| /* |
| * drivers/media/i2c/smiapp/smiapp-core.c |
| * |
| * Generic driver for SMIA/SMIA++ compliant camera modules |
| * |
| * Copyright (C) 2010--2012 Nokia Corporation |
| * Contact: Sakari Ailus <sakari.ailus@maxwell.research.nokia.com> |
| * |
| * Based on smiapp driver by Vimarsh Zutshi |
| * Based on jt8ev1.c by Vimarsh Zutshi |
| * Based on smia-sensor.c by Tuukka Toivonen <tuukkat76@gmail.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * version 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA |
| * 02110-1301 USA |
| * |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/delay.h> |
| #include <linux/device.h> |
| #include <linux/gpio.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/regulator/consumer.h> |
| #include <linux/v4l2-mediabus.h> |
| #include <media/v4l2-device.h> |
| |
| #include "smiapp.h" |
| |
| #define SMIAPP_ALIGN_DIM(dim, flags) \ |
| ((flags) & V4L2_SEL_FLAG_GE \ |
| ? ALIGN((dim), 2) \ |
| : (dim) & ~1) |
| |
| /* |
| * smiapp_module_idents - supported camera modules |
| */ |
| static const struct smiapp_module_ident smiapp_module_idents[] = { |
| SMIAPP_IDENT_L(0x01, 0x022b, -1, "vs6555"), |
| SMIAPP_IDENT_L(0x01, 0x022e, -1, "vw6558"), |
| SMIAPP_IDENT_L(0x07, 0x7698, -1, "ovm7698"), |
| SMIAPP_IDENT_L(0x0b, 0x4242, -1, "smiapp-003"), |
| SMIAPP_IDENT_L(0x0c, 0x208a, -1, "tcm8330md"), |
| SMIAPP_IDENT_LQ(0x0c, 0x2134, -1, "tcm8500md", &smiapp_tcm8500md_quirk), |
| SMIAPP_IDENT_L(0x0c, 0x213e, -1, "et8en2"), |
| SMIAPP_IDENT_L(0x0c, 0x2184, -1, "tcm8580md"), |
| SMIAPP_IDENT_LQ(0x0c, 0x560f, -1, "jt8ew9", &smiapp_jt8ew9_quirk), |
| SMIAPP_IDENT_LQ(0x10, 0x4141, -1, "jt8ev1", &smiapp_jt8ev1_quirk), |
| SMIAPP_IDENT_LQ(0x10, 0x4241, -1, "imx125es", &smiapp_imx125es_quirk), |
| }; |
| |
| /* |
| * |
| * Dynamic Capability Identification |
| * |
| */ |
| |
| static int smiapp_read_frame_fmt(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| u32 fmt_model_type, fmt_model_subtype, ncol_desc, nrow_desc; |
| unsigned int i; |
| int rval; |
| int line_count = 0; |
| int embedded_start = -1, embedded_end = -1; |
| int image_start = 0; |
| |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_TYPE, |
| &fmt_model_type); |
| if (rval) |
| return rval; |
| |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_FRAME_FORMAT_MODEL_SUBTYPE, |
| &fmt_model_subtype); |
| if (rval) |
| return rval; |
| |
| ncol_desc = (fmt_model_subtype |
| & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_MASK) |
| >> SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NCOLS_SHIFT; |
| nrow_desc = fmt_model_subtype |
| & SMIAPP_FRAME_FORMAT_MODEL_SUBTYPE_NROWS_MASK; |
| |
| dev_dbg(&client->dev, "format_model_type %s\n", |
| fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE |
| ? "2 byte" : |
| fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE |
| ? "4 byte" : "is simply bad"); |
| |
| for (i = 0; i < ncol_desc + nrow_desc; i++) { |
| u32 desc; |
| u32 pixelcode; |
| u32 pixels; |
| char *which; |
| char *what; |
| |
| if (fmt_model_type == SMIAPP_FRAME_FORMAT_MODEL_TYPE_2BYTE) { |
| rval = smiapp_read( |
| sensor, |
| SMIAPP_REG_U16_FRAME_FORMAT_DESCRIPTOR_2(i), |
| &desc); |
| if (rval) |
| return rval; |
| |
| pixelcode = |
| (desc |
| & SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_MASK) |
| >> SMIAPP_FRAME_FORMAT_DESC_2_PIXELCODE_SHIFT; |
| pixels = desc & SMIAPP_FRAME_FORMAT_DESC_2_PIXELS_MASK; |
| } else if (fmt_model_type |
| == SMIAPP_FRAME_FORMAT_MODEL_TYPE_4BYTE) { |
| rval = smiapp_read( |
| sensor, |
| SMIAPP_REG_U32_FRAME_FORMAT_DESCRIPTOR_4(i), |
| &desc); |
| if (rval) |
| return rval; |
| |
| pixelcode = |
| (desc |
| & SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_MASK) |
| >> SMIAPP_FRAME_FORMAT_DESC_4_PIXELCODE_SHIFT; |
| pixels = desc & SMIAPP_FRAME_FORMAT_DESC_4_PIXELS_MASK; |
| } else { |
| dev_dbg(&client->dev, |
| "invalid frame format model type %d\n", |
| fmt_model_type); |
| return -EINVAL; |
| } |
| |
| if (i < ncol_desc) |
| which = "columns"; |
| else |
| which = "rows"; |
| |
| switch (pixelcode) { |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED: |
| what = "embedded"; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DUMMY: |
| what = "dummy"; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_BLACK: |
| what = "black"; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_DARK: |
| what = "dark"; |
| break; |
| case SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE: |
| what = "visible"; |
| break; |
| default: |
| what = "invalid"; |
| dev_dbg(&client->dev, "pixelcode %d\n", pixelcode); |
| break; |
| } |
| |
| dev_dbg(&client->dev, "%s pixels: %d %s\n", |
| what, pixels, which); |
| |
| if (i < ncol_desc) |
| continue; |
| |
| /* Handle row descriptors */ |
| if (pixelcode |
| == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_EMBEDDED) { |
| embedded_start = line_count; |
| } else { |
| if (pixelcode == SMIAPP_FRAME_FORMAT_DESC_PIXELCODE_VISIBLE |
| || pixels >= sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES] / 2) |
| image_start = line_count; |
| if (embedded_start != -1 && embedded_end == -1) |
| embedded_end = line_count; |
| } |
| line_count += pixels; |
| } |
| |
| if (embedded_start == -1 || embedded_end == -1) { |
| embedded_start = 0; |
| embedded_end = 0; |
| } |
| |
| dev_dbg(&client->dev, "embedded data from lines %d to %d\n", |
| embedded_start, embedded_end); |
| dev_dbg(&client->dev, "image data starts at line %d\n", image_start); |
| |
| return 0; |
| } |
| |
| static int smiapp_pll_configure(struct smiapp_sensor *sensor) |
| { |
| struct smiapp_pll *pll = &sensor->pll; |
| int rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_VT_PIX_CLK_DIV, pll->vt_pix_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_VT_SYS_CLK_DIV, pll->vt_sys_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_PRE_PLL_CLK_DIV, pll->pre_pll_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_PLL_MULTIPLIER, pll->pll_multiplier); |
| if (rval < 0) |
| return rval; |
| |
| /* Lane op clock ratio does not apply here. */ |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U32_REQUESTED_LINK_BIT_RATE_MBPS, |
| DIV_ROUND_UP(pll->op_sys_clk_freq_hz, 1000000 / 256 / 256)); |
| if (rval < 0 || sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) |
| return rval; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_OP_PIX_CLK_DIV, pll->op_pix_clk_div); |
| if (rval < 0) |
| return rval; |
| |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_OP_SYS_CLK_DIV, pll->op_sys_clk_div); |
| } |
| |
| static int smiapp_pll_update(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| struct smiapp_pll_limits lim = { |
| .min_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_PRE_PLL_CLK_DIV], |
| .max_pre_pll_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_PRE_PLL_CLK_DIV], |
| .min_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_IP_FREQ_HZ], |
| .max_pll_ip_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_IP_FREQ_HZ], |
| .min_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MIN_PLL_MULTIPLIER], |
| .max_pll_multiplier = sensor->limits[SMIAPP_LIMIT_MAX_PLL_MULTIPLIER], |
| .min_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_PLL_OP_FREQ_HZ], |
| .max_pll_op_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_PLL_OP_FREQ_HZ], |
| |
| .min_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV], |
| .max_op_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV], |
| .min_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV], |
| .max_op_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV], |
| .min_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_FREQ_HZ], |
| .max_op_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_FREQ_HZ], |
| .min_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_FREQ_HZ], |
| .max_op_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_FREQ_HZ], |
| |
| .min_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_DIV], |
| .max_vt_sys_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_DIV], |
| .min_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_DIV], |
| .max_vt_pix_clk_div = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_DIV], |
| .min_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_SYS_CLK_FREQ_HZ], |
| .max_vt_sys_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_SYS_CLK_FREQ_HZ], |
| .min_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MIN_VT_PIX_CLK_FREQ_HZ], |
| .max_vt_pix_clk_freq_hz = sensor->limits[SMIAPP_LIMIT_MAX_VT_PIX_CLK_FREQ_HZ], |
| |
| .min_line_length_pck_bin = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN], |
| .min_line_length_pck = sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK], |
| }; |
| struct smiapp_pll *pll = &sensor->pll; |
| int rval; |
| |
| memset(&sensor->pll, 0, sizeof(sensor->pll)); |
| |
| pll->lanes = sensor->platform_data->lanes; |
| pll->ext_clk_freq_hz = sensor->platform_data->ext_clk; |
| |
| if (sensor->minfo.smiapp_profile == SMIAPP_PROFILE_0) { |
| /* |
| * Fill in operational clock divisors limits from the |
| * video timing ones. On profile 0 sensors the |
| * requirements regarding them are essentially the |
| * same as on VT ones. |
| */ |
| lim.min_op_sys_clk_div = lim.min_vt_sys_clk_div; |
| lim.max_op_sys_clk_div = lim.max_vt_sys_clk_div; |
| lim.min_op_pix_clk_div = lim.min_vt_pix_clk_div; |
| lim.max_op_pix_clk_div = lim.max_vt_pix_clk_div; |
| lim.min_op_sys_clk_freq_hz = lim.min_vt_sys_clk_freq_hz; |
| lim.max_op_sys_clk_freq_hz = lim.max_vt_sys_clk_freq_hz; |
| lim.min_op_pix_clk_freq_hz = lim.min_vt_pix_clk_freq_hz; |
| lim.max_op_pix_clk_freq_hz = lim.max_vt_pix_clk_freq_hz; |
| /* Profile 0 sensors have no separate OP clock branch. */ |
| pll->flags |= SMIAPP_PLL_FLAG_NO_OP_CLOCKS; |
| } |
| |
| if (smiapp_needs_quirk(sensor, |
| SMIAPP_QUIRK_FLAG_OP_PIX_CLOCK_PER_LANE)) |
| pll->flags |= SMIAPP_PLL_FLAG_OP_PIX_CLOCK_PER_LANE; |
| |
| pll->binning_horizontal = sensor->binning_horizontal; |
| pll->binning_vertical = sensor->binning_vertical; |
| pll->link_freq = |
| sensor->link_freq->qmenu_int[sensor->link_freq->val]; |
| pll->scale_m = sensor->scale_m; |
| pll->scale_n = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; |
| pll->bits_per_pixel = sensor->csi_format->compressed; |
| |
| rval = smiapp_pll_calculate(&client->dev, &lim, pll); |
| if (rval < 0) |
| return rval; |
| |
| sensor->pixel_rate_parray->cur.val64 = pll->vt_pix_clk_freq_hz; |
| sensor->pixel_rate_csi->cur.val64 = pll->pixel_rate_csi; |
| |
| return 0; |
| } |
| |
| |
| /* |
| * |
| * V4L2 Controls handling |
| * |
| */ |
| |
| static void __smiapp_update_exposure_limits(struct smiapp_sensor *sensor) |
| { |
| struct v4l2_ctrl *ctrl = sensor->exposure; |
| int max; |
| |
| max = sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height |
| + sensor->vblank->val |
| - sensor->limits[SMIAPP_LIMIT_COARSE_INTEGRATION_TIME_MAX_MARGIN]; |
| |
| ctrl->maximum = max; |
| if (ctrl->default_value > max) |
| ctrl->default_value = max; |
| if (ctrl->val > max) |
| ctrl->val = max; |
| if (ctrl->cur.val > max) |
| ctrl->cur.val = max; |
| } |
| |
| /* |
| * Order matters. |
| * |
| * 1. Bits-per-pixel, descending. |
| * 2. Bits-per-pixel compressed, descending. |
| * 3. Pixel order, same as in pixel_order_str. Formats for all four pixel |
| * orders must be defined. |
| */ |
| static const struct smiapp_csi_data_format smiapp_csi_data_formats[] = { |
| { V4L2_MBUS_FMT_SGRBG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { V4L2_MBUS_FMT_SRGGB12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { V4L2_MBUS_FMT_SBGGR12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { V4L2_MBUS_FMT_SGBRG12_1X12, 12, 12, SMIAPP_PIXEL_ORDER_GBRG, }, |
| { V4L2_MBUS_FMT_SGRBG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { V4L2_MBUS_FMT_SRGGB10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { V4L2_MBUS_FMT_SBGGR10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { V4L2_MBUS_FMT_SGBRG10_1X10, 10, 10, SMIAPP_PIXEL_ORDER_GBRG, }, |
| { V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8, 10, 8, SMIAPP_PIXEL_ORDER_GBRG, }, |
| { V4L2_MBUS_FMT_SGRBG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GRBG, }, |
| { V4L2_MBUS_FMT_SRGGB8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_RGGB, }, |
| { V4L2_MBUS_FMT_SBGGR8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_BGGR, }, |
| { V4L2_MBUS_FMT_SGBRG8_1X8, 8, 8, SMIAPP_PIXEL_ORDER_GBRG, }, |
| }; |
| |
| const char *pixel_order_str[] = { "GRBG", "RGGB", "BGGR", "GBRG" }; |
| |
| #define to_csi_format_idx(fmt) (((unsigned long)(fmt) \ |
| - (unsigned long)smiapp_csi_data_formats) \ |
| / sizeof(*smiapp_csi_data_formats)) |
| |
| static u32 smiapp_pixel_order(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int flip = 0; |
| |
| if (sensor->hflip) { |
| if (sensor->hflip->val) |
| flip |= SMIAPP_IMAGE_ORIENTATION_HFLIP; |
| |
| if (sensor->vflip->val) |
| flip |= SMIAPP_IMAGE_ORIENTATION_VFLIP; |
| } |
| |
| flip ^= sensor->hvflip_inv_mask; |
| |
| dev_dbg(&client->dev, "flip %d\n", flip); |
| return sensor->default_pixel_order ^ flip; |
| } |
| |
| static void smiapp_update_mbus_formats(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int csi_format_idx = |
| to_csi_format_idx(sensor->csi_format) & ~3; |
| unsigned int internal_csi_format_idx = |
| to_csi_format_idx(sensor->internal_csi_format) & ~3; |
| unsigned int pixel_order = smiapp_pixel_order(sensor); |
| |
| sensor->mbus_frame_fmts = |
| sensor->default_mbus_frame_fmts << pixel_order; |
| sensor->csi_format = |
| &smiapp_csi_data_formats[csi_format_idx + pixel_order]; |
| sensor->internal_csi_format = |
| &smiapp_csi_data_formats[internal_csi_format_idx |
| + pixel_order]; |
| |
| BUG_ON(max(internal_csi_format_idx, csi_format_idx) + pixel_order |
| >= ARRAY_SIZE(smiapp_csi_data_formats)); |
| BUG_ON(min(internal_csi_format_idx, csi_format_idx) < 0); |
| |
| dev_dbg(&client->dev, "new pixel order %s\n", |
| pixel_order_str[pixel_order]); |
| } |
| |
| static int smiapp_set_ctrl(struct v4l2_ctrl *ctrl) |
| { |
| struct smiapp_sensor *sensor = |
| container_of(ctrl->handler, struct smiapp_subdev, ctrl_handler) |
| ->sensor; |
| u32 orient = 0; |
| int exposure; |
| int rval; |
| |
| switch (ctrl->id) { |
| case V4L2_CID_ANALOGUE_GAIN: |
| return smiapp_write( |
| sensor, |
| SMIAPP_REG_U16_ANALOGUE_GAIN_CODE_GLOBAL, ctrl->val); |
| |
| case V4L2_CID_EXPOSURE: |
| return smiapp_write( |
| sensor, |
| SMIAPP_REG_U16_COARSE_INTEGRATION_TIME, ctrl->val); |
| |
| case V4L2_CID_HFLIP: |
| case V4L2_CID_VFLIP: |
| if (sensor->streaming) |
| return -EBUSY; |
| |
| if (sensor->hflip->val) |
| orient |= SMIAPP_IMAGE_ORIENTATION_HFLIP; |
| |
| if (sensor->vflip->val) |
| orient |= SMIAPP_IMAGE_ORIENTATION_VFLIP; |
| |
| orient ^= sensor->hvflip_inv_mask; |
| rval = smiapp_write(sensor, |
| SMIAPP_REG_U8_IMAGE_ORIENTATION, |
| orient); |
| if (rval < 0) |
| return rval; |
| |
| smiapp_update_mbus_formats(sensor); |
| |
| return 0; |
| |
| case V4L2_CID_VBLANK: |
| exposure = sensor->exposure->val; |
| |
| __smiapp_update_exposure_limits(sensor); |
| |
| if (exposure > sensor->exposure->maximum) { |
| sensor->exposure->val = |
| sensor->exposure->maximum; |
| rval = smiapp_set_ctrl( |
| sensor->exposure); |
| if (rval < 0) |
| return rval; |
| } |
| |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_FRAME_LENGTH_LINES, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height |
| + ctrl->val); |
| |
| case V4L2_CID_HBLANK: |
| return smiapp_write( |
| sensor, SMIAPP_REG_U16_LINE_LENGTH_PCK, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width |
| + ctrl->val); |
| |
| case V4L2_CID_LINK_FREQ: |
| if (sensor->streaming) |
| return -EBUSY; |
| |
| return smiapp_pll_update(sensor); |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static const struct v4l2_ctrl_ops smiapp_ctrl_ops = { |
| .s_ctrl = smiapp_set_ctrl, |
| }; |
| |
| static int smiapp_init_controls(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int max; |
| int rval; |
| |
| rval = v4l2_ctrl_handler_init(&sensor->pixel_array->ctrl_handler, 7); |
| if (rval) |
| return rval; |
| sensor->pixel_array->ctrl_handler.lock = &sensor->mutex; |
| |
| sensor->analog_gain = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_ANALOGUE_GAIN, |
| sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN], |
| sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MAX], |
| max(sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_STEP], 1U), |
| sensor->limits[SMIAPP_LIMIT_ANALOGUE_GAIN_CODE_MIN]); |
| |
| /* Exposure limits will be updated soon, use just something here. */ |
| sensor->exposure = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_EXPOSURE, 0, 0, 1, 0); |
| |
| sensor->hflip = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_HFLIP, 0, 1, 1, 0); |
| sensor->vflip = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_VFLIP, 0, 1, 1, 0); |
| |
| sensor->vblank = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_VBLANK, 0, 1, 1, 0); |
| |
| if (sensor->vblank) |
| sensor->vblank->flags |= V4L2_CTRL_FLAG_UPDATE; |
| |
| sensor->hblank = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_HBLANK, 0, 1, 1, 0); |
| |
| if (sensor->hblank) |
| sensor->hblank->flags |= V4L2_CTRL_FLAG_UPDATE; |
| |
| sensor->pixel_rate_parray = v4l2_ctrl_new_std( |
| &sensor->pixel_array->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_PIXEL_RATE, 0, 0, 1, 0); |
| |
| if (sensor->pixel_array->ctrl_handler.error) { |
| dev_err(&client->dev, |
| "pixel array controls initialization failed (%d)\n", |
| sensor->pixel_array->ctrl_handler.error); |
| rval = sensor->pixel_array->ctrl_handler.error; |
| goto error; |
| } |
| |
| sensor->pixel_array->sd.ctrl_handler = |
| &sensor->pixel_array->ctrl_handler; |
| |
| v4l2_ctrl_cluster(2, &sensor->hflip); |
| |
| rval = v4l2_ctrl_handler_init(&sensor->src->ctrl_handler, 0); |
| if (rval) |
| goto error; |
| sensor->src->ctrl_handler.lock = &sensor->mutex; |
| |
| for (max = 0; sensor->platform_data->op_sys_clock[max + 1]; max++); |
| |
| sensor->link_freq = v4l2_ctrl_new_int_menu( |
| &sensor->src->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_LINK_FREQ, max, 0, |
| sensor->platform_data->op_sys_clock); |
| |
| sensor->pixel_rate_csi = v4l2_ctrl_new_std( |
| &sensor->src->ctrl_handler, &smiapp_ctrl_ops, |
| V4L2_CID_PIXEL_RATE, 0, 0, 1, 0); |
| |
| if (sensor->src->ctrl_handler.error) { |
| dev_err(&client->dev, |
| "src controls initialization failed (%d)\n", |
| sensor->src->ctrl_handler.error); |
| rval = sensor->src->ctrl_handler.error; |
| goto error; |
| } |
| |
| sensor->src->sd.ctrl_handler = |
| &sensor->src->ctrl_handler; |
| |
| return 0; |
| |
| error: |
| v4l2_ctrl_handler_free(&sensor->pixel_array->ctrl_handler); |
| v4l2_ctrl_handler_free(&sensor->src->ctrl_handler); |
| |
| return rval; |
| } |
| |
| static void smiapp_free_controls(struct smiapp_sensor *sensor) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < sensor->ssds_used; i++) |
| v4l2_ctrl_handler_free(&sensor->ssds[i].ctrl_handler); |
| } |
| |
| static int smiapp_get_limits(struct smiapp_sensor *sensor, int const *limit, |
| unsigned int n) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int i; |
| u32 val; |
| int rval; |
| |
| for (i = 0; i < n; i++) { |
| rval = smiapp_read( |
| sensor, smiapp_reg_limits[limit[i]].addr, &val); |
| if (rval) |
| return rval; |
| sensor->limits[limit[i]] = val; |
| dev_dbg(&client->dev, "0x%8.8x \"%s\" = %d, 0x%x\n", |
| smiapp_reg_limits[limit[i]].addr, |
| smiapp_reg_limits[limit[i]].what, val, val); |
| } |
| |
| return 0; |
| } |
| |
| static int smiapp_get_all_limits(struct smiapp_sensor *sensor) |
| { |
| unsigned int i; |
| int rval; |
| |
| for (i = 0; i < SMIAPP_LIMIT_LAST; i++) { |
| rval = smiapp_get_limits(sensor, &i, 1); |
| if (rval < 0) |
| return rval; |
| } |
| |
| if (sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] == 0) |
| smiapp_replace_limit(sensor, SMIAPP_LIMIT_SCALER_N_MIN, 16); |
| |
| return 0; |
| } |
| |
| static int smiapp_get_limits_binning(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| static u32 const limits[] = { |
| SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN, |
| SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN, |
| SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN, |
| SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN, |
| SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN, |
| SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN_BIN, |
| SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN_BIN, |
| }; |
| static u32 const limits_replace[] = { |
| SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES, |
| SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES, |
| SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK, |
| SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK, |
| SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK, |
| SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MIN, |
| SMIAPP_LIMIT_FINE_INTEGRATION_TIME_MAX_MARGIN, |
| }; |
| unsigned int i; |
| int rval; |
| |
| if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY] == |
| SMIAPP_BINNING_CAPABILITY_NO) { |
| for (i = 0; i < ARRAY_SIZE(limits); i++) |
| sensor->limits[limits[i]] = |
| sensor->limits[limits_replace[i]]; |
| |
| return 0; |
| } |
| |
| rval = smiapp_get_limits(sensor, limits, ARRAY_SIZE(limits)); |
| if (rval < 0) |
| return rval; |
| |
| /* |
| * Sanity check whether the binning limits are valid. If not, |
| * use the non-binning ones. |
| */ |
| if (sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] |
| && sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] |
| && sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]) |
| return 0; |
| |
| for (i = 0; i < ARRAY_SIZE(limits); i++) { |
| dev_dbg(&client->dev, |
| "replace limit 0x%8.8x \"%s\" = %d, 0x%x\n", |
| smiapp_reg_limits[limits[i]].addr, |
| smiapp_reg_limits[limits[i]].what, |
| sensor->limits[limits_replace[i]], |
| sensor->limits[limits_replace[i]]); |
| sensor->limits[limits[i]] = |
| sensor->limits[limits_replace[i]]; |
| } |
| |
| return 0; |
| } |
| |
| static int smiapp_get_mbus_formats(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int type, n; |
| unsigned int i, pixel_order; |
| int rval; |
| |
| rval = smiapp_read( |
| sensor, SMIAPP_REG_U8_DATA_FORMAT_MODEL_TYPE, &type); |
| if (rval) |
| return rval; |
| |
| dev_dbg(&client->dev, "data_format_model_type %d\n", type); |
| |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_PIXEL_ORDER, |
| &pixel_order); |
| if (rval) |
| return rval; |
| |
| if (pixel_order >= ARRAY_SIZE(pixel_order_str)) { |
| dev_dbg(&client->dev, "bad pixel order %d\n", pixel_order); |
| return -EINVAL; |
| } |
| |
| dev_dbg(&client->dev, "pixel order %d (%s)\n", pixel_order, |
| pixel_order_str[pixel_order]); |
| |
| switch (type) { |
| case SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL: |
| n = SMIAPP_DATA_FORMAT_MODEL_TYPE_NORMAL_N; |
| break; |
| case SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED: |
| n = SMIAPP_DATA_FORMAT_MODEL_TYPE_EXTENDED_N; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| sensor->default_pixel_order = pixel_order; |
| sensor->mbus_frame_fmts = 0; |
| |
| for (i = 0; i < n; i++) { |
| unsigned int fmt, j; |
| |
| rval = smiapp_read( |
| sensor, |
| SMIAPP_REG_U16_DATA_FORMAT_DESCRIPTOR(i), &fmt); |
| if (rval) |
| return rval; |
| |
| dev_dbg(&client->dev, "bpp %d, compressed %d\n", |
| fmt >> 8, (u8)fmt); |
| |
| for (j = 0; j < ARRAY_SIZE(smiapp_csi_data_formats); j++) { |
| const struct smiapp_csi_data_format *f = |
| &smiapp_csi_data_formats[j]; |
| |
| if (f->pixel_order != SMIAPP_PIXEL_ORDER_GRBG) |
| continue; |
| |
| if (f->width != fmt >> 8 || f->compressed != (u8)fmt) |
| continue; |
| |
| dev_dbg(&client->dev, "jolly good! %d\n", j); |
| |
| sensor->default_mbus_frame_fmts |= 1 << j; |
| if (!sensor->csi_format) { |
| sensor->csi_format = f; |
| sensor->internal_csi_format = f; |
| } |
| } |
| } |
| |
| if (!sensor->csi_format) { |
| dev_err(&client->dev, "no supported mbus code found\n"); |
| return -EINVAL; |
| } |
| |
| smiapp_update_mbus_formats(sensor); |
| |
| return 0; |
| } |
| |
| static void smiapp_update_blanking(struct smiapp_sensor *sensor) |
| { |
| struct v4l2_ctrl *vblank = sensor->vblank; |
| struct v4l2_ctrl *hblank = sensor->hblank; |
| |
| vblank->minimum = |
| max_t(int, |
| sensor->limits[SMIAPP_LIMIT_MIN_FRAME_BLANKING_LINES], |
| sensor->limits[SMIAPP_LIMIT_MIN_FRAME_LENGTH_LINES_BIN] - |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height); |
| vblank->maximum = |
| sensor->limits[SMIAPP_LIMIT_MAX_FRAME_LENGTH_LINES_BIN] - |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height; |
| |
| vblank->val = clamp_t(int, vblank->val, |
| vblank->minimum, vblank->maximum); |
| vblank->default_value = vblank->minimum; |
| vblank->val = vblank->val; |
| vblank->cur.val = vblank->val; |
| |
| hblank->minimum = |
| max_t(int, |
| sensor->limits[SMIAPP_LIMIT_MIN_LINE_LENGTH_PCK_BIN] - |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width, |
| sensor->limits[SMIAPP_LIMIT_MIN_LINE_BLANKING_PCK_BIN]); |
| hblank->maximum = |
| sensor->limits[SMIAPP_LIMIT_MAX_LINE_LENGTH_PCK_BIN] - |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width; |
| |
| hblank->val = clamp_t(int, hblank->val, |
| hblank->minimum, hblank->maximum); |
| hblank->default_value = hblank->minimum; |
| hblank->val = hblank->val; |
| hblank->cur.val = hblank->val; |
| |
| __smiapp_update_exposure_limits(sensor); |
| } |
| |
| static int smiapp_update_mode(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int binning_mode; |
| int rval; |
| |
| dev_dbg(&client->dev, "frame size: %dx%d\n", |
| sensor->src->crop[SMIAPP_PAD_SRC].width, |
| sensor->src->crop[SMIAPP_PAD_SRC].height); |
| dev_dbg(&client->dev, "csi format width: %d\n", |
| sensor->csi_format->width); |
| |
| /* Binning has to be set up here; it affects limits */ |
| if (sensor->binning_horizontal == 1 && |
| sensor->binning_vertical == 1) { |
| binning_mode = 0; |
| } else { |
| u8 binning_type = |
| (sensor->binning_horizontal << 4) |
| | sensor->binning_vertical; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U8_BINNING_TYPE, binning_type); |
| if (rval < 0) |
| return rval; |
| |
| binning_mode = 1; |
| } |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_BINNING_MODE, binning_mode); |
| if (rval < 0) |
| return rval; |
| |
| /* Get updated limits due to binning */ |
| rval = smiapp_get_limits_binning(sensor); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_pll_update(sensor); |
| if (rval < 0) |
| return rval; |
| |
| /* Output from pixel array, including blanking */ |
| smiapp_update_blanking(sensor); |
| |
| dev_dbg(&client->dev, "vblank\t\t%d\n", sensor->vblank->val); |
| dev_dbg(&client->dev, "hblank\t\t%d\n", sensor->hblank->val); |
| |
| dev_dbg(&client->dev, "real timeperframe\t100/%d\n", |
| sensor->pll.vt_pix_clk_freq_hz / |
| ((sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width |
| + sensor->hblank->val) * |
| (sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height |
| + sensor->vblank->val) / 100)); |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * SMIA++ NVM handling |
| * |
| */ |
| static int smiapp_read_nvm(struct smiapp_sensor *sensor, |
| unsigned char *nvm) |
| { |
| u32 i, s, p, np, v; |
| int rval = 0, rval2; |
| |
| np = sensor->nvm_size / SMIAPP_NVM_PAGE_SIZE; |
| for (p = 0; p < np; p++) { |
| rval = smiapp_write( |
| sensor, |
| SMIAPP_REG_U8_DATA_TRANSFER_IF_1_PAGE_SELECT, p); |
| if (rval) |
| goto out; |
| |
| rval = smiapp_write(sensor, |
| SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, |
| SMIAPP_DATA_TRANSFER_IF_1_CTRL_EN | |
| SMIAPP_DATA_TRANSFER_IF_1_CTRL_RD_EN); |
| if (rval) |
| goto out; |
| |
| for (i = 0; i < 1000; i++) { |
| rval = smiapp_read( |
| sensor, |
| SMIAPP_REG_U8_DATA_TRANSFER_IF_1_STATUS, &s); |
| |
| if (rval) |
| goto out; |
| |
| if (s & SMIAPP_DATA_TRANSFER_IF_1_STATUS_RD_READY) |
| break; |
| |
| if (--i == 0) { |
| rval = -ETIMEDOUT; |
| goto out; |
| } |
| |
| } |
| |
| for (i = 0; i < SMIAPP_NVM_PAGE_SIZE; i++) { |
| rval = smiapp_read( |
| sensor, |
| SMIAPP_REG_U8_DATA_TRANSFER_IF_1_DATA_0 + i, |
| &v); |
| if (rval) |
| goto out; |
| |
| *nvm++ = v; |
| } |
| } |
| |
| out: |
| rval2 = smiapp_write(sensor, SMIAPP_REG_U8_DATA_TRANSFER_IF_1_CTRL, 0); |
| if (rval < 0) |
| return rval; |
| else |
| return rval2; |
| } |
| |
| /* |
| * |
| * SMIA++ CCI address control |
| * |
| */ |
| static int smiapp_change_cci_addr(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| u32 val; |
| |
| client->addr = sensor->platform_data->i2c_addr_dfl; |
| |
| rval = smiapp_write(sensor, |
| SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, |
| sensor->platform_data->i2c_addr_alt << 1); |
| if (rval) |
| return rval; |
| |
| client->addr = sensor->platform_data->i2c_addr_alt; |
| |
| /* verify addr change went ok */ |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_CCI_ADDRESS_CONTROL, &val); |
| if (rval) |
| return rval; |
| |
| if (val != sensor->platform_data->i2c_addr_alt << 1) |
| return -ENODEV; |
| |
| return 0; |
| } |
| |
| /* |
| * |
| * SMIA++ Mode Control |
| * |
| */ |
| static int smiapp_setup_flash_strobe(struct smiapp_sensor *sensor) |
| { |
| struct smiapp_flash_strobe_parms *strobe_setup; |
| unsigned int ext_freq = sensor->platform_data->ext_clk; |
| u32 tmp; |
| u32 strobe_adjustment; |
| u32 strobe_width_high_rs; |
| int rval; |
| |
| strobe_setup = sensor->platform_data->strobe_setup; |
| |
| /* |
| * How to calculate registers related to strobe length. Please |
| * do not change, or if you do at least know what you're |
| * doing. :-) |
| * |
| * Sakari Ailus <sakari.ailus@maxwell.research.nokia.com> 2010-10-25 |
| * |
| * flash_strobe_length [us] / 10^6 = (tFlash_strobe_width_ctrl |
| * / EXTCLK freq [Hz]) * flash_strobe_adjustment |
| * |
| * tFlash_strobe_width_ctrl E N, [1 - 0xffff] |
| * flash_strobe_adjustment E N, [1 - 0xff] |
| * |
| * The formula above is written as below to keep it on one |
| * line: |
| * |
| * l / 10^6 = w / e * a |
| * |
| * Let's mark w * a by x: |
| * |
| * x = w * a |
| * |
| * Thus, we get: |
| * |
| * x = l * e / 10^6 |
| * |
| * The strobe width must be at least as long as requested, |
| * thus rounding upwards is needed. |
| * |
| * x = (l * e + 10^6 - 1) / 10^6 |
| * ----------------------------- |
| * |
| * Maximum possible accuracy is wanted at all times. Thus keep |
| * a as small as possible. |
| * |
| * Calculate a, assuming maximum w, with rounding upwards: |
| * |
| * a = (x + (2^16 - 1) - 1) / (2^16 - 1) |
| * ------------------------------------- |
| * |
| * Thus, we also get w, with that a, with rounding upwards: |
| * |
| * w = (x + a - 1) / a |
| * ------------------- |
| * |
| * To get limits: |
| * |
| * x E [1, (2^16 - 1) * (2^8 - 1)] |
| * |
| * Substituting maximum x to the original formula (with rounding), |
| * the maximum l is thus |
| * |
| * (2^16 - 1) * (2^8 - 1) * 10^6 = l * e + 10^6 - 1 |
| * |
| * l = (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / e |
| * -------------------------------------------------- |
| * |
| * flash_strobe_length must be clamped between 1 and |
| * (10^6 * (2^16 - 1) * (2^8 - 1) - 10^6 + 1) / EXTCLK freq. |
| * |
| * Then, |
| * |
| * flash_strobe_adjustment = ((flash_strobe_length * |
| * EXTCLK freq + 10^6 - 1) / 10^6 + (2^16 - 1) - 1) / (2^16 - 1) |
| * |
| * tFlash_strobe_width_ctrl = ((flash_strobe_length * |
| * EXTCLK freq + 10^6 - 1) / 10^6 + |
| * flash_strobe_adjustment - 1) / flash_strobe_adjustment |
| */ |
| tmp = div_u64(1000000ULL * ((1 << 16) - 1) * ((1 << 8) - 1) - |
| 1000000 + 1, ext_freq); |
| strobe_setup->strobe_width_high_us = |
| clamp_t(u32, strobe_setup->strobe_width_high_us, 1, tmp); |
| |
| tmp = div_u64(((u64)strobe_setup->strobe_width_high_us * (u64)ext_freq + |
| 1000000 - 1), 1000000ULL); |
| strobe_adjustment = (tmp + (1 << 16) - 1 - 1) / ((1 << 16) - 1); |
| strobe_width_high_rs = (tmp + strobe_adjustment - 1) / |
| strobe_adjustment; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_MODE_RS, |
| strobe_setup->mode); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_STROBE_ADJUSTMENT, |
| strobe_adjustment); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_TFLASH_STROBE_WIDTH_HIGH_RS_CTRL, |
| strobe_width_high_rs); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_TFLASH_STROBE_DELAY_RS_CTRL, |
| strobe_setup->strobe_delay); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_FLASH_STROBE_START_POINT, |
| strobe_setup->stobe_start_point); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_FLASH_TRIGGER_RS, |
| strobe_setup->trigger); |
| |
| out: |
| sensor->platform_data->strobe_setup->trigger = 0; |
| |
| return rval; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Power management |
| */ |
| |
| static int smiapp_power_on(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| unsigned int sleep; |
| int rval; |
| |
| rval = regulator_enable(sensor->vana); |
| if (rval) { |
| dev_err(&client->dev, "failed to enable vana regulator\n"); |
| return rval; |
| } |
| usleep_range(1000, 1000); |
| |
| if (sensor->platform_data->set_xclk) |
| rval = sensor->platform_data->set_xclk( |
| &sensor->src->sd, sensor->platform_data->ext_clk); |
| else |
| rval = clk_enable(sensor->ext_clk); |
| if (rval < 0) { |
| dev_dbg(&client->dev, "failed to set xclk\n"); |
| goto out_xclk_fail; |
| } |
| usleep_range(1000, 1000); |
| |
| if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) |
| gpio_set_value(sensor->platform_data->xshutdown, 1); |
| |
| sleep = SMIAPP_RESET_DELAY(sensor->platform_data->ext_clk); |
| usleep_range(sleep, sleep); |
| |
| /* |
| * Failures to respond to the address change command have been noticed. |
| * Those failures seem to be caused by the sensor requiring a longer |
| * boot time than advertised. An additional 10ms delay seems to work |
| * around the issue, but the SMIA++ I2C write retry hack makes the delay |
| * unnecessary. The failures need to be investigated to find a proper |
| * fix, and a delay will likely need to be added here if the I2C write |
| * retry hack is reverted before the root cause of the boot time issue |
| * is found. |
| */ |
| |
| if (sensor->platform_data->i2c_addr_alt) { |
| rval = smiapp_change_cci_addr(sensor); |
| if (rval) { |
| dev_err(&client->dev, "cci address change error\n"); |
| goto out_cci_addr_fail; |
| } |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_SOFTWARE_RESET, |
| SMIAPP_SOFTWARE_RESET); |
| if (rval < 0) { |
| dev_err(&client->dev, "software reset failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| if (sensor->platform_data->i2c_addr_alt) { |
| rval = smiapp_change_cci_addr(sensor); |
| if (rval) { |
| dev_err(&client->dev, "cci address change error\n"); |
| goto out_cci_addr_fail; |
| } |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_COMPRESSION_MODE, |
| SMIAPP_COMPRESSION_MODE_SIMPLE_PREDICTOR); |
| if (rval) { |
| dev_err(&client->dev, "compression mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_EXTCLK_FREQUENCY_MHZ, |
| sensor->platform_data->ext_clk / (1000000 / (1 << 8))); |
| if (rval) { |
| dev_err(&client->dev, "extclk frequency set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_LANE_MODE, |
| sensor->platform_data->lanes - 1); |
| if (rval) { |
| dev_err(&client->dev, "csi lane mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_FAST_STANDBY_CTRL, |
| SMIAPP_FAST_STANDBY_CTRL_IMMEDIATE); |
| if (rval) { |
| dev_err(&client->dev, "fast standby set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_CSI_SIGNALLING_MODE, |
| sensor->platform_data->csi_signalling_mode); |
| if (rval) { |
| dev_err(&client->dev, "csi signalling mode set failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| /* DPHY control done by sensor based on requested link rate */ |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_DPHY_CTRL, |
| SMIAPP_DPHY_CTRL_UI); |
| if (rval < 0) |
| return rval; |
| |
| rval = smiapp_call_quirk(sensor, post_poweron); |
| if (rval) { |
| dev_err(&client->dev, "post_poweron quirks failed\n"); |
| goto out_cci_addr_fail; |
| } |
| |
| /* Are we still initialising...? If yes, return here. */ |
| if (!sensor->pixel_array) |
| return 0; |
| |
| rval = v4l2_ctrl_handler_setup( |
| &sensor->pixel_array->ctrl_handler); |
| if (rval) |
| goto out_cci_addr_fail; |
| |
| rval = v4l2_ctrl_handler_setup(&sensor->src->ctrl_handler); |
| if (rval) |
| goto out_cci_addr_fail; |
| |
| mutex_lock(&sensor->mutex); |
| rval = smiapp_update_mode(sensor); |
| mutex_unlock(&sensor->mutex); |
| if (rval < 0) |
| goto out_cci_addr_fail; |
| |
| return 0; |
| |
| out_cci_addr_fail: |
| if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) |
| gpio_set_value(sensor->platform_data->xshutdown, 0); |
| if (sensor->platform_data->set_xclk) |
| sensor->platform_data->set_xclk(&sensor->src->sd, 0); |
| else |
| clk_disable(sensor->ext_clk); |
| |
| out_xclk_fail: |
| regulator_disable(sensor->vana); |
| return rval; |
| } |
| |
| static void smiapp_power_off(struct smiapp_sensor *sensor) |
| { |
| /* |
| * Currently power/clock to lens are enable/disabled separately |
| * but they are essentially the same signals. So if the sensor is |
| * powered off while the lens is powered on the sensor does not |
| * really see a power off and next time the cci address change |
| * will fail. So do a soft reset explicitly here. |
| */ |
| if (sensor->platform_data->i2c_addr_alt) |
| smiapp_write(sensor, |
| SMIAPP_REG_U8_SOFTWARE_RESET, |
| SMIAPP_SOFTWARE_RESET); |
| |
| if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) |
| gpio_set_value(sensor->platform_data->xshutdown, 0); |
| if (sensor->platform_data->set_xclk) |
| sensor->platform_data->set_xclk(&sensor->src->sd, 0); |
| else |
| clk_disable(sensor->ext_clk); |
| usleep_range(5000, 5000); |
| regulator_disable(sensor->vana); |
| sensor->streaming = 0; |
| } |
| |
| static int smiapp_set_power(struct v4l2_subdev *subdev, int on) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int ret = 0; |
| |
| mutex_lock(&sensor->power_mutex); |
| |
| /* |
| * If the power count is modified from 0 to != 0 or from != 0 |
| * to 0, update the power state. |
| */ |
| if (!sensor->power_count == !on) |
| goto out; |
| |
| if (on) { |
| /* Power on and perform initialisation. */ |
| ret = smiapp_power_on(sensor); |
| if (ret < 0) |
| goto out; |
| } else { |
| smiapp_power_off(sensor); |
| } |
| |
| /* Update the power count. */ |
| sensor->power_count += on ? 1 : -1; |
| WARN_ON(sensor->power_count < 0); |
| |
| out: |
| mutex_unlock(&sensor->power_mutex); |
| return ret; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * Video stream management |
| */ |
| |
| static int smiapp_start_streaming(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_CSI_DATA_FORMAT, |
| (sensor->csi_format->width << 8) | |
| sensor->csi_format->compressed); |
| if (rval) |
| goto out; |
| |
| rval = smiapp_pll_configure(sensor); |
| if (rval) |
| goto out; |
| |
| /* Analog crop start coordinates */ |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_X_ADDR_START, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_ADDR_START, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top); |
| if (rval < 0) |
| goto out; |
| |
| /* Analog crop end coordinates */ |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_X_ADDR_END, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].left |
| + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].width - 1); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_Y_ADDR_END, |
| sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].top |
| + sensor->pixel_array->crop[SMIAPP_PA_PAD_SRC].height - 1); |
| if (rval < 0) |
| goto out; |
| |
| /* |
| * Output from pixel array, including blanking, is set using |
| * controls below. No need to set here. |
| */ |
| |
| /* Digital crop */ |
| if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] |
| == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_DIGITAL_CROP_X_OFFSET, |
| sensor->scaler->crop[SMIAPP_PAD_SINK].left); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_DIGITAL_CROP_Y_OFFSET, |
| sensor->scaler->crop[SMIAPP_PAD_SINK].top); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_WIDTH, |
| sensor->scaler->crop[SMIAPP_PAD_SINK].width); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write( |
| sensor, SMIAPP_REG_U16_DIGITAL_CROP_IMAGE_HEIGHT, |
| sensor->scaler->crop[SMIAPP_PAD_SINK].height); |
| if (rval < 0) |
| goto out; |
| } |
| |
| /* Scaling */ |
| if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| != SMIAPP_SCALING_CAPABILITY_NONE) { |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALING_MODE, |
| sensor->scaling_mode); |
| if (rval < 0) |
| goto out; |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_SCALE_M, |
| sensor->scale_m); |
| if (rval < 0) |
| goto out; |
| } |
| |
| /* Output size from sensor */ |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_X_OUTPUT_SIZE, |
| sensor->src->crop[SMIAPP_PAD_SRC].width); |
| if (rval < 0) |
| goto out; |
| rval = smiapp_write(sensor, SMIAPP_REG_U16_Y_OUTPUT_SIZE, |
| sensor->src->crop[SMIAPP_PAD_SRC].height); |
| if (rval < 0) |
| goto out; |
| |
| if ((sensor->flash_capability & |
| (SMIAPP_FLASH_MODE_CAPABILITY_SINGLE_STROBE | |
| SMIAPP_FLASH_MODE_CAPABILITY_MULTIPLE_STROBE)) && |
| sensor->platform_data->strobe_setup != NULL && |
| sensor->platform_data->strobe_setup->trigger != 0) { |
| rval = smiapp_setup_flash_strobe(sensor); |
| if (rval) |
| goto out; |
| } |
| |
| rval = smiapp_call_quirk(sensor, pre_streamon); |
| if (rval) { |
| dev_err(&client->dev, "pre_streamon quirks failed\n"); |
| goto out; |
| } |
| |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT, |
| SMIAPP_MODE_SELECT_STREAMING); |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static int smiapp_stop_streaming(struct smiapp_sensor *sensor) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = smiapp_write(sensor, SMIAPP_REG_U8_MODE_SELECT, |
| SMIAPP_MODE_SELECT_SOFTWARE_STANDBY); |
| if (rval) |
| goto out; |
| |
| rval = smiapp_call_quirk(sensor, post_streamoff); |
| if (rval) |
| dev_err(&client->dev, "post_streamoff quirks failed\n"); |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| return rval; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 subdev video operations |
| */ |
| |
| static int smiapp_set_stream(struct v4l2_subdev *subdev, int enable) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int rval; |
| |
| if (sensor->streaming == enable) |
| return 0; |
| |
| if (enable) { |
| sensor->streaming = 1; |
| rval = smiapp_start_streaming(sensor); |
| if (rval < 0) |
| sensor->streaming = 0; |
| } else { |
| rval = smiapp_stop_streaming(sensor); |
| sensor->streaming = 0; |
| } |
| |
| return rval; |
| } |
| |
| static int smiapp_enum_mbus_code(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_mbus_code_enum *code) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int i; |
| int idx = -1; |
| int rval = -EINVAL; |
| |
| mutex_lock(&sensor->mutex); |
| |
| dev_err(&client->dev, "subdev %s, pad %d, index %d\n", |
| subdev->name, code->pad, code->index); |
| |
| if (subdev != &sensor->src->sd || code->pad != SMIAPP_PAD_SRC) { |
| if (code->index) |
| goto out; |
| |
| code->code = sensor->internal_csi_format->code; |
| rval = 0; |
| goto out; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) { |
| if (sensor->mbus_frame_fmts & (1 << i)) |
| idx++; |
| |
| if (idx == code->index) { |
| code->code = smiapp_csi_data_formats[i].code; |
| dev_err(&client->dev, "found index %d, i %d, code %x\n", |
| code->index, i, code->code); |
| rval = 0; |
| break; |
| } |
| } |
| |
| out: |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static u32 __smiapp_get_mbus_code(struct v4l2_subdev *subdev, |
| unsigned int pad) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| |
| if (subdev == &sensor->src->sd && pad == SMIAPP_PAD_SRC) |
| return sensor->csi_format->code; |
| else |
| return sensor->internal_csi_format->code; |
| } |
| |
| static int __smiapp_get_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| |
| if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { |
| fmt->format = *v4l2_subdev_get_try_format(fh, fmt->pad); |
| } else { |
| struct v4l2_rect *r; |
| |
| if (fmt->pad == ssd->source_pad) |
| r = &ssd->crop[ssd->source_pad]; |
| else |
| r = &ssd->sink_fmt; |
| |
| fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad); |
| fmt->format.width = r->width; |
| fmt->format.height = r->height; |
| } |
| |
| return 0; |
| } |
| |
| static int smiapp_get_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = __smiapp_get_format(subdev, fh, fmt); |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| |
| static void smiapp_get_crop_compose(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_rect **crops, |
| struct v4l2_rect **comps, int which) |
| { |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| unsigned int i; |
| |
| if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (crops) |
| for (i = 0; i < subdev->entity.num_pads; i++) |
| crops[i] = &ssd->crop[i]; |
| if (comps) |
| *comps = &ssd->compose; |
| } else { |
| if (crops) { |
| for (i = 0; i < subdev->entity.num_pads; i++) { |
| crops[i] = v4l2_subdev_get_try_crop(fh, i); |
| BUG_ON(!crops[i]); |
| } |
| } |
| if (comps) { |
| *comps = v4l2_subdev_get_try_compose(fh, |
| SMIAPP_PAD_SINK); |
| BUG_ON(!*comps); |
| } |
| } |
| } |
| |
| /* Changes require propagation only on sink pad. */ |
| static void smiapp_propagate(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, int which, |
| int target) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *comp, *crops[SMIAPP_PADS]; |
| |
| smiapp_get_crop_compose(subdev, fh, crops, &comp, which); |
| |
| switch (target) { |
| case V4L2_SEL_TGT_CROP: |
| comp->width = crops[SMIAPP_PAD_SINK]->width; |
| comp->height = crops[SMIAPP_PAD_SINK]->height; |
| if (which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (ssd == sensor->scaler) { |
| sensor->scale_m = |
| sensor->limits[ |
| SMIAPP_LIMIT_SCALER_N_MIN]; |
| sensor->scaling_mode = |
| SMIAPP_SCALING_MODE_NONE; |
| } else if (ssd == sensor->binner) { |
| sensor->binning_horizontal = 1; |
| sensor->binning_vertical = 1; |
| } |
| } |
| /* Fall through */ |
| case V4L2_SEL_TGT_COMPOSE: |
| *crops[SMIAPP_PAD_SRC] = *comp; |
| break; |
| default: |
| BUG(); |
| } |
| } |
| |
| static const struct smiapp_csi_data_format |
| *smiapp_validate_csi_data_format(struct smiapp_sensor *sensor, u32 code) |
| { |
| const struct smiapp_csi_data_format *csi_format = sensor->csi_format; |
| unsigned int i; |
| |
| for (i = 0; i < ARRAY_SIZE(smiapp_csi_data_formats); i++) { |
| if (sensor->mbus_frame_fmts & (1 << i) |
| && smiapp_csi_data_formats[i].code == code) |
| return &smiapp_csi_data_formats[i]; |
| } |
| |
| return csi_format; |
| } |
| |
| static int smiapp_set_format(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_format *fmt) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *crops[SMIAPP_PADS]; |
| |
| mutex_lock(&sensor->mutex); |
| |
| /* |
| * Media bus code is changeable on src subdev's source pad. On |
| * other source pads we just get format here. |
| */ |
| if (fmt->pad == ssd->source_pad) { |
| u32 code = fmt->format.code; |
| int rval = __smiapp_get_format(subdev, fh, fmt); |
| |
| if (!rval && subdev == &sensor->src->sd) { |
| const struct smiapp_csi_data_format *csi_format = |
| smiapp_validate_csi_data_format(sensor, code); |
| if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) |
| sensor->csi_format = csi_format; |
| fmt->format.code = csi_format->code; |
| } |
| |
| mutex_unlock(&sensor->mutex); |
| return rval; |
| } |
| |
| /* Sink pad. Width and height are changeable here. */ |
| fmt->format.code = __smiapp_get_mbus_code(subdev, fmt->pad); |
| fmt->format.width &= ~1; |
| fmt->format.height &= ~1; |
| |
| fmt->format.width = |
| clamp(fmt->format.width, |
| sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE], |
| sensor->limits[SMIAPP_LIMIT_MAX_X_OUTPUT_SIZE]); |
| fmt->format.height = |
| clamp(fmt->format.height, |
| sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE], |
| sensor->limits[SMIAPP_LIMIT_MAX_Y_OUTPUT_SIZE]); |
| |
| smiapp_get_crop_compose(subdev, fh, crops, NULL, fmt->which); |
| |
| crops[ssd->sink_pad]->left = 0; |
| crops[ssd->sink_pad]->top = 0; |
| crops[ssd->sink_pad]->width = fmt->format.width; |
| crops[ssd->sink_pad]->height = fmt->format.height; |
| if (fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) |
| ssd->sink_fmt = *crops[ssd->sink_pad]; |
| smiapp_propagate(subdev, fh, fmt->which, |
| V4L2_SEL_TGT_CROP); |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return 0; |
| } |
| |
| /* |
| * Calculate goodness of scaled image size compared to expected image |
| * size and flags provided. |
| */ |
| #define SCALING_GOODNESS 100000 |
| #define SCALING_GOODNESS_EXTREME 100000000 |
| static int scaling_goodness(struct v4l2_subdev *subdev, int w, int ask_w, |
| int h, int ask_h, u32 flags) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| int val = 0; |
| |
| w &= ~1; |
| ask_w &= ~1; |
| h &= ~1; |
| ask_h &= ~1; |
| |
| if (flags & V4L2_SEL_FLAG_GE) { |
| if (w < ask_w) |
| val -= SCALING_GOODNESS; |
| if (h < ask_h) |
| val -= SCALING_GOODNESS; |
| } |
| |
| if (flags & V4L2_SEL_FLAG_LE) { |
| if (w > ask_w) |
| val -= SCALING_GOODNESS; |
| if (h > ask_h) |
| val -= SCALING_GOODNESS; |
| } |
| |
| val -= abs(w - ask_w); |
| val -= abs(h - ask_h); |
| |
| if (w < sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE]) |
| val -= SCALING_GOODNESS_EXTREME; |
| |
| dev_dbg(&client->dev, "w %d ask_w %d h %d ask_h %d goodness %d\n", |
| w, ask_h, h, ask_h, val); |
| |
| return val; |
| } |
| |
| static void smiapp_set_compose_binner(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_selection *sel, |
| struct v4l2_rect **crops, |
| struct v4l2_rect *comp) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int i; |
| unsigned int binh = 1, binv = 1; |
| unsigned int best = scaling_goodness( |
| subdev, |
| crops[SMIAPP_PAD_SINK]->width, sel->r.width, |
| crops[SMIAPP_PAD_SINK]->height, sel->r.height, sel->flags); |
| |
| for (i = 0; i < sensor->nbinning_subtypes; i++) { |
| int this = scaling_goodness( |
| subdev, |
| crops[SMIAPP_PAD_SINK]->width |
| / sensor->binning_subtypes[i].horizontal, |
| sel->r.width, |
| crops[SMIAPP_PAD_SINK]->height |
