|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2006 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | #include "e1000.h" | 
|  | #include <net/ip6_checksum.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/prefetch.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/if_vlan.h> | 
|  |  | 
|  | char e1000_driver_name[] = "e1000"; | 
|  | static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver"; | 
|  | #define DRV_VERSION "7.3.21-k8-NAPI" | 
|  | const char e1000_driver_version[] = DRV_VERSION; | 
|  | static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation."; | 
|  |  | 
|  | /* e1000_pci_tbl - PCI Device ID Table | 
|  | * | 
|  | * Last entry must be all 0s | 
|  | * | 
|  | * Macro expands to... | 
|  | *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)} | 
|  | */ | 
|  | static const struct pci_device_id e1000_pci_tbl[] = { | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1000), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1001), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1004), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1008), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1009), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x100C), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x100D), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x100E), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x100F), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1010), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1011), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1012), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1013), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1014), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1015), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1016), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1017), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1018), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1019), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x101A), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x101D), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x101E), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1026), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1027), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1028), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1075), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1076), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1077), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1078), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1079), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107A), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107B), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x107C), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x108A), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x1099), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x10B5), | 
|  | INTEL_E1000_ETHERNET_DEVICE(0x2E6E), | 
|  | /* required last entry */ | 
|  | {0,} | 
|  | }; | 
|  |  | 
|  | MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); | 
|  |  | 
|  | int e1000_up(struct e1000_adapter *adapter); | 
|  | void e1000_down(struct e1000_adapter *adapter); | 
|  | void e1000_reinit_locked(struct e1000_adapter *adapter); | 
|  | void e1000_reset(struct e1000_adapter *adapter); | 
|  | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); | 
|  | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); | 
|  | void e1000_free_all_tx_resources(struct e1000_adapter *adapter); | 
|  | void e1000_free_all_rx_resources(struct e1000_adapter *adapter); | 
|  | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *txdr); | 
|  | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rxdr); | 
|  | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring); | 
|  | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring); | 
|  | void e1000_update_stats(struct e1000_adapter *adapter); | 
|  |  | 
|  | static int e1000_init_module(void); | 
|  | static void e1000_exit_module(void); | 
|  | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent); | 
|  | static void e1000_remove(struct pci_dev *pdev); | 
|  | static int e1000_alloc_queues(struct e1000_adapter *adapter); | 
|  | static int e1000_sw_init(struct e1000_adapter *adapter); | 
|  | int e1000_open(struct net_device *netdev); | 
|  | int e1000_close(struct net_device *netdev); | 
|  | static void e1000_configure_tx(struct e1000_adapter *adapter); | 
|  | static void e1000_configure_rx(struct e1000_adapter *adapter); | 
|  | static void e1000_setup_rctl(struct e1000_adapter *adapter); | 
|  | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter); | 
|  | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter); | 
|  | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring); | 
|  | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring); | 
|  | static void e1000_set_rx_mode(struct net_device *netdev); | 
|  | static void e1000_update_phy_info_task(struct work_struct *work); | 
|  | static void e1000_watchdog(struct work_struct *work); | 
|  | static void e1000_82547_tx_fifo_stall_task(struct work_struct *work); | 
|  | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, | 
|  | struct net_device *netdev); | 
|  | static int e1000_change_mtu(struct net_device *netdev, int new_mtu); | 
|  | static int e1000_set_mac(struct net_device *netdev, