blob: 2a9d6b0d1f193257266acd9b86ecfe68949d1eb9 [file] [log] [blame]
/*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
* Copyright(c) 2017 T-Platforms. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* BSD LICENSE
*
* Copyright(c) 2015 Intel Corporation. All rights reserved.
* Copyright(c) 2017 T-Platforms. All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copy
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* PCIe NTB Perf Linux driver
*/
/*
* How to use this tool, by example.
*
* Assuming $DBG_DIR is something like:
* '/sys/kernel/debug/ntb_perf/0000:00:03.0'
* Suppose aside from local device there is at least one remote device
* connected to NTB with index 0.
*-----------------------------------------------------------------------------
* Eg: install driver with specified chunk/total orders and dma-enabled flag
*
* root@self# insmod ntb_perf.ko chunk_order=19 total_order=28 use_dma
*-----------------------------------------------------------------------------
* Eg: check NTB ports (index) and MW mapping information
*
* root@self# cat $DBG_DIR/info
*-----------------------------------------------------------------------------
* Eg: start performance test with peer (index 0) and get the test metrics
*
* root@self# echo 0 > $DBG_DIR/run
* root@self# cat $DBG_DIR/run
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/pci.h>
#include <linux/ktime.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/sizes.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <linux/random.h>
#include <linux/ntb.h>
#define DRIVER_NAME "ntb_perf"
#define DRIVER_VERSION "2.0"
MODULE_LICENSE("Dual BSD/GPL");
MODULE_VERSION(DRIVER_VERSION);
MODULE_AUTHOR("Dave Jiang <dave.jiang@intel.com>");
MODULE_DESCRIPTION("PCIe NTB Performance Measurement Tool");
#define MAX_THREADS_CNT 32
#define DEF_THREADS_CNT 1
#define MAX_CHUNK_SIZE SZ_1M
#define MAX_CHUNK_ORDER 20 /* no larger than 1M */
#define DMA_TRIES 100
#define DMA_MDELAY 10
#define MSG_TRIES 500
#define MSG_UDELAY_LOW 1000
#define MSG_UDELAY_HIGH 2000
#define PERF_BUF_LEN 1024
static unsigned long max_mw_size;
module_param(max_mw_size, ulong, 0644);
MODULE_PARM_DESC(max_mw_size, "Upper limit of memory window size");
static unsigned char chunk_order = 19; /* 512K */
module_param(chunk_order, byte, 0644);
MODULE_PARM_DESC(chunk_order, "Data chunk order [2^n] to transfer");
static unsigned char total_order = 30; /* 1G */
module_param(total_order, byte, 0644);
MODULE_PARM_DESC(total_order, "Total data order [2^n] to transfer");
static bool use_dma; /* default to 0 */
module_param(use_dma, bool, 0644);
MODULE_PARM_DESC(use_dma, "Use DMA engine to measure performance");
/*==============================================================================
* Perf driver data definition
*==============================================================================
*/
enum perf_cmd {
PERF_CMD_INVAL = -1,/* invalid spad command */
PERF_CMD_SSIZE = 0, /* send out buffer size */
PERF_CMD_RSIZE = 1, /* recv in buffer size */
PERF_CMD_SXLAT = 2, /* send in buffer xlat */
PERF_CMD_RXLAT = 3, /* recv out buffer xlat */
PERF_CMD_CLEAR = 4, /* clear allocated memory */
PERF_STS_DONE = 5, /* init is done */
PERF_STS_LNKUP = 6, /* link up state flag */
};
struct perf_ctx;
struct perf_peer {
struct perf_ctx *perf;
int pidx;
int gidx;
/* Outbound MW params */
u64 outbuf_xlat;
resource_size_t outbuf_size;
void __iomem *outbuf;
/* Inbound MW params */
dma_addr_t inbuf_xlat;
resource_size_t inbuf_size;
void *inbuf;
/* NTB connection setup service */
struct work_struct service;
unsigned long sts;
};
#define to_peer_service(__work) \
container_of(__work, struct perf_peer, service)
struct perf_thread {
struct perf_ctx *perf;
int tidx;
/* DMA-based test sync parameters */
atomic_t dma_sync;
wait_queue_head_t dma_wait;
struct dma_chan *dma_chan;
/* Data source and measured statistics */
void *src;
u64 copied;
ktime_t duration;
int status;
struct work_struct work;
};
#define to_thread_work(__work) \
container_of(__work, struct perf_thread, work)
struct perf_ctx {
struct ntb_dev *ntb;
/* Global device index and peers descriptors */
int gidx;
int pcnt;
struct perf_peer *peers;
/* Performance measuring work-threads interface */
unsigned long busy_flag;
wait_queue_head_t twait;
atomic_t tsync;
u8 tcnt;
struct perf_peer *test_peer;
struct perf_thread threads[MAX_THREADS_CNT];
/* Scratchpad/Message IO operations */
int (*cmd_send)(struct perf_peer *peer, enum perf_cmd cmd, u64 data);
int (*cmd_recv)(struct perf_ctx *perf, int *pidx, enum perf_cmd *cmd,
u64 *data);
struct dentry *dbgfs_dir;
};
/*
* Scratchpads-base commands interface
*/
#define PERF_SPAD_CNT(_pcnt) \
(3*((_pcnt) + 1))
#define PERF_SPAD_CMD(_gidx) \
(3*(_gidx))
#define PERF_SPAD_LDATA(_gidx) \
(3*(_gidx) + 1)
#define PERF_SPAD_HDATA(_gidx) \
(3*(_gidx) + 2)
#define PERF_SPAD_NOTIFY(_gidx) \
(BIT_ULL(_gidx))
/*
* Messages-base commands interface
*/
#define PERF_MSG_CNT 3
#define PERF_MSG_CMD 0
#define PERF_MSG_LDATA 1
#define PERF_MSG_HDATA 2
/*==============================================================================
* Static data declarations
*==============================================================================
*/
static struct dentry *perf_dbgfs_topdir;
static struct workqueue_struct *perf_wq __read_mostly;
/*==============================================================================
* NTB cross-link commands execution service
*==============================================================================
*/
static void perf_terminate_test(struct perf_ctx *perf);
static inline bool perf_link_is_up(struct perf_peer *peer)
{
u64 link;
link = ntb_link_is_up(peer->perf->ntb, NULL, NULL);
return !!(link & BIT_ULL_MASK(peer->pidx));
}
static int perf_spad_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
u64 data)
{
struct perf_ctx *perf = peer->perf;
int try;
u32 sts;
dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
/*
* Perform predefined number of attempts before give up.
* We are sending the data to the port specific scratchpad, so
* to prevent a multi-port access race-condition. Additionally
* there is no need in local locking since only thread-safe
* service work is using this method.
*/
for (try = 0; try < MSG_TRIES; try++) {
if (!perf_link_is_up(peer))
return -ENOLINK;
sts = ntb_peer_spad_read(perf->ntb, peer->pidx,
PERF_SPAD_CMD(perf->gidx));
if (sts != PERF_CMD_INVAL) {
usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
continue;
}
ntb_peer_spad_write(perf->ntb, peer->pidx,
PERF_SPAD_LDATA(perf->gidx),
lower_32_bits(data));
ntb_peer_spad_write(perf->ntb, peer->pidx,
PERF_SPAD_HDATA(perf->gidx),
upper_32_bits(data));
mmiowb();
ntb_peer_spad_write(perf->ntb, peer->pidx,
PERF_SPAD_CMD(perf->gidx),
cmd);
mmiowb();
ntb_peer_db_set(perf->ntb, PERF_SPAD_NOTIFY(peer->gidx));
dev_dbg(&perf->ntb->dev, "DB ring peer %#llx\n",
PERF_SPAD_NOTIFY(peer->gidx));
break;
}
return try < MSG_TRIES ? 0 : -EAGAIN;
}
static int perf_spad_cmd_recv(struct perf_ctx *perf, int *pidx,
enum perf_cmd *cmd, u64 *data)
{
struct perf_peer *peer;
u32 val;
ntb_db_clear(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
/*
* We start scanning all over, since cleared DB may have been set
* by any peer. Yes, it makes peer with smaller index being
* serviced with greater priority, but it's convenient for spad
* and message code unification and simplicity.
*/
for (*pidx = 0; *pidx < perf->pcnt; (*pidx)++) {
peer = &perf->peers[*pidx];
if (!perf_link_is_up(peer))
continue;
val = ntb_spad_read(perf->ntb, PERF_SPAD_CMD(peer->gidx));
if (val == PERF_CMD_INVAL)
continue;
*cmd = val;
val = ntb_spad_read(perf->ntb, PERF_SPAD_LDATA(peer->gidx));
*data = val;
val = ntb_spad_read(perf->ntb, PERF_SPAD_HDATA(peer->gidx));
*data |= (u64)val << 32;
/* Next command can be retrieved from now */
ntb_spad_write(perf->ntb, PERF_SPAD_CMD(peer->gidx),
PERF_CMD_INVAL);
dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
return 0;
}
return -ENODATA;
}
static int perf_msg_cmd_send(struct perf_peer *peer, enum perf_cmd cmd,
u64 data)
{
struct perf_ctx *perf = peer->perf;
int try, ret;
u64 outbits;
dev_dbg(&perf->ntb->dev, "CMD send: %d 0x%llx\n", cmd, data);
/*
* Perform predefined number of attempts before give up. Message
* registers are free of race-condition problem when accessed
* from different ports, so we don't need splitting registers
* by global device index. We also won't have local locking,
* since the method is used from service work only.
*/
outbits = ntb_msg_outbits(perf->ntb);
for (try = 0; try < MSG_TRIES; try++) {
if (!perf_link_is_up(peer))
return -ENOLINK;
ret = ntb_msg_clear_sts(perf->ntb, outbits);
if (ret)
return ret;
ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_LDATA,
lower_32_bits(data));
if (ntb_msg_read_sts(perf->ntb) & outbits) {
usleep_range(MSG_UDELAY_LOW, MSG_UDELAY_HIGH);
continue;
}
ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_HDATA,
upper_32_bits(data));
mmiowb();
/* This call shall trigger peer message event */
ntb_peer_msg_write(perf->ntb, peer->pidx, PERF_MSG_CMD, cmd);
break;
}
return try < MSG_TRIES ? 0 : -EAGAIN;
}
static int perf_msg_cmd_recv(struct perf_ctx *perf, int *pidx,
enum perf_cmd *cmd, u64 *data)
{
u64 inbits;
u32 val;
inbits = ntb_msg_inbits(perf->ntb);
if (hweight64(ntb_msg_read_sts(perf->ntb) & inbits) < 3)
return -ENODATA;
val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_CMD);
*cmd = val;
val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_LDATA);
*data = val;
val = ntb_msg_read(perf->ntb, pidx, PERF_MSG_HDATA);
*data |= (u64)val << 32;
/* Next command can be retrieved from now */
ntb_msg_clear_sts(perf->ntb, inbits);
dev_dbg(&perf->ntb->dev, "CMD recv: %d 0x%llx\n", *cmd, *data);
return 0;
}
static int perf_cmd_send(struct perf_peer *peer, enum perf_cmd cmd, u64 data)
{
struct perf_ctx *perf = peer->perf;
if (cmd == PERF_CMD_SSIZE || cmd == PERF_CMD_SXLAT)
return perf->cmd_send(peer, cmd, data);
dev_err(&perf->ntb->dev, "Send invalid command\n");
return -EINVAL;
}
static int perf_cmd_exec(struct perf_peer *peer, enum perf_cmd cmd)
{
switch (cmd) {
case PERF_CMD_SSIZE:
case PERF_CMD_RSIZE:
case PERF_CMD_SXLAT:
case PERF_CMD_RXLAT:
case PERF_CMD_CLEAR:
break;
default:
dev_err(&peer->perf->ntb->dev, "Exec invalid command\n");
return -EINVAL;
}
/* No need of memory barrier, since bit ops have invernal lock */
set_bit(cmd, &peer->sts);
dev_dbg(&peer->perf->ntb->dev, "CMD exec: %d\n", cmd);
(void)queue_work(system_highpri_wq, &peer->service);
return 0;
}
static int perf_cmd_recv(struct perf_ctx *perf)
{
struct perf_peer *peer;
int ret, pidx, cmd;
u64 data;
while (!(ret = perf->cmd_recv(perf, &pidx, &cmd, &data))) {
peer = &perf->peers[pidx];
switch (cmd) {
case PERF_CMD_SSIZE:
peer->inbuf_size = data;
return perf_cmd_exec(peer, PERF_CMD_RSIZE);
case PERF_CMD_SXLAT:
peer->outbuf_xlat = data;
return perf_cmd_exec(peer, PERF_CMD_RXLAT);
default:
dev_err(&perf->ntb->dev, "Recv invalid command\n");
return -EINVAL;
}
}
/* Return 0 if no data left to process, otherwise an error */
return ret == -ENODATA ? 0 : ret;
}
static void perf_link_event(void *ctx)
{
struct perf_ctx *perf = ctx;
struct perf_peer *peer;
bool lnk_up;
int pidx;
for (pidx = 0; pidx < perf->pcnt; pidx++) {
peer = &perf->peers[pidx];
lnk_up = perf_link_is_up(peer);
if (lnk_up &&
!test_and_set_bit(PERF_STS_LNKUP, &peer->sts)) {
perf_cmd_exec(peer, PERF_CMD_SSIZE);
} else if (!lnk_up &&
test_and_clear_bit(PERF_STS_LNKUP, &peer->sts)) {
perf_cmd_exec(peer, PERF_CMD_CLEAR);
}
}
}
static void perf_db_event(void *ctx, int vec)
{
struct perf_ctx *perf = ctx;
dev_dbg(&perf->ntb->dev, "DB vec %d mask %#llx bits %#llx\n", vec,
ntb_db_vector_mask(perf->ntb, vec), ntb_db_read(perf->ntb));
/* Just receive all available commands */
(void)perf_cmd_recv(perf);
}
static void perf_msg_event(void *ctx)
{
struct perf_ctx *perf = ctx;
dev_dbg(&perf->ntb->dev, "Msg status bits %#llx\n",
ntb_msg_read_sts(perf->ntb));
/* Messages are only sent one-by-one */
(void)perf_cmd_recv(perf);
}
static const struct ntb_ctx_ops perf_ops = {
.link_event = perf_link_event,
.db_event = perf_db_event,
.msg_event = perf_msg_event
};
static void perf_free_outbuf(struct perf_peer *peer)
{
(void)ntb_peer_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
}
static int perf_setup_outbuf(struct perf_peer *peer)
{
struct perf_ctx *perf = peer->perf;
int ret;
/* Outbuf size can be unaligned due to custom max_mw_size */
ret = ntb_peer_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
peer->outbuf_xlat, peer->outbuf_size);
if (ret) {
dev_err(&perf->ntb->dev, "Failed to set outbuf translation\n");
return ret;
}
/* Initialization is finally done */
set_bit(PERF_STS_DONE, &peer->sts);
return 0;
}
static void perf_free_inbuf(struct perf_peer *peer)
{
if (!peer->inbuf)
return;
(void)ntb_mw_clear_trans(peer->perf->ntb, peer->pidx, peer->gidx);
dma_free_coherent(&peer->perf->ntb->dev, peer->inbuf_size,
peer->inbuf, peer->inbuf_xlat);
peer->inbuf = NULL;
}
static int perf_setup_inbuf(struct perf_peer *peer)
{
resource_size_t xlat_align, size_align, size_max;
struct perf_ctx *perf = peer->perf;
int ret;
/* Get inbound MW parameters */
ret = ntb_mw_get_align(perf->ntb, peer->pidx, perf->gidx,
&xlat_align, &size_align, &size_max);
if (ret) {
dev_err(&perf->ntb->dev, "Couldn't get inbuf restrictions\n");
return ret;
}
if (peer->inbuf_size > size_max) {
dev_err(&perf->ntb->dev, "Too big inbuf size %pa > %pa\n",
&peer->inbuf_size, &size_max);
return -EINVAL;
}
peer->inbuf_size = round_up(peer->inbuf_size, size_align);
perf_free_inbuf(peer);
peer->inbuf = dma_alloc_coherent(&perf->ntb->dev, peer->inbuf_size,
&peer->inbuf_xlat, GFP_KERNEL);
if (!peer->inbuf) {
dev_err(&perf->ntb->dev, "Failed to alloc inbuf of %pa\n",
&peer->inbuf_size);
return -ENOMEM;
}
if (!IS_ALIGNED(peer->inbuf_xlat, xlat_align)) {
dev_err(&perf->ntb->dev, "Unaligned inbuf allocated\n");
goto err_free_inbuf;
}
ret = ntb_mw_set_trans(perf->ntb, peer->pidx, peer->gidx,
peer->inbuf_xlat, peer->inbuf_size);
if (ret) {
dev_err(&perf->ntb->dev, "Failed to set inbuf translation\n");
goto err_free_inbuf;
}
/*
* We submit inbuf xlat transmission cmd for execution here to follow
* the code architecture, even though this method is called from service
* work itself so the command will be executed right after it returns.
*/
(void)perf_cmd_exec(peer, PERF_CMD_SXLAT);
return 0;
err_free_inbuf:
perf_free_inbuf(peer);
return ret;
}
static void perf_service_work(struct work_struct *work)
{
struct perf_peer *peer = to_peer_service(work);
if (test_and_clear_bit(PERF_CMD_SSIZE, &peer->sts))
perf_cmd_send(peer, PERF_CMD_SSIZE, peer->outbuf_size);
if (test_and_clear_bit(PERF_CMD_RSIZE, &peer->sts))
perf_setup_inbuf(peer);
if (test_and_clear_bit(PERF_CMD_SXLAT, &peer->sts))
perf_cmd_send(peer, PERF_CMD_SXLAT, peer->inbuf_xlat);
if (test_and_clear_bit(PERF_CMD_RXLAT, &peer->sts))
perf_setup_outbuf(peer);
if (test_and_clear_bit(PERF_CMD_CLEAR, &peer->sts)) {
clear_bit(PERF_STS_DONE, &peer->sts);
if (test_bit(0, &peer->perf->busy_flag) &&
peer == peer->perf->test_peer) {
dev_warn(&peer->perf->ntb->dev,
"Freeing while test on-fly\n");
perf_terminate_test(peer->perf);
}
perf_free_outbuf(peer);
perf_free_inbuf(peer);
}
}
static int perf_init_service(struct perf_ctx *perf)
{
u64 mask;
if (ntb_peer_mw_count(perf->ntb) < perf->pcnt + 1) {
dev_err(&perf->ntb->dev, "Not enough memory windows\n");
return -EINVAL;
}
if (ntb_msg_count(perf->ntb) >= PERF_MSG_CNT) {
perf->cmd_send = perf_msg_cmd_send;
perf->cmd_recv = perf_msg_cmd_recv;
dev_dbg(&perf->ntb->dev, "Message service initialized\n");
return 0;
}
dev_dbg(&perf->ntb->dev, "Message service unsupported\n");
mask = GENMASK_ULL(perf->pcnt, 0);
if (ntb_spad_count(perf->ntb) >= PERF_SPAD_CNT(perf->pcnt) &&
(ntb_db_valid_mask(perf->ntb) & mask) == mask) {
perf->cmd_send = perf_spad_cmd_send;
perf->cmd_recv = perf_spad_cmd_recv;
dev_dbg(&perf->ntb->dev, "Scratchpad service initialized\n");
return 0;
}
dev_dbg(&perf->ntb->dev, "Scratchpad service unsupported\n");
dev_err(&perf->ntb->dev, "Command services unsupported\n");
return -EINVAL;
}
static int perf_enable_service(struct perf_ctx *perf)
{
u64 mask, incmd_bit;
int ret, sidx, scnt;
mask = ntb_db_valid_mask(perf->ntb);
(void)ntb_db_set_mask(perf->ntb, mask);
ret = ntb_set_ctx(perf->ntb, perf, &perf_ops);
if (ret)
return ret;
if (perf->cmd_send == perf_msg_cmd_send) {
u64 inbits, outbits;
inbits = ntb_msg_inbits(perf->ntb);
outbits = ntb_msg_outbits(perf->ntb);
(void)ntb_msg_set_mask(perf->ntb, inbits | outbits);
incmd_bit = BIT_ULL(__ffs64(inbits));
ret = ntb_msg_clear_mask(perf->ntb, incmd_bit);
dev_dbg(&perf->ntb->dev, "MSG sts unmasked %#llx\n", incmd_bit);
} else {
scnt = ntb_spad_count(perf->ntb);
for (sidx = 0; sidx < scnt; sidx++)
ntb_spad_write(perf->ntb, sidx, PERF_CMD_INVAL);
incmd_bit = PERF_SPAD_NOTIFY(perf->gidx);
ret = ntb_db_clear_mask(perf->ntb, incmd_bit);
dev_dbg(&perf->ntb->dev, "DB bits unmasked %#llx\n", incmd_bit);
}
if (ret) {
ntb_clear_ctx(perf->ntb);
return ret;
}
ntb_link_enable(perf->ntb, NTB_SPEED_AUTO, NTB_WIDTH_AUTO);
/* Might be not necessary */
ntb_link_event(perf->ntb);
return 0;
}
static void perf_disable_service(struct perf_ctx *perf)
{
int pidx;
ntb_link_disable(perf->ntb);
if (perf->cmd_send == perf_msg_cmd_send) {
u64 inbits;
inbits = ntb_msg_inbits(perf->ntb);
(void)ntb_msg_set_mask(perf->ntb, inbits);
} else {
(void)ntb_db_set_mask(perf->ntb, PERF_SPAD_NOTIFY(perf->gidx));
}
ntb_clear_ctx(perf->ntb);
for (pidx = 0; pidx < perf->pcnt; pidx++)
perf_cmd_exec(&perf->peers[pidx], PERF_CMD_CLEAR);
for (pidx = 0; pidx < perf->pcnt; pidx++)
flush_work(&perf->peers[pidx].service);
}
/*==============================================================================
* Performance measuring work-thread
*==============================================================================
*/
static void perf_dma_copy_callback(void *data)
{
struct perf_thread *pthr = data;
atomic_dec(&pthr->dma_sync);
wake_up(&pthr->dma_wait);
}
static int perf_copy_chunk(struct perf_thread *pthr,
void __iomem *dst, void *src, size_t len)
{
struct dma_async_tx_descriptor *tx;
struct dmaengine_unmap_data *unmap;
struct device *dma_dev;
int try = 0, ret = 0;
if (!use_dma) {
memcpy_toio(dst, src, len);
goto ret_check_tsync;
}
dma_dev = pthr->dma_chan->device->dev;
if (!is_dma_copy_aligned(pthr->dma_chan->device, offset_in_page(src),
offset_in_page(dst), len))
return -EIO;
unmap = dmaengine_get_unmap_data(dma_dev, 2, GFP_NOWAIT);
if (!unmap)
return -ENOMEM;
unmap->len = len;
unmap->addr[0] = dma_map_page(dma_dev, virt_to_page(src),
offset_in_page(src), len, DMA_TO_DEVICE);
if (dma_mapping_error(dma_dev, unmap->addr[0])) {
ret = -EIO;
goto err_free_resource;
}
unmap->to_cnt = 1;
unmap->addr[1] = dma_map_page(dma_dev, virt_to_page(dst),
offset_in_page(dst), len, DMA_FROM_DEVICE);
if (dma_mapping_error(dma_dev, unmap->addr[1])) {
ret = -EIO;
goto err_free_resource;
}
unmap->from_cnt = 1;
do {
tx = dmaengine_prep_dma_memcpy(pthr->dma_chan, unmap->addr[1],
unmap->addr[0], len, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!tx)
msleep(DMA_MDELAY);
} while (!tx && (try++ < DMA_TRIES));
if (!tx) {
ret = -EIO;
goto err_free_resource;
}
tx->callback = perf_dma_copy_callback;
tx->callback_param = pthr;
dma_set_unmap(tx, unmap);
ret = dma_submit_error(dmaengine_submit(tx));
if (ret) {
dmaengine_unmap_put(unmap);
goto err_free_resource;
}
dmaengine_unmap_put(unmap);
atomic_inc(&pthr->dma_sync);
dma_async_issue_pending(pthr->dma_chan);
ret_check_tsync:
return likely(atomic_read(&pthr->perf->tsync) > 0) ? 0 : -EINTR;
err_free_resource:
dmaengine_unmap_put(unmap);
return ret;
}
static bool perf_dma_filter(struct dma_chan *chan, void *data)
{
struct perf_ctx *perf = data;
int node;
node = dev_to_node(&perf->ntb->dev);
return node == NUMA_NO_NODE || node == dev_to_node(chan->device->dev);
}
static int perf_init_test(struct perf_thread *pthr)
{
struct perf_ctx *perf = pthr->perf;
dma_cap_mask_t dma_mask;
pthr->src = kmalloc_node(perf->test_peer->outbuf_size, GFP_KERNEL,
dev_to_node(&perf->ntb->dev));
if (!pthr->src)
return -ENOMEM;
get_random_bytes(pthr->src, perf->test_peer->outbuf_size);
if (!use_dma)
return 0;
dma_cap_zero(dma_mask);
dma_cap_set(DMA_MEMCPY, dma_mask);
pthr->dma_chan = dma_request_channel(dma_mask, perf_dma_filter, perf);
if (!pthr->dma_chan) {
dev_err(&perf->ntb->dev, "%d: Failed to get DMA channel\n",
pthr->tidx);
atomic_dec(&perf->tsync);
wake_up(&perf->twait);
kfree(pthr->src);
return -ENODEV;
}
atomic_set(&pthr->dma_sync, 0);
return 0;
}
static int perf_run_test(struct perf_thread *pthr)
{
struct perf_peer *peer = pthr->perf->test_peer;
struct perf_ctx *perf = pthr->perf;
void __iomem *flt_dst, *bnd_dst;
u64 total_size, chunk_size;
void *flt_src;
int ret = 0;
total_size = 1ULL << total_order;
chunk_size = 1ULL << chunk_order;
chunk_size = min_t(u64, peer->outbuf_size, chunk_size);
flt_src = pthr->src;
bnd_dst = peer->outbuf + peer->outbuf_size;
flt_dst = peer->outbuf;
pthr->duration = ktime_get();
/* Copied field is cleared on test launch stage */
while (pthr->copied < total_size) {
ret = perf_copy_chunk(pthr, flt_dst, flt_src, chunk_size);
if (ret) {
dev_err(&perf->ntb->dev, "%d: Got error %d on test\n",
pthr->tidx, ret);
return ret;
}
pthr->copied += chunk_size;
flt_dst += chunk_size;
flt_src += chunk_size;
if (flt_dst >= bnd_dst || flt_dst < peer->outbuf) {
flt_dst = peer->outbuf;
flt_src = pthr->src;
}
/* Give up CPU to give a chance for other threads to use it */
schedule();
}
return 0;
}
static int perf_sync_test(struct perf_thread *pthr)
{
struct perf_ctx *perf = pthr->perf;
if (!use_dma)
goto no_dma_ret;
wait_event(pthr->dma_wait,
(atomic_read(&pthr->dma_sync) == 0 ||
atomic_read(&perf->tsync) < 0));
if (atomic_read(&perf->tsync) < 0)
return -EINTR;
no_dma_ret:
pthr->duration = ktime_sub(ktime_get(), pthr->duration);
dev_dbg(&perf->ntb->dev, "%d: copied %llu bytes\n",
pthr->tidx, pthr->copied);
dev_dbg(&perf->ntb->dev, "%d: lasted %llu usecs\n",
pthr->tidx, ktime_to_us(pthr->duration));
dev_dbg(&perf->ntb->dev, "%d: %llu MBytes/s\n", pthr->tidx,
div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
return 0;
}
static void perf_clear_test(struct perf_thread *pthr)
{
struct perf_ctx *perf = pthr->perf;
if (!use_dma)
goto no_dma_notify;
/*
* If test finished without errors, termination isn't needed.
* We call it anyway just to be sure of the transfers completion.
*/
(void)dmaengine_terminate_sync(pthr->dma_chan);
dma_release_channel(pthr->dma_chan);
no_dma_notify:
atomic_dec(&perf->tsync);
wake_up(&perf->twait);
kfree(pthr->src);
}
static void perf_thread_work(struct work_struct *work)
{
struct perf_thread *pthr = to_thread_work(work);
int ret;
/*
* Perform stages in compliance with use_dma flag value.
* Test status is changed only if error happened, otherwise
* status -ENODATA is kept while test is on-fly. Results
* synchronization is performed only if test fininshed
* without an error or interruption.
*/
ret = perf_init_test(pthr);
if (ret) {
pthr->status = ret;
return;
}
ret = perf_run_test(pthr);
if (ret) {
pthr->status = ret;
goto err_clear_test;
}
pthr->status = perf_sync_test(pthr);
err_clear_test:
perf_clear_test(pthr);
}
static int perf_set_tcnt(struct perf_ctx *perf, u8 tcnt)
{
if (tcnt == 0 || tcnt > MAX_THREADS_CNT)
return -EINVAL;
if (test_and_set_bit_lock(0, &perf->busy_flag))
return -EBUSY;
perf->tcnt = tcnt;
clear_bit_unlock(0, &perf->busy_flag);
return 0;
}
static void perf_terminate_test(struct perf_ctx *perf)
{
int tidx;
atomic_set(&perf->tsync, -1);
wake_up(&perf->twait);
for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
wake_up(&perf->threads[tidx].dma_wait);
cancel_work_sync(&perf->threads[tidx].work);
}
}
static int perf_submit_test(struct perf_peer *peer)
{
struct perf_ctx *perf = peer->perf;
struct perf_thread *pthr;
int tidx, ret;
if (!test_bit(PERF_STS_DONE, &peer->sts))
return -ENOLINK;
if (test_and_set_bit_lock(0, &perf->busy_flag))
return -EBUSY;
perf->test_peer = peer;
atomic_set(&perf->tsync, perf->tcnt);
for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
pthr = &perf->threads[tidx];
pthr->status = -ENODATA;
pthr->copied = 0;
pthr->duration = ktime_set(0, 0);
if (tidx < perf->tcnt)
(void)queue_work(perf_wq, &pthr->work);
}
ret = wait_event_interruptible(perf->twait,
atomic_read(&perf->tsync) <= 0);
if (ret == -ERESTARTSYS) {
perf_terminate_test(perf);
ret = -EINTR;
}
clear_bit_unlock(0, &perf->busy_flag);
return ret;
}
static int perf_read_stats(struct perf_ctx *perf, char *buf,
size_t size, ssize_t *pos)
{
struct perf_thread *pthr;
int tidx;
if (test_and_set_bit_lock(0, &perf->busy_flag))
return -EBUSY;
(*pos) += scnprintf(buf + *pos, size - *pos,
" Peer %d test statistics:\n", perf->test_peer->pidx);
for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
pthr = &perf->threads[tidx];
if (pthr->status == -ENODATA)
continue;
if (pthr->status) {
(*pos) += scnprintf(buf + *pos, size - *pos,
"%d: error status %d\n", tidx, pthr->status);
continue;
}
(*pos) += scnprintf(buf + *pos, size - *pos,
"%d: copied %llu bytes in %llu usecs, %llu MBytes/s\n",
tidx, pthr->copied, ktime_to_us(pthr->duration),
div64_u64(pthr->copied, ktime_to_us(pthr->duration)));
}
clear_bit_unlock(0, &perf->busy_flag);
return 0;
}
static void perf_init_threads(struct perf_ctx *perf)
{
struct perf_thread *pthr;
int tidx;
perf->tcnt = DEF_THREADS_CNT;
perf->test_peer = &perf->peers[0];
init_waitqueue_head(&perf->twait);
for (tidx = 0; tidx < MAX_THREADS_CNT; tidx++) {
pthr = &perf->threads[tidx];
pthr->perf = perf;
pthr->tidx = tidx;
pthr->status = -ENODATA;
init_waitqueue_head(&pthr->dma_wait);
INIT_WORK(&pthr->work, perf_thread_work);
}
}
static void perf_clear_threads(struct perf_ctx *perf)
{
perf_terminate_test(perf);
}
/*==============================================================================
* DebugFS nodes
*==============================================================================
*/
static ssize_t perf_dbgfs_read_info(struct file *filep, char __user *ubuf,
size_t size, loff_t *offp)
{
struct perf_ctx *perf = filep->private_data;
struct perf_peer *peer;
size_t buf_size;
ssize_t pos = 0;
int ret, pidx;
char *buf;
buf_size = min_t(size_t, size, 0x1000U);
