 
 | 					  "%s() Rx error %08x\n", __func__, | 
 | 					  desc_status); | 
 | 				dev->stats.rx_errors++; | 
 | 				if (desc_status & 0x0030) | 
 | 					dev->stats.rx_length_errors++; | 
 | 				if (desc_status & 0x0048) | 
 | 					dev->stats.rx_fifo_errors++; | 
 | 				if (desc_status & 0x0004) | 
 | 					dev->stats.rx_frame_errors++; | 
 | 				if (desc_status & 0x0002) { | 
 | 					/* this can also be updated outside the interrupt handler */ | 
 | 					spin_lock(&rp->lock); | 
 | 					dev->stats.rx_crc_errors++; | 
 | 					spin_unlock(&rp->lock); | 
 | 				} | 
 | 			} | 
 | 		} else { | 
 | 			struct sk_buff *skb = NULL; | 
 | 			/* Length should omit the CRC */ | 
 | 			int pkt_len = data_size - 4; | 
 | 			u16 vlan_tci = 0; | 
 |  | 
 | 			/* Check if the packet is long enough to accept without | 
 | 			   copying to a minimally-sized skbuff. */ | 
 | 			if (pkt_len < rx_copybreak) | 
 | 				skb = netdev_alloc_skb_ip_align(dev, pkt_len); | 
 | 			if (skb) { | 
 | 				pci_dma_sync_single_for_cpu(rp->pdev, | 
 | 							    rp->rx_skbuff_dma[entry], | 
 | 							    rp->rx_buf_sz, | 
 | 							    PCI_DMA_FROMDEVICE); | 
 |  | 
 | 				skb_copy_to_linear_data(skb, | 
 | 						 rp->rx_skbuff[entry]->data, | 
 | 						 pkt_len); | 
 | 				skb_put(skb, pkt_len); | 
 | 				pci_dma_sync_single_for_device(rp->pdev, | 
 | 							       rp->rx_skbuff_dma[entry], | 
 | 							       rp->rx_buf_sz, | 
 | 							       PCI_DMA_FROMDEVICE); | 
 | 			} else { | 
 | 				skb = rp->rx_skbuff[entry]; | 
 | 				if (skb == NULL) { | 
 | 					netdev_err(dev, "Inconsistent Rx descriptor chain\n"); | 
 | 					break; | 
 | 				} | 
 | 				rp->rx_skbuff[entry] = NULL; | 
 | 				skb_put(skb, pkt_len); | 
 | 				pci_unmap_single(rp->pdev, | 
 | 						 rp->rx_skbuff_dma[entry], | 
 | 						 rp->rx_buf_sz, | 
 | 						 PCI_DMA_FROMDEVICE); | 
 | 			} | 
 |  | 
 | 			if (unlikely(desc_length & DescTag)) | 
 | 				vlan_tci = rhine_get_vlan_tci(skb, data_size); | 
 |  | 
 | 			skb->protocol = eth_type_trans(skb, dev); | 
 |  | 
 | 			if (unlikely(desc_length & DescTag)) | 
 | 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); | 
 | 			netif_receive_skb(skb); | 
 |  | 
 | 			u64_stats_update_begin(&rp->rx_stats.syncp); | 
 | 			rp->rx_stats.bytes += pkt_len; | 
 | 			rp->rx_stats.packets++; | 
 | 			u64_stats_update_end(&rp->rx_stats.syncp); | 
 | 		} | 
 | 		entry = (++rp->cur_rx) % RX_RING_SIZE; | 
 | 		rp->rx_head_desc = &rp->rx_ring[entry]; | 
 | 	} | 
 |  | 
 | 	/* Refill the Rx ring buffers. */ | 
 | 	for (; rp->cur_rx - rp->dirty_rx > 0; rp->dirty_rx++) { | 
 | 		struct sk_buff *skb; | 
 | 		entry = rp->dirty_rx % RX_RING_SIZE; | 
 | 		if (rp->rx_skbuff[entry] == NULL) { | 
 | 			skb = netdev_alloc_skb(dev, rp->rx_buf_sz); | 
 | 			rp->rx_skbuff[entry] = skb; | 
 | 			if (skb == NULL) | 
 | 				break;	/* Better luck next round. */ | 
 | 			rp->rx_skbuff_dma[entry] = | 
 | 				pci_map_single(rp->pdev, skb->data, | 
 | 					       rp->rx_buf_sz, | 
 | 					       PCI_DMA_FROMDEVICE); | 
 | 			if (dma_mapping_error(&rp->pdev->dev, rp->rx_skbuff_dma[entry])) { | 
 | 				dev_kfree_skb(skb); | 
 | 				rp->rx_skbuff_dma[entry] = 0; | 
 | 				break; | 
 | 			} | 
 | 			rp->rx_ring[entry].addr = cpu_to_le32(rp->rx_skbuff_dma[entry]); | 