| / sensor->binning_subtypes[i].vertical, |
| sel->r.height, sel->flags); |
| |
| if (this > best) { |
| binh = sensor->binning_subtypes[i].horizontal; |
| binv = sensor->binning_subtypes[i].vertical; |
| best = this; |
| } |
| } |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sensor->binning_vertical = binv; |
| sensor->binning_horizontal = binh; |
| } |
| |
| sel->r.width = (crops[SMIAPP_PAD_SINK]->width / binh) & ~1; |
| sel->r.height = (crops[SMIAPP_PAD_SINK]->height / binv) & ~1; |
| } |
| |
| /* |
| * Calculate best scaling ratio and mode for given output resolution. |
| * |
| * Try all of these: horizontal ratio, vertical ratio and smallest |
| * size possible (horizontally). |
| * |
| * Also try whether horizontal scaler or full scaler gives a better |
| * result. |
| */ |
| static void smiapp_set_compose_scaler(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_selection *sel, |
| struct v4l2_rect **crops, |
| struct v4l2_rect *comp) |
| { |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| u32 min, max, a, b, max_m; |
| u32 scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; |
| int mode = SMIAPP_SCALING_MODE_HORIZONTAL; |
| u32 try[4]; |
| u32 ntry = 0; |
| unsigned int i; |
| int best = INT_MIN; |
| |
| sel->r.width = min_t(unsigned int, sel->r.width, |
| crops[SMIAPP_PAD_SINK]->width); |
| sel->r.height = min_t(unsigned int, sel->r.height, |
| crops[SMIAPP_PAD_SINK]->height); |
| |
| a = crops[SMIAPP_PAD_SINK]->width |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.width; |
| b = crops[SMIAPP_PAD_SINK]->height |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] / sel->r.height; |
| max_m = crops[SMIAPP_PAD_SINK]->width |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN] |
| / sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE]; |
| |
| a = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX], |
| max(a, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN])); |
| b = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX], |
| max(b, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN])); |
| max_m = min(sensor->limits[SMIAPP_LIMIT_SCALER_M_MAX], |
| max(max_m, sensor->limits[SMIAPP_LIMIT_SCALER_M_MIN])); |
| |
| dev_dbg(&client->dev, "scaling: a %d b %d max_m %d\n", a, b, max_m); |
| |
| min = min(max_m, min(a, b)); |
| max = min(max_m, max(a, b)); |
| |
| try[ntry] = min; |
| ntry++; |
| if (min != max) { |
| try[ntry] = max; |
| ntry++; |
| } |
| if (max != max_m) { |
| try[ntry] = min + 1; |
| ntry++; |
| if (min != max) { |
| try[ntry] = max + 1; |
| ntry++; |
| } |
| } |
| |
| for (i = 0; i < ntry; i++) { |
| int this = scaling_goodness( |
| subdev, |
| crops[SMIAPP_PAD_SINK]->width |
| / try[i] |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], |
| sel->r.width, |
| crops[SMIAPP_PAD_SINK]->height, |
| sel->r.height, |
| sel->flags); |
| |
| dev_dbg(&client->dev, "trying factor %d (%d)\n", try[i], i); |
| |
| if (this > best) { |
| scale_m = try[i]; |
| mode = SMIAPP_SCALING_MODE_HORIZONTAL; |
| best = this; |
| } |
| |
| if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| == SMIAPP_SCALING_CAPABILITY_HORIZONTAL) |
| continue; |
| |
| this = scaling_goodness( |
| subdev, crops[SMIAPP_PAD_SINK]->width |
| / try[i] |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], |
| sel->r.width, |
| crops[SMIAPP_PAD_SINK]->height |
| / try[i] |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN], |
| sel->r.height, |
| sel->flags); |
| |
| if (this > best) { |
| scale_m = try[i]; |
| mode = SMIAPP_SCALING_MODE_BOTH; |
| best = this; |
| } |
| } |
| |
| sel->r.width = |
| (crops[SMIAPP_PAD_SINK]->width |
| / scale_m |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) & ~1; |
| if (mode == SMIAPP_SCALING_MODE_BOTH) |
| sel->r.height = |
| (crops[SMIAPP_PAD_SINK]->height |
| / scale_m |
| * sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]) |
| & ~1; |
| else |
| sel->r.height = crops[SMIAPP_PAD_SINK]->height; |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sensor->scale_m = scale_m; |
| sensor->scaling_mode = mode; |
| } |
| } |
| /* We're only called on source pads. This function sets scaling. */ |
| static int smiapp_set_compose(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *comp, *crops[SMIAPP_PADS]; |
| |
| smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which); |
| |
| sel->r.top = 0; |
| sel->r.left = 0; |
| |
| if (ssd == sensor->binner) |
| smiapp_set_compose_binner(subdev, fh, sel, crops, comp); |
| else |
| smiapp_set_compose_scaler(subdev, fh, sel, crops, comp); |
| |
| *comp = sel->r; |
| smiapp_propagate(subdev, fh, sel->which, |
| V4L2_SEL_TGT_COMPOSE); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) |
| return smiapp_update_mode(sensor); |
| |
| return 0; |
| } |
| |
| static int __smiapp_sel_supported(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| |
| /* We only implement crop in three places. */ |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP: |
| case V4L2_SEL_TGT_CROP_BOUNDS: |
| if (ssd == sensor->pixel_array |
| && sel->pad == SMIAPP_PA_PAD_SRC) |
| return 0; |
| if (ssd == sensor->src |
| && sel->pad == SMIAPP_PAD_SRC) |
| return 0; |
| if (ssd == sensor->scaler |
| && sel->pad == SMIAPP_PAD_SINK |
| && sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] |
| == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) |
| return 0; |
| return -EINVAL; |
| case V4L2_SEL_TGT_COMPOSE: |
| case V4L2_SEL_TGT_COMPOSE_BOUNDS: |
| if (sel->pad == ssd->source_pad) |
| return -EINVAL; |
| if (ssd == sensor->binner) |
| return 0; |
| if (ssd == sensor->scaler |
| && sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| != SMIAPP_SCALING_CAPABILITY_NONE) |
| return 0; |
| /* Fall through */ |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| static int smiapp_set_crop(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *src_size, *crops[SMIAPP_PADS]; |
| struct v4l2_rect _r; |
| |
| smiapp_get_crop_compose(subdev, fh, crops, NULL, sel->which); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| if (sel->pad == ssd->sink_pad) |
| src_size = &ssd->sink_fmt; |
| else |
| src_size = &ssd->compose; |
| } else { |
| if (sel->pad == ssd->sink_pad) { |
| _r.left = 0; |
| _r.top = 0; |
| _r.width = v4l2_subdev_get_try_format(fh, sel->pad) |
| ->width; |
| _r.height = v4l2_subdev_get_try_format(fh, sel->pad) |
| ->height; |
| src_size = &_r; |
| } else { |
| src_size = |
| v4l2_subdev_get_try_compose( |
| fh, ssd->sink_pad); |
| } |
| } |
| |
| if (ssd == sensor->src && sel->pad == SMIAPP_PAD_SRC) { |
| sel->r.left = 0; |
| sel->r.top = 0; |
| } |
| |
| sel->r.width = min(sel->r.width, src_size->width); |
| sel->r.height = min(sel->r.height, src_size->height); |
| |
| sel->r.left = min(sel->r.left, src_size->width - sel->r.width); |
| sel->r.top = min(sel->r.top, src_size->height - sel->r.height); |
| |
| *crops[sel->pad] = sel->r; |
| |
| if (ssd != sensor->pixel_array && sel->pad == SMIAPP_PAD_SINK) |
| smiapp_propagate(subdev, fh, sel->which, |
| V4L2_SEL_TGT_CROP); |
| |
| return 0; |
| } |
| |
| static int __smiapp_get_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct smiapp_subdev *ssd = to_smiapp_subdev(subdev); |
| struct v4l2_rect *comp, *crops[SMIAPP_PADS]; |
| struct v4l2_rect sink_fmt; |
| int ret; |
| |
| ret = __smiapp_sel_supported(subdev, sel); |
| if (ret) |
| return ret; |
| |
| smiapp_get_crop_compose(subdev, fh, crops, &comp, sel->which); |
| |
| if (sel->which == V4L2_SUBDEV_FORMAT_ACTIVE) { |
| sink_fmt = ssd->sink_fmt; |
| } else { |
| struct v4l2_mbus_framefmt *fmt = |
| v4l2_subdev_get_try_format(fh, ssd->sink_pad); |
| |
| sink_fmt.left = 0; |
| sink_fmt.top = 0; |
| sink_fmt.width = fmt->width; |
| sink_fmt.height = fmt->height; |
| } |
| |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP_BOUNDS: |
| if (ssd == sensor->pixel_array) { |
| sel->r.width = |
| sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1; |
| sel->r.height = |
| sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1; |
| } else if (sel->pad == ssd->sink_pad) { |
| sel->r = sink_fmt; |
| } else { |
| sel->r = *comp; |
| } |
| break; |
| case V4L2_SEL_TGT_CROP: |
| case V4L2_SEL_TGT_COMPOSE_BOUNDS: |
| sel->r = *crops[sel->pad]; |
| break; |
| case V4L2_SEL_TGT_COMPOSE: |
| sel->r = *comp; |
| break; |
| } |
| |
| return 0; |
| } |
| |
| static int smiapp_get_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int rval; |
| |
| mutex_lock(&sensor->mutex); |
| rval = __smiapp_get_selection(subdev, fh, sel); |
| mutex_unlock(&sensor->mutex); |
| |
| return rval; |
| } |
| static int smiapp_set_selection(struct v4l2_subdev *subdev, |
| struct v4l2_subdev_fh *fh, |
| struct v4l2_subdev_selection *sel) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int ret; |
| |
| ret = __smiapp_sel_supported(subdev, sel); |
| if (ret) |
| return ret; |
| |
| mutex_lock(&sensor->mutex); |
| |
| sel->r.left = max(0, sel->r.left & ~1); |
| sel->r.top = max(0, sel->r.top & ~1); |
| sel->r.width = max(0, SMIAPP_ALIGN_DIM(sel->r.width, sel->flags)); |
| sel->r.height = max(0, SMIAPP_ALIGN_DIM(sel->r.height, sel->flags)); |
| |
| sel->r.width = max_t(unsigned int, |
| sensor->limits[SMIAPP_LIMIT_MIN_X_OUTPUT_SIZE], |
| sel->r.width); |
| sel->r.height = max_t(unsigned int, |
| sensor->limits[SMIAPP_LIMIT_MIN_Y_OUTPUT_SIZE], |
| sel->r.height); |
| |
| switch (sel->target) { |
| case V4L2_SEL_TGT_CROP: |
| ret = smiapp_set_crop(subdev, fh, sel); |
| break; |
| case V4L2_SEL_TGT_COMPOSE: |
| ret = smiapp_set_compose(subdev, fh, sel); |
| break; |
| default: |
| BUG(); |
| } |
| |
| mutex_unlock(&sensor->mutex); |
| return ret; |
| } |
| |
| static int smiapp_get_skip_frames(struct v4l2_subdev *subdev, u32 *frames) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| |
| *frames = sensor->frame_skip; |
| return 0; |
| } |
| |
| /* ----------------------------------------------------------------------------- |
| * sysfs attributes |
| */ |
| |
| static ssize_t |
| smiapp_sysfs_nvm_read(struct device *dev, struct device_attribute *attr, |
| char *buf) |
| { |
| struct v4l2_subdev *subdev = i2c_get_clientdata(to_i2c_client(dev)); |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int nbytes; |