buf = kmalloc(buf_size, GFP_KERNEL);
if (!buf)
return -ENOMEM;
pos += scnprintf(buf + pos, buf_size - pos,
" Performance measuring tool info:\n\n");
pos += scnprintf(buf + pos, buf_size - pos,
"Local port %d, Global index %d\n", ntb_port_number(perf->ntb),
perf->gidx);
pos += scnprintf(buf + pos, buf_size - pos, "Test status: ");
if (test_bit(0, &perf->busy_flag)) {
pos += scnprintf(buf + pos, buf_size - pos,
"on-fly with port %d (%d)\n",
ntb_peer_port_number(perf->ntb, perf->test_peer->pidx),
perf->test_peer->pidx);
} else {
pos += scnprintf(buf + pos, buf_size - pos, "idle\n");
}
for (pidx = 0; pidx < perf->pcnt; pidx++) {
peer = &perf->peers[pidx];
pos += scnprintf(buf + pos, buf_size - pos,
"Port %d (%d), Global index %d:\n",
ntb_peer_port_number(perf->ntb, peer->pidx), peer->pidx,
peer->gidx);
pos += scnprintf(buf + pos, buf_size - pos,
"\tLink status: %s\n",
test_bit(PERF_STS_LNKUP, &peer->sts) ? "up" : "down");
pos += scnprintf(buf + pos, buf_size - pos,
"\tOut buffer addr 0x%pK\n", peer->outbuf);
pos += scnprintf(buf + pos, buf_size - pos,
"\tOut buffer size %pa\n", &peer->outbuf_size);
pos += scnprintf(buf + pos, buf_size - pos,
"\tOut buffer xlat 0x%016llx[p]\n", peer->outbuf_xlat);
if (!peer->inbuf) {
pos += scnprintf(buf + pos, buf_size - pos,
"\tIn buffer addr: unallocated\n");
continue;
}
pos += scnprintf(buf + pos, buf_size - pos,
"\tIn buffer addr 0x%pK\n", peer->inbuf);
pos += scnprintf(buf + pos, buf_size - pos,
"\tIn buffer size %pa\n", &peer->inbuf_size);
pos += scnprintf(buf + pos, buf_size - pos,
"\tIn buffer xlat %pad[p]\n", &peer->inbuf_xlat);
}
ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
kfree(buf);
return ret;
}
static const struct file_operations perf_dbgfs_info = {
.open = simple_open,
.read = perf_dbgfs_read_info
};
static ssize_t perf_dbgfs_read_run(struct file *filep, char __user *ubuf,
size_t size, loff_t *offp)
{
struct perf_ctx *perf = filep->private_data;
ssize_t ret, pos = 0;
char *buf;
buf = kmalloc(PERF_BUF_LEN, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = perf_read_stats(perf, buf, PERF_BUF_LEN, &pos);
if (ret)
goto err_free;
ret = simple_read_from_buffer(ubuf, size, offp, buf, pos);
err_free:
kfree(buf);
return ret;
}
static ssize_t perf_dbgfs_write_run(struct file *filep, const char __user *ubuf,
size_t size, loff_t *offp)
{
struct perf_ctx *perf = filep->private_data;
struct perf_peer *peer;
int pidx, ret;
ret = kstrtoint_from_user(ubuf, size, 0, &pidx);
if (ret)
return ret;
if (pidx < 0 || pidx >= perf->pcnt)
return -EINVAL;
peer = &perf->peers[pidx];
ret = perf_submit_test(peer);
if (ret)
return ret;
return size;
}
static const struct file_operations perf_dbgfs_run = {
.open = simple_open,
.read = perf_dbgfs_read_run,
.write = perf_dbgfs_write_run
};
static ssize_t perf_dbgfs_read_tcnt(struct file *filep, char __user *ubuf,
size_t size, loff_t *offp)
{
struct perf_ctx *perf = filep->private_data;
char buf[8];
ssize_t pos;
pos = scnprintf(buf, sizeof(buf), "%hhu\n", perf->tcnt);
return simple_read_from_buffer(ubuf, size, offp, buf, pos);
}
static ssize_t perf_dbgfs_write_tcnt(struct file *filep,
const char __user *ubuf,
size_t size, loff_t *offp)
{
struct perf_ctx *perf = filep->private_data;
int ret;
u8 val;
ret = kstrtou8_from_user(ubuf, size, 0, &val);
if (ret)
return ret;
ret = perf_set_tcnt(perf, val);
if (ret)
return ret;
return size;
}
static const struct file_operations perf_dbgfs_tcnt = {
.open = simple_open,
.read = perf_dbgfs_read_tcnt,
.write = perf_dbgfs_write_tcnt
};
static void perf_setup_dbgfs(struct perf_ctx *perf)
{
struct pci_dev *pdev = perf->ntb->pdev;
perf->dbgfs_dir = debugfs_create_dir(pci_name(pdev), perf_dbgfs_topdir);
if (!perf->dbgfs_dir) {
dev_warn(&perf->ntb->dev, "DebugFS unsupported\n");
return;
}
debugfs_create_file("info", 0600, perf->dbgfs_dir, perf,
&perf_dbgfs_info);