 | 		} | 
 | 		rp->rx_ring[entry].rx_status = cpu_to_le32(DescOwn); | 
 | 	} | 
 |  | 
 | 	return count; | 
 | } | 
 |  | 
 | static void rhine_restart_tx(struct net_device *dev) { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	int entry = rp->dirty_tx % TX_RING_SIZE; | 
 | 	u32 intr_status; | 
 |  | 
 | 	/* | 
 | 	 * If new errors occurred, we need to sort them out before doing Tx. | 
 | 	 * In that case the ISR will be back here RSN anyway. | 
 | 	 */ | 
 | 	intr_status = rhine_get_events(rp); | 
 |  | 
 | 	if ((intr_status & IntrTxErrSummary) == 0) { | 
 |  | 
 | 		/* We know better than the chip where it should continue. */ | 
 | 		iowrite32(rp->tx_ring_dma + entry * sizeof(struct tx_desc), | 
 | 		       ioaddr + TxRingPtr); | 
 |  | 
 | 		iowrite8(ioread8(ioaddr + ChipCmd) | CmdTxOn, | 
 | 		       ioaddr + ChipCmd); | 
 |  | 
 | 		if (rp->tx_ring[entry].desc_length & cpu_to_le32(0x020000)) | 
 | 			/* Tx queues are bits 7-0 (first Tx queue: bit 7) */ | 
 | 			BYTE_REG_BITS_ON(1 << 7, ioaddr + TQWake); | 
 |  | 
 | 		iowrite8(ioread8(ioaddr + ChipCmd1) | Cmd1TxDemand, | 
 | 		       ioaddr + ChipCmd1); | 
 | 		IOSYNC; | 
 | 	} | 
 | 	else { | 
 | 		/* This should never happen */ | 
 | 		netif_warn(rp, tx_err, dev, "another error occurred %08x\n", | 
 | 			   intr_status); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void rhine_slow_event_task(struct work_struct *work) | 
 | { | 
 | 	struct rhine_private *rp = | 
 | 		container_of(work, struct rhine_private, slow_event_task); | 
 | 	struct net_device *dev = rp->dev; | 
 | 	u32 intr_status; | 
 |  | 
 | 	mutex_lock(&rp->task_lock); | 
 |  | 
 | 	if (!rp->task_enable) | 
 | 		goto out_unlock; | 
 |  | 
 | 	intr_status = rhine_get_events(rp); | 
 | 	rhine_ack_events(rp, intr_status & RHINE_EVENT_SLOW); | 
 |  | 
 | 	if (intr_status & IntrLinkChange) | 
 | 		rhine_check_media(dev, 0); | 
 |  | 
 | 	if (intr_status & IntrPCIErr) | 
 | 		netif_warn(rp, hw, dev, "PCI error\n"); | 
 |  | 
 | 	iowrite16(RHINE_EVENT & 0xffff, rp->base + IntrEnable); | 
 |  | 
 | out_unlock: | 
 | 	mutex_unlock(&rp->task_lock); | 
 | } | 
 |  | 
 | static struct rtnl_link_stats64 * | 
 | rhine_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	unsigned int start; | 
 |  | 
 | 	spin_lock_bh(&rp->lock); | 
 | 	rhine_update_rx_crc_and_missed_errord(rp); | 
 | 	spin_unlock_bh(&rp->lock); | 
 |  | 
 | 	netdev_stats_to_stats64(stats, &dev->stats); | 
 |  | 
 | 	do { | 
 | 		start = u64_stats_fetch_begin_bh(&rp->rx_stats.syncp); | 
 | 		stats->rx_packets = rp->rx_stats.packets; | 
 | 		stats->rx_bytes = rp->rx_stats.bytes; | 
 | 	} while (u64_stats_fetch_retry_bh(&rp->rx_stats.syncp, start)); | 
 |  | 
 | 	do { | 
 | 		start = u64_stats_fetch_begin_bh(&rp->tx_stats.syncp); | 
 | 		stats->tx_packets = rp->tx_stats.packets; | 
 | 		stats->tx_bytes = rp->tx_stats.bytes; | 
 | 	} while (u64_stats_fetch_retry_bh(&rp->tx_stats.syncp, start)); | 
 |  | 
 | 	return stats; | 
 | } | 
 |  | 
 | static void rhine_set_rx_mode(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 | 	u32 mc_filter[2];	/* Multicast hash filter */ | 
 | 	u8 rx_mode = 0x0C;	/* Note: 0x02=accept runt, 0x01=accept errs */ | 
 | 	struct netdev_hw_addr *ha; | 
 |  | 
 | 	if (dev->flags & IFF_PROMISC) {		/* Set promiscuous. */ | 
 | 		rx_mode = 0x1C; | 
 | 		iowrite32(0xffffffff, ioaddr + MulticastFilter0); | 
 | 		iowrite32(0xffffffff, ioaddr + MulticastFilter1); | 
 | 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) || | 
 | 		   (dev->flags & IFF_ALLMULTI)) { | 
 | 		/* Too many to match, or accept all multicasts. */ | 
 | 		iowrite32(0xffffffff, ioaddr + MulticastFilter0); | 
 | 		iowrite32(0xffffffff, ioaddr + MulticastFilter1); | 
 | 	} else if (rp->pdev->revision >= VT6105M) { | 
 | 		int i = 0; | 
 | 		u32 mCAMmask = 0;	/* 32 mCAMs (6105M and better) */ | 
 | 		netdev_for_each_mc_addr(ha, dev) { | 
 | 			if (i == MCAM_SIZE) | 
 | 				break; | 
 | 			rhine_set_cam(ioaddr, i, ha->addr); | 
 | 			mCAMmask |= 1 << i; | 
 | 			i++; | 
 | 		} | 
 | 		rhine_set_cam_mask(ioaddr, mCAMmask); | 
 | 	} else { | 
 | 		memset(mc_filter, 0, sizeof(mc_filter)); | 
 | 		netdev_for_each_mc_addr(ha, dev) { | 
 | 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26; | 
 |  | 
 | 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31); | 
 | 		} | 
 | 		iowrite32(mc_filter[0], ioaddr + MulticastFilter0); | 
 | 		iowrite32(mc_filter[1], ioaddr + MulticastFilter1); | 
 | 	} | 
 | 	/* enable/disable VLAN receive filtering */ | 
 | 	if (rp->pdev->revision >= VT6105M) { | 
 | 		if (dev->flags & IFF_PROMISC) | 
 | 			BYTE_REG_BITS_OFF(BCR1_VIDFR, ioaddr + PCIBusConfig1); | 
 | 		else | 
 | 			BYTE_REG_BITS_ON(BCR1_VIDFR, ioaddr + PCIBusConfig1); | 
 | 	} | 
 | 	BYTE_REG_BITS_ON(rx_mode, ioaddr + RxConfig); | 
 | } | 
 |  | 
 | static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); | 
 | 	strlcpy(info->version, DRV_VERSION, sizeof(info->version)); | 
 | 	strlcpy(info->bus_info, pci_name(rp->pdev), sizeof(info->bus_info)); | 
 | } | 
 |  | 
 | static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	int rc; | 
 |  | 
 | 	mutex_lock(&rp->task_lock); | 
 | 	rc = mii_ethtool_gset(&rp->mii_if, cmd); | 
 | 	mutex_unlock(&rp->task_lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	int rc; | 
 |  | 
 | 	mutex_lock(&rp->task_lock); | 
 | 	rc = mii_ethtool_sset(&rp->mii_if, cmd); | 
 | 	rhine_set_carrier(&rp->mii_if); | 
 | 	mutex_unlock(&rp->task_lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int netdev_nway_reset(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	return mii_nway_restart(&rp->mii_if); | 
 | } | 
 |  | 
 | static u32 netdev_get_link(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	return mii_link_ok(&rp->mii_if); | 
 | } | 
 |  | 
 | static u32 netdev_get_msglevel(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	return rp->msg_enable; | 
 | } | 
 |  | 
 | static void netdev_set_msglevel(struct net_device *dev, u32 value) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	rp->msg_enable = value; | 
 | } | 
 |  | 
 | static void rhine_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	if (!(rp->quirks & rqWOL)) | 
 | 		return; | 
 |  | 
 | 	spin_lock_irq(&rp->lock); | 
 | 	wol->supported = WAKE_PHY | WAKE_MAGIC | | 
 | 			 WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */ | 
 | 	wol->wolopts = rp->wolopts; | 
 | 	spin_unlock_irq(&rp->lock); | 
 | } | 
 |  | 
 | static int rhine_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	u32 support = WAKE_PHY | WAKE_MAGIC | | 