| |
| if (!sensor->dev_init_done) |
| return -EBUSY; |
| |
| if (!sensor->nvm_size) { |
| /* NVM not read yet - read it now */ |
| sensor->nvm_size = sensor->platform_data->nvm_size; |
| if (smiapp_set_power(subdev, 1) < 0) |
| return -ENODEV; |
| if (smiapp_read_nvm(sensor, sensor->nvm)) { |
| dev_err(&client->dev, "nvm read failed\n"); |
| return -ENODEV; |
| } |
| smiapp_set_power(subdev, 0); |
| } |
| /* |
| * NVM is still way below a PAGE_SIZE, so we can safely |
| * assume this for now. |
| */ |
| nbytes = min_t(unsigned int, sensor->nvm_size, PAGE_SIZE); |
| memcpy(buf, sensor->nvm, nbytes); |
| |
| return nbytes; |
| } |
| static DEVICE_ATTR(nvm, S_IRUGO, smiapp_sysfs_nvm_read, NULL); |
| |
| /* ----------------------------------------------------------------------------- |
| * V4L2 subdev core operations |
| */ |
| |
| static int smiapp_identify_module(struct v4l2_subdev *subdev) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct smiapp_module_info *minfo = &sensor->minfo; |
| unsigned int i; |
| int rval = 0; |
| |
| minfo->name = SMIAPP_NAME; |
| |
| /* Module info */ |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MANUFACTURER_ID, |
| &minfo->manufacturer_id); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U16_MODEL_ID, |
| &minfo->model_id); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_REVISION_NUMBER_MAJOR, |
| &minfo->revision_number_major); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_REVISION_NUMBER_MINOR, |
| &minfo->revision_number_minor); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_MODULE_DATE_YEAR, |
| &minfo->module_year); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_MODULE_DATE_MONTH, |
| &minfo->module_month); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_MODULE_DATE_DAY, |
| &minfo->module_day); |
| |
| /* Sensor info */ |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_SENSOR_MANUFACTURER_ID, |
| &minfo->sensor_manufacturer_id); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U16_SENSOR_MODEL_ID, |
| &minfo->sensor_model_id); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_SENSOR_REVISION_NUMBER, |
| &minfo->sensor_revision_number); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, |
| SMIAPP_REG_U8_SENSOR_FIRMWARE_VERSION, |
| &minfo->sensor_firmware_version); |
| |
| /* SMIA */ |
| if (!rval) |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIA_VERSION, |
| &minfo->smia_version); |
| if (!rval) |
| rval = smiapp_read_8only(sensor, SMIAPP_REG_U8_SMIAPP_VERSION, |
| &minfo->smiapp_version); |
| |
| if (rval) { |
| dev_err(&client->dev, "sensor detection failed\n"); |
| return -ENODEV; |
| } |
| |
| dev_dbg(&client->dev, "module 0x%2.2x-0x%4.4x\n", |
| minfo->manufacturer_id, minfo->model_id); |
| |
| dev_dbg(&client->dev, |
| "module revision 0x%2.2x-0x%2.2x date %2.2d-%2.2d-%2.2d\n", |
| minfo->revision_number_major, minfo->revision_number_minor, |
| minfo->module_year, minfo->module_month, minfo->module_day); |
| |
| dev_dbg(&client->dev, "sensor 0x%2.2x-0x%4.4x\n", |
| minfo->sensor_manufacturer_id, minfo->sensor_model_id); |
| |
| dev_dbg(&client->dev, |
| "sensor revision 0x%2.2x firmware version 0x%2.2x\n", |
| minfo->sensor_revision_number, minfo->sensor_firmware_version); |
| |
| dev_dbg(&client->dev, "smia version %2.2d smiapp version %2.2d\n", |
| minfo->smia_version, minfo->smiapp_version); |
| |
| /* |
| * Some modules have bad data in the lvalues below. Hope the |
| * rvalues have better stuff. The lvalues are module |
| * parameters whereas the rvalues are sensor parameters. |
| */ |
| if (!minfo->manufacturer_id && !minfo->model_id) { |
| minfo->manufacturer_id = minfo->sensor_manufacturer_id; |
| minfo->model_id = minfo->sensor_model_id; |
| minfo->revision_number_major = minfo->sensor_revision_number; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(smiapp_module_idents); i++) { |
| if (smiapp_module_idents[i].manufacturer_id |
| != minfo->manufacturer_id) |
| continue; |
| if (smiapp_module_idents[i].model_id != minfo->model_id) |
| continue; |
| if (smiapp_module_idents[i].flags |
| & SMIAPP_MODULE_IDENT_FLAG_REV_LE) { |
| if (smiapp_module_idents[i].revision_number_major |
| < minfo->revision_number_major) |
| continue; |
| } else { |
| if (smiapp_module_idents[i].revision_number_major |
| != minfo->revision_number_major) |
| continue; |
| } |
| |
| minfo->name = smiapp_module_idents[i].name; |
| minfo->quirk = smiapp_module_idents[i].quirk; |
| break; |
| } |
| |
| if (i >= ARRAY_SIZE(smiapp_module_idents)) |
| dev_warn(&client->dev, |
| "no quirks for this module; let's hope it's fully compliant\n"); |
| |
| dev_dbg(&client->dev, "the sensor is called %s, ident %2.2x%4.4x%2.2x\n", |
| minfo->name, minfo->manufacturer_id, minfo->model_id, |
| minfo->revision_number_major); |
| |
| strlcpy(subdev->name, sensor->minfo.name, sizeof(subdev->name)); |
| |
| return 0; |
| } |
| |
| static const struct v4l2_subdev_ops smiapp_ops; |
| static const struct v4l2_subdev_internal_ops smiapp_internal_ops; |
| static const struct media_entity_operations smiapp_entity_ops; |
| |
| static int smiapp_registered(struct v4l2_subdev *subdev) |
| { |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| struct i2c_client *client = v4l2_get_subdevdata(subdev); |
| struct smiapp_subdev *last = NULL; |
| u32 tmp; |
| unsigned int i; |
| int rval; |
| |
| sensor->vana = regulator_get(&client->dev, "VANA"); |
| if (IS_ERR(sensor->vana)) { |
| dev_err(&client->dev, "could not get regulator for vana\n"); |
| return -ENODEV; |
| } |
| |
| if (!sensor->platform_data->set_xclk) { |
| sensor->ext_clk = clk_get(&client->dev, |
| sensor->platform_data->ext_clk_name); |
| if (IS_ERR(sensor->ext_clk)) { |
| dev_err(&client->dev, "could not get clock %s\n", |
| sensor->platform_data->ext_clk_name); |
| rval = -ENODEV; |
| goto out_clk_get; |
| } |
| |
| rval = clk_set_rate(sensor->ext_clk, |
| sensor->platform_data->ext_clk); |
| if (rval < 0) { |
| dev_err(&client->dev, |
| "unable to set clock %s freq to %u\n", |
| sensor->platform_data->ext_clk_name, |
| sensor->platform_data->ext_clk); |
| rval = -ENODEV; |
| goto out_clk_set_rate; |
| } |
| } |
| |
| if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) { |
| if (gpio_request_one(sensor->platform_data->xshutdown, 0, |
| "SMIA++ xshutdown") != 0) { |
| dev_err(&client->dev, |
| "unable to acquire reset gpio %d\n", |
| sensor->platform_data->xshutdown); |
| rval = -ENODEV; |
| goto out_clk_set_rate; |
| } |
| } |
| |
| rval = smiapp_power_on(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_smiapp_power_on; |
| } |
| |
| rval = smiapp_identify_module(subdev); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| |
| rval = smiapp_get_all_limits(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| |
| /* |
| * Handle Sensor Module orientation on the board. |
| * |
| * The application of H-FLIP and V-FLIP on the sensor is modified by |
| * the sensor orientation on the board. |
| * |
| * For SMIAPP_BOARD_SENSOR_ORIENT_180 the default behaviour is to set |
| * both H-FLIP and V-FLIP for normal operation which also implies |
| * that a set/unset operation for user space HFLIP and VFLIP v4l2 |
| * controls will need to be internally inverted. |
| * |
| * Rotation also changes the bayer pattern. |
| */ |
| if (sensor->platform_data->module_board_orient == |
| SMIAPP_MODULE_BOARD_ORIENT_180) |
| sensor->hvflip_inv_mask = SMIAPP_IMAGE_ORIENTATION_HFLIP | |
| SMIAPP_IMAGE_ORIENTATION_VFLIP; |
| |
| rval = smiapp_get_mbus_formats(sensor); |
| if (rval) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| |
| if (sensor->limits[SMIAPP_LIMIT_BINNING_CAPABILITY]) { |
| u32 val; |
| |
| rval = smiapp_read(sensor, |
| SMIAPP_REG_U8_BINNING_SUBTYPES, &val); |
| if (rval < 0) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| sensor->nbinning_subtypes = min_t(u8, val, |
| SMIAPP_BINNING_SUBTYPES); |
| |
| for (i = 0; i < sensor->nbinning_subtypes; i++) { |
| rval = smiapp_read( |
| sensor, SMIAPP_REG_U8_BINNING_TYPE_n(i), &val); |
| if (rval < 0) { |
| rval = -ENODEV; |
| goto out_power_off; |
| } |
| sensor->binning_subtypes[i] = |
| *(struct smiapp_binning_subtype *)&val; |
| |
| dev_dbg(&client->dev, "binning %xx%x\n", |
| sensor->binning_subtypes[i].horizontal, |
| sensor->binning_subtypes[i].vertical); |
| } |
| } |
| sensor->binning_horizontal = 1; |
| sensor->binning_vertical = 1; |
| |
| /* SMIA++ NVM initialization - it will be read from the sensor |
| * when it is first requested by userspace. |
| */ |
| if (sensor->minfo.smiapp_version && sensor->platform_data->nvm_size) { |
| sensor->nvm = kzalloc(sensor->platform_data->nvm_size, |
| GFP_KERNEL); |
| if (sensor->nvm == NULL) { |
| dev_err(&client->dev, "nvm buf allocation failed\n"); |
| rval = -ENOMEM; |
| goto out_power_off; |
| } |
| |
| if (device_create_file(&client->dev, &dev_attr_nvm) != 0) { |
| dev_err(&client->dev, "sysfs nvm entry failed\n"); |
| rval = -EBUSY; |
| goto out_power_off; |
| } |
| } |
| |
| rval = smiapp_call_quirk(sensor, limits); |
| if (rval) { |
| dev_err(&client->dev, "limits quirks failed\n"); |
| goto out_nvm_release; |
| } |
| |
| /* We consider this as profile 0 sensor if any of these are zero. */ |
| if (!sensor->limits[SMIAPP_LIMIT_MIN_OP_SYS_CLK_DIV] || |
| !sensor->limits[SMIAPP_LIMIT_MAX_OP_SYS_CLK_DIV] || |
| !sensor->limits[SMIAPP_LIMIT_MIN_OP_PIX_CLK_DIV] || |
| !sensor->limits[SMIAPP_LIMIT_MAX_OP_PIX_CLK_DIV]) { |
| sensor->minfo.smiapp_profile = SMIAPP_PROFILE_0; |
| } else if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| != SMIAPP_SCALING_CAPABILITY_NONE) { |
| if (sensor->limits[SMIAPP_LIMIT_SCALING_CAPABILITY] |
| == SMIAPP_SCALING_CAPABILITY_HORIZONTAL) |
| sensor->minfo.smiapp_profile = SMIAPP_PROFILE_1; |
| else |
| sensor->minfo.smiapp_profile = SMIAPP_PROFILE_2; |
| sensor->scaler = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| } else if (sensor->limits[SMIAPP_LIMIT_DIGITAL_CROP_CAPABILITY] |
| == SMIAPP_DIGITAL_CROP_CAPABILITY_INPUT_CROP) { |
| sensor->scaler = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| } |