debugfs_create_file("run", 0600, perf->dbgfs_dir, perf,
&perf_dbgfs_run);
debugfs_create_file("threads_count", 0600, perf->dbgfs_dir, perf,
&perf_dbgfs_tcnt);
/* They are made read-only for test exec safety and integrity */
debugfs_create_u8("chunk_order", 0500, perf->dbgfs_dir, &chunk_order);
debugfs_create_u8("total_order", 0500, perf->dbgfs_dir, &total_order);
debugfs_create_bool("use_dma", 0500, perf->dbgfs_dir, &use_dma);
}
static void perf_clear_dbgfs(struct perf_ctx *perf)
{
debugfs_remove_recursive(perf->dbgfs_dir);
}
/*==============================================================================
* Basic driver initialization
*==============================================================================
*/
static struct perf_ctx *perf_create_data(struct ntb_dev *ntb)
{
struct perf_ctx *perf;
perf = devm_kzalloc(&ntb->dev, sizeof(*perf), GFP_KERNEL);
if (!perf)
return ERR_PTR(-ENOMEM);
perf->pcnt = ntb_peer_port_count(ntb);
perf->peers = devm_kcalloc(&ntb->dev, perf->pcnt, sizeof(*perf->peers),
GFP_KERNEL);
if (!perf->peers)
return ERR_PTR(-ENOMEM);
perf->ntb = ntb;
return perf;
}
static int perf_setup_peer_mw(struct perf_peer *peer)
{
struct perf_ctx *perf = peer->perf;
phys_addr_t phys_addr;
int ret;
/* Get outbound MW parameters and map it */
ret = ntb_peer_mw_get_addr(perf->ntb, peer->gidx, &phys_addr,
&peer->outbuf_size);
if (ret)
return ret;
peer->outbuf = devm_ioremap_wc(&perf->ntb->dev, phys_addr,
peer->outbuf_size);
if (!peer->outbuf)
return -ENOMEM;
if (max_mw_size && peer->outbuf_size > max_mw_size) {
peer->outbuf_size = max_mw_size;
dev_warn(&peer->perf->ntb->dev,
"Peer %d outbuf reduced to %pa\n", peer->pidx,
&peer->outbuf_size);
}
return 0;
}
static int perf_init_peers(struct perf_ctx *perf)
{
struct perf_peer *peer;
int pidx, lport, ret;
lport = ntb_port_number(perf->ntb);
perf->gidx = -1;
for (pidx = 0; pidx < perf->pcnt; pidx++) {
peer = &perf->peers[pidx];
peer->perf = perf;
peer->pidx = pidx;
if (lport < ntb_peer_port_number(perf->ntb, pidx)) {
if (perf->gidx == -1)
perf->gidx = pidx;
peer->gidx = pidx + 1;
} else {
peer->gidx = pidx;
}
INIT_WORK(&peer->service, perf_service_work);
}
if (perf->gidx == -1)
perf->gidx = pidx;
for (pidx = 0; pidx < perf->pcnt; pidx++) {
ret = perf_setup_peer_mw(&perf->peers[pidx]);
if (ret)
return ret;
}
dev_dbg(&perf->ntb->dev, "Global port index %d\n", perf->gidx);
return 0;
}
static int perf_probe(struct ntb_client *client, struct ntb_dev *ntb)
{
struct perf_ctx *perf;
int ret;
perf = perf_create_data(ntb);
if (IS_ERR(perf))
return PTR_ERR(perf);
ret = perf_init_peers(perf);
if (ret)
return ret;
perf_init_threads(perf);
ret = perf_init_service(perf);
if (ret)
return ret;
ret = perf_enable_service(perf);
if (ret)
return ret;
perf_setup_dbgfs(perf);
return 0;
}
static void perf_remove(struct ntb_client *client, struct ntb_dev *ntb)
{
struct perf_ctx *perf = ntb->ctx;
perf_clear_dbgfs(perf);
perf_disable_service(perf);
perf_clear_threads(perf);
}
static struct ntb_client perf_client = {
.ops = {
.probe = perf_probe,
.remove = perf_remove
}
};
static int __init perf_init(void)
{
int ret;
if (chunk_order > MAX_CHUNK_ORDER) {
chunk_order = MAX_CHUNK_ORDER;
pr_info("Chunk order reduced to %hhu\n", chunk_order);
}
if (total_order < chunk_order) {
total_order = chunk_order;
pr_info("Total data order reduced to %hhu\n", total_order);
}
perf_wq = alloc_workqueue("perf_wq", WQ_UNBOUND | WQ_SYSFS, 0);
if (!perf_wq)
return -ENOMEM;
if (debugfs_initialized())
perf_dbgfs_topdir = debugfs_create_dir(KBUILD_MODNAME, NULL);
ret = ntb_register_client(&perf_client);
if (ret) {
debugfs_remove_recursive(perf_dbgfs_topdir);
destroy_workqueue(perf_wq);
}
return ret;
}
module_init(perf_init);
static void __exit perf_exit(void)
{
ntb_unregister_client(&perf_client);
debugfs_remove_recursive(perf_dbgfs_topdir);
destroy_workqueue(perf_wq);
}
module_exit(perf_exit);