 | 		      WAKE_UCAST | WAKE_MCAST | WAKE_BCAST;	/* Untested */ | 
 |  | 
 | 	if (!(rp->quirks & rqWOL)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (wol->wolopts & ~support) | 
 | 		return -EINVAL; | 
 |  | 
 | 	spin_lock_irq(&rp->lock); | 
 | 	rp->wolopts = wol->wolopts; | 
 | 	spin_unlock_irq(&rp->lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct ethtool_ops netdev_ethtool_ops = { | 
 | 	.get_drvinfo		= netdev_get_drvinfo, | 
 | 	.get_settings		= netdev_get_settings, | 
 | 	.set_settings		= netdev_set_settings, | 
 | 	.nway_reset		= netdev_nway_reset, | 
 | 	.get_link		= netdev_get_link, | 
 | 	.get_msglevel		= netdev_get_msglevel, | 
 | 	.set_msglevel		= netdev_set_msglevel, | 
 | 	.get_wol		= rhine_get_wol, | 
 | 	.set_wol		= rhine_set_wol, | 
 | }; | 
 |  | 
 | static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	int rc; | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&rp->task_lock); | 
 | 	rc = generic_mii_ioctl(&rp->mii_if, if_mii(rq), cmd, NULL); | 
 | 	rhine_set_carrier(&rp->mii_if); | 
 | 	mutex_unlock(&rp->task_lock); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int rhine_close(struct net_device *dev) | 
 | { | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	rhine_task_disable(rp); | 
 | 	napi_disable(&rp->napi); | 
 | 	netif_stop_queue(dev); | 
 |  | 
 | 	netif_dbg(rp, ifdown, dev, "Shutting down ethercard, status was %04x\n", | 
 | 		  ioread16(ioaddr + ChipCmd)); | 
 |  | 
 | 	/* Switch to loopback mode to avoid hardware races. */ | 
 | 	iowrite8(rp->tx_thresh | 0x02, ioaddr + TxConfig); | 
 |  | 
 | 	rhine_irq_disable(rp); | 
 |  | 
 | 	/* Stop the chip's Tx and Rx processes. */ | 
 | 	iowrite16(CmdStop, ioaddr + ChipCmd); | 
 |  | 
 | 	free_irq(rp->pdev->irq, dev); | 
 | 	free_rbufs(dev); | 
 | 	free_tbufs(dev); | 
 | 	free_ring(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | static void rhine_remove_one(struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	unregister_netdev(dev); | 
 |  | 
 | 	pci_iounmap(pdev, rp->base); | 
 | 	pci_release_regions(pdev); | 
 |  | 
 | 	free_netdev(dev); | 
 | 	pci_disable_device(pdev); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 | } | 
 |  | 
 | static void rhine_shutdown (struct pci_dev *pdev) | 
 | { | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 | 	void __iomem *ioaddr = rp->base; | 
 |  | 
 | 	if (!(rp->quirks & rqWOL)) | 
 | 		return; /* Nothing to do for non-WOL adapters */ | 
 |  | 
 | 	rhine_power_init(dev); | 
 |  | 
 | 	/* Make sure we use pattern 0, 1 and not 4, 5 */ | 
 | 	if (rp->quirks & rq6patterns) | 
 | 		iowrite8(0x04, ioaddr + WOLcgClr); | 
 |  | 
 | 	spin_lock(&rp->lock); | 
 |  | 
 | 	if (rp->wolopts & WAKE_MAGIC) { | 
 | 		iowrite8(WOLmagic, ioaddr + WOLcrSet); | 
 | 		/* | 
 | 		 * Turn EEPROM-controlled wake-up back on -- some hardware may | 
 | 		 * not cooperate otherwise. | 
 | 		 */ | 
 | 		iowrite8(ioread8(ioaddr + ConfigA) | 0x03, ioaddr + ConfigA); | 
 | 	} | 
 |  | 
 | 	if (rp->wolopts & (WAKE_BCAST|WAKE_MCAST)) | 
 | 		iowrite8(WOLbmcast, ioaddr + WOLcgSet); | 
 |  | 
 | 	if (rp->wolopts & WAKE_PHY) | 
 | 		iowrite8(WOLlnkon | WOLlnkoff, ioaddr + WOLcrSet); | 
 |  | 
 | 	if (rp->wolopts & WAKE_UCAST) | 
 | 		iowrite8(WOLucast, ioaddr + WOLcrSet); | 
 |  | 
 | 	if (rp->wolopts) { | 