| sensor->binner = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| sensor->pixel_array = &sensor->ssds[sensor->ssds_used]; |
| sensor->ssds_used++; |
| |
| sensor->scale_m = sensor->limits[SMIAPP_LIMIT_SCALER_N_MIN]; |
| |
| for (i = 0; i < SMIAPP_SUBDEVS; i++) { |
| struct { |
| struct smiapp_subdev *ssd; |
| char *name; |
| } const __this[] = { |
| { sensor->scaler, "scaler", }, |
| { sensor->binner, "binner", }, |
| { sensor->pixel_array, "pixel array", }, |
| }, *_this = &__this[i]; |
| struct smiapp_subdev *this = _this->ssd; |
| |
| if (!this) |
| continue; |
| |
| if (this != sensor->src) |
| v4l2_subdev_init(&this->sd, &smiapp_ops); |
| |
| this->sensor = sensor; |
| |
| if (this == sensor->pixel_array) { |
| this->npads = 1; |
| } else { |
| this->npads = 2; |
| this->source_pad = 1; |
| } |
| |
| snprintf(this->sd.name, |
| sizeof(this->sd.name), "%s %s", |
| sensor->minfo.name, _this->name); |
| |
| this->sink_fmt.width = |
| sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1; |
| this->sink_fmt.height = |
| sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1; |
| this->compose.width = this->sink_fmt.width; |
| this->compose.height = this->sink_fmt.height; |
| this->crop[this->source_pad] = this->compose; |
| this->pads[this->source_pad].flags = MEDIA_PAD_FL_SOURCE; |
| if (this != sensor->pixel_array) { |
| this->crop[this->sink_pad] = this->compose; |
| this->pads[this->sink_pad].flags = MEDIA_PAD_FL_SINK; |
| } |
| |
| this->sd.entity.ops = &smiapp_entity_ops; |
| |
| if (last == NULL) { |
| last = this; |
| continue; |
| } |
| |
| this->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; |
| this->sd.internal_ops = &smiapp_internal_ops; |
| this->sd.owner = NULL; |
| v4l2_set_subdevdata(&this->sd, client); |
| |
| rval = media_entity_init(&this->sd.entity, |
| this->npads, this->pads, 0); |
| if (rval) { |
| dev_err(&client->dev, |
| "media_entity_init failed\n"); |
| goto out_nvm_release; |
| } |
| |
| rval = media_entity_create_link(&this->sd.entity, |
| this->source_pad, |
| &last->sd.entity, |
| last->sink_pad, |
| MEDIA_LNK_FL_ENABLED | |
| MEDIA_LNK_FL_IMMUTABLE); |
| if (rval) { |
| dev_err(&client->dev, |
| "media_entity_create_link failed\n"); |
| goto out_nvm_release; |
| } |
| |
| rval = v4l2_device_register_subdev(sensor->src->sd.v4l2_dev, |
| &this->sd); |
| if (rval) { |
| dev_err(&client->dev, |
| "v4l2_device_register_subdev failed\n"); |
| goto out_nvm_release; |
| } |
| |
| last = this; |
| } |
| |
| dev_dbg(&client->dev, "profile %d\n", sensor->minfo.smiapp_profile); |
| |
| sensor->pixel_array->sd.entity.type = MEDIA_ENT_T_V4L2_SUBDEV_SENSOR; |
| |
| /* final steps */ |
| smiapp_read_frame_fmt(sensor); |
| rval = smiapp_init_controls(sensor); |
| if (rval < 0) |
| goto out_nvm_release; |
| |
| rval = smiapp_update_mode(sensor); |
| if (rval) { |
| dev_err(&client->dev, "update mode failed\n"); |
| goto out_nvm_release; |
| } |
| |
| sensor->streaming = false; |
| sensor->dev_init_done = true; |
| |
| /* check flash capability */ |
| rval = smiapp_read(sensor, SMIAPP_REG_U8_FLASH_MODE_CAPABILITY, &tmp); |
| sensor->flash_capability = tmp; |
| if (rval) |
| goto out_nvm_release; |
| |
| smiapp_power_off(sensor); |
| |
| return 0; |
| |
| out_nvm_release: |
| device_remove_file(&client->dev, &dev_attr_nvm); |
| |
| out_power_off: |
| kfree(sensor->nvm); |
| sensor->nvm = NULL; |
| smiapp_power_off(sensor); |
| |
| out_smiapp_power_on: |
| if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) |
| gpio_free(sensor->platform_data->xshutdown); |
| |
| out_clk_set_rate: |
| clk_put(sensor->ext_clk); |
| sensor->ext_clk = NULL; |
| |
| out_clk_get: |
| regulator_put(sensor->vana); |
| sensor->vana = NULL; |
| return rval; |
| } |
| |
| static int smiapp_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) |
| { |
| struct smiapp_subdev *ssd = to_smiapp_subdev(sd); |
| struct smiapp_sensor *sensor = ssd->sensor; |
| u32 mbus_code = |
| smiapp_csi_data_formats[smiapp_pixel_order(sensor)].code; |
| unsigned int i; |
| |
| mutex_lock(&sensor->mutex); |
| |
| for (i = 0; i < ssd->npads; i++) { |
| struct v4l2_mbus_framefmt *try_fmt = |
| v4l2_subdev_get_try_format(fh, i); |
| struct v4l2_rect *try_crop = v4l2_subdev_get_try_crop(fh, i); |
| struct v4l2_rect *try_comp; |
| |
| try_fmt->width = sensor->limits[SMIAPP_LIMIT_X_ADDR_MAX] + 1; |
| try_fmt->height = sensor->limits[SMIAPP_LIMIT_Y_ADDR_MAX] + 1; |
| try_fmt->code = mbus_code; |
| |
| try_crop->top = 0; |
| try_crop->left = 0; |
| try_crop->width = try_fmt->width; |
| try_crop->height = try_fmt->height; |
| |
| if (ssd != sensor->pixel_array) |
| continue; |
| |
| try_comp = v4l2_subdev_get_try_compose(fh, i); |
| *try_comp = *try_crop; |
| } |
| |
| mutex_unlock(&sensor->mutex); |
| |
| return smiapp_set_power(sd, 1); |
| } |
| |
| static int smiapp_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) |
| { |
| return smiapp_set_power(sd, 0); |
| } |
| |
| static const struct v4l2_subdev_video_ops smiapp_video_ops = { |
| .s_stream = smiapp_set_stream, |
| }; |
| |
| static const struct v4l2_subdev_core_ops smiapp_core_ops = { |
| .s_power = smiapp_set_power, |
| }; |
| |
| static const struct v4l2_subdev_pad_ops smiapp_pad_ops = { |
| .enum_mbus_code = smiapp_enum_mbus_code, |
| .get_fmt = smiapp_get_format, |
| .set_fmt = smiapp_set_format, |
| .get_selection = smiapp_get_selection, |
| .set_selection = smiapp_set_selection, |
| }; |
| |
| static const struct v4l2_subdev_sensor_ops smiapp_sensor_ops = { |
| .g_skip_frames = smiapp_get_skip_frames, |
| }; |
| |
| static const struct v4l2_subdev_ops smiapp_ops = { |
| .core = &smiapp_core_ops, |
| .video = &smiapp_video_ops, |
| .pad = &smiapp_pad_ops, |
| .sensor = &smiapp_sensor_ops, |
| }; |
| |
| static const struct media_entity_operations smiapp_entity_ops = { |
| .link_validate = v4l2_subdev_link_validate, |
| }; |
| |
| static const struct v4l2_subdev_internal_ops smiapp_internal_src_ops = { |
| .registered = smiapp_registered, |
| .open = smiapp_open, |
| .close = smiapp_close, |
| }; |
| |
| static const struct v4l2_subdev_internal_ops smiapp_internal_ops = { |
| .open = smiapp_open, |
| .close = smiapp_close, |
| }; |
| |
| /* ----------------------------------------------------------------------------- |
| * I2C Driver |
| */ |
| |
| #ifdef CONFIG_PM |
| |
| static int smiapp_suspend(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| bool streaming; |
| |
| BUG_ON(mutex_is_locked(&sensor->mutex)); |
| |
| if (sensor->power_count == 0) |
| return 0; |
| |
| if (sensor->streaming) |
| smiapp_stop_streaming(sensor); |
| |
| streaming = sensor->streaming; |
| |
| smiapp_power_off(sensor); |
| |
| /* save state for resume */ |
| sensor->streaming = streaming; |
| |
| return 0; |
| } |
| |
| static int smiapp_resume(struct device *dev) |
| { |
| struct i2c_client *client = to_i2c_client(dev); |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| int rval; |
| |
| if (sensor->power_count == 0) |
| return 0; |
| |
| rval = smiapp_power_on(sensor); |
| if (rval) |
| return rval; |
| |
| if (sensor->streaming) |
| rval = smiapp_start_streaming(sensor); |
| |
| return rval; |
| } |
| |
| #else |
| |
| #define smiapp_suspend NULL |
| #define smiapp_resume NULL |
| |
| #endif /* CONFIG_PM */ |
| |
| static int smiapp_probe(struct i2c_client *client, |
| const struct i2c_device_id *devid) |
| { |
| struct smiapp_sensor *sensor; |
| int rval; |
| |
| if (client->dev.platform_data == NULL) |
| return -ENODEV; |
| |
| sensor = kzalloc(sizeof(*sensor), GFP_KERNEL); |
| if (sensor == NULL) |
| return -ENOMEM; |
| |
| sensor->platform_data = client->dev.platform_data; |
| mutex_init(&sensor->mutex); |
| mutex_init(&sensor->power_mutex); |
| sensor->src = &sensor->ssds[sensor->ssds_used]; |
| |
| v4l2_i2c_subdev_init(&sensor->src->sd, client, &smiapp_ops); |
| sensor->src->sd.internal_ops = &smiapp_internal_src_ops; |
| sensor->src->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; |
| sensor->src->sensor = sensor; |
| |
| sensor->src->pads[0].flags = MEDIA_PAD_FL_SOURCE; |
| rval = media_entity_init(&sensor->src->sd.entity, 2, |
| sensor->src->pads, 0); |
| if (rval < 0) |
| kfree(sensor); |
| |
| return rval; |
| } |
| |
| static int __exit smiapp_remove(struct i2c_client *client) |
| { |
| struct v4l2_subdev *subdev = i2c_get_clientdata(client); |
| struct smiapp_sensor *sensor = to_smiapp_sensor(subdev); |
| unsigned int i; |
| |
| if (sensor->power_count) { |
| if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) |
| gpio_set_value(sensor->platform_data->xshutdown, 0); |
| if (sensor->platform_data->set_xclk) |
| sensor->platform_data->set_xclk(&sensor->src->sd, 0); |
| else |
| clk_disable(sensor->ext_clk); |
| sensor->power_count = 0; |
| } |
| |
| if (sensor->nvm) { |
| device_remove_file(&client->dev, &dev_attr_nvm); |
| kfree(sensor->nvm); |
| } |
| |
| for (i = 0; i < sensor->ssds_used; i++) { |
| media_entity_cleanup(&sensor->ssds[i].sd.entity); |
| v4l2_device_unregister_subdev(&sensor->ssds[i].sd); |
| } |
| smiapp_free_controls(sensor); |
| if (sensor->platform_data->xshutdown != SMIAPP_NO_XSHUTDOWN) |
| gpio_free(sensor->platform_data->xshutdown); |
| if (sensor->ext_clk) |
| clk_put(sensor->ext_clk); |
| if (sensor->vana) |
| regulator_put(sensor->vana); |
| |
| kfree(sensor); |
| |
| return 0; |
| } |
| |
| static const struct i2c_device_id smiapp_id_table[] = { |
| { SMIAPP_NAME, 0 }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(i2c, smiapp_id_table); |
| |
| static const struct dev_pm_ops smiapp_pm_ops = { |
| .suspend = smiapp_suspend, |
| .resume = smiapp_resume, |
| }; |
| |
| static struct i2c_driver smiapp_i2c_driver = { |
| .driver = { |
| .name = SMIAPP_NAME, |
| .pm = &smiapp_pm_ops, |
| }, |
| .probe = smiapp_probe, |
| .remove = __exit_p(smiapp_remove), |
| .id_table = smiapp_id_table, |
| }; |
| |
| module_i2c_driver(smiapp_i2c_driver); |
| |
| MODULE_AUTHOR("Sakari Ailus <sakari.ailus@maxwell.research.nokia.com>"); |
| MODULE_DESCRIPTION("Generic SMIA/SMIA++ camera module driver"); |
| MODULE_LICENSE("GPL"); |