 | 		/* Enable legacy WOL (for old motherboards) */ | 
 | 		iowrite8(0x01, ioaddr + PwcfgSet); | 
 | 		iowrite8(ioread8(ioaddr + StickyHW) | 0x04, ioaddr + StickyHW); | 
 | 	} | 
 |  | 
 | 	spin_unlock(&rp->lock); | 
 |  | 
 | 	if (system_state == SYSTEM_POWER_OFF && !avoid_D3) { | 
 | 		iowrite8(ioread8(ioaddr + StickyHW) | 0x03, ioaddr + StickyHW); | 
 |  | 
 | 		pci_wake_from_d3(pdev, true); | 
 | 		pci_set_power_state(pdev, PCI_D3hot); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int rhine_suspend(struct device *device) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(device); | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return 0; | 
 |  | 
 | 	rhine_task_disable(rp); | 
 | 	rhine_irq_disable(rp); | 
 | 	napi_disable(&rp->napi); | 
 |  | 
 | 	netif_device_detach(dev); | 
 |  | 
 | 	rhine_shutdown(pdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rhine_resume(struct device *device) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(device); | 
 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 	struct rhine_private *rp = netdev_priv(dev); | 
 |  | 
 | 	if (!netif_running(dev)) | 
 | 		return 0; | 
 |  | 
 | #ifdef USE_MMIO | 
 | 	enable_mmio(rp->pioaddr, rp->quirks); | 
 | #endif | 
 | 	rhine_power_init(dev); | 
 | 	free_tbufs(dev); | 
 | 	free_rbufs(dev); | 
 | 	alloc_tbufs(dev); | 
 | 	alloc_rbufs(dev); | 
 | 	rhine_task_enable(rp); | 
 | 	spin_lock_bh(&rp->lock); | 
 | 	init_registers(dev); | 
 | 	spin_unlock_bh(&rp->lock); | 
 |  | 
 | 	netif_device_attach(dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(rhine_pm_ops, rhine_suspend, rhine_resume); | 
 | #define RHINE_PM_OPS	(&rhine_pm_ops) | 
 |  | 
 | #else | 
 |  | 
 | #define RHINE_PM_OPS	NULL | 
 |  | 
 | #endif /* !CONFIG_PM_SLEEP */ | 
 |  | 
 | static struct pci_driver rhine_driver = { | 
 | 	.name		= DRV_NAME, | 
 | 	.id_table	= rhine_pci_tbl, | 
 | 	.probe		= rhine_init_one, | 
 | 	.remove		= rhine_remove_one, | 
 | 	.shutdown	= rhine_shutdown, | 
 | 	.driver.pm	= RHINE_PM_OPS, | 
 | }; | 
 |  | 
 | static struct dmi_system_id rhine_dmi_table[] __initdata = { | 
 | 	{ | 
 | 		.ident = "EPIA-M", | 
 | 		.matches = { | 
 | 			DMI_MATCH(DMI_BIOS_VENDOR, "Award Software International, Inc."), | 
 | 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), | 
 | 		}, | 
 | 	}, | 
 | 	{ | 
 | 		.ident = "KV7", | 
 | 		.matches = { | 
 | 			DMI_MATCH(DMI_BIOS_VENDOR, "Phoenix Technologies, LTD"), | 
 | 			DMI_MATCH(DMI_BIOS_VERSION, "6.00 PG"), | 
 | 		}, | 
 | 	}, | 
 | 	{ NULL } | 
 | }; | 
 |  | 
 | static int __init rhine_init(void) | 
 | { | 
 | /* when a module, this is printed whether or not devices are found in probe */ | 
 | #ifdef MODULE | 
 | 	pr_info("%s\n", version); | 
 | #endif | 
 | 	if (dmi_check_system(rhine_dmi_table)) { | 
 | 		/* these BIOSes fail at PXE boot if chip is in D3 */ | 
 | 		avoid_D3 = true; | 
 | 		pr_warn("Broken BIOS detected, avoid_D3 enabled\n"); | 
 | 	} | 
 | 	else if (avoid_D3) | 
 | 		pr_info("avoid_D3 set\n"); | 
 |  | 
 | 	return pci_register_driver(&rhine_driver); | 
 | } | 
 |  | 
 |  | 
 | static void __exit rhine_cleanup(void) | 
 | { | 
 | 	pci_unregister_driver(&rhine_driver); | 
 | } | 
 |  | 
 |  | 
 | module_init(rhine_init); | 
 | module_exit(rhine_cleanup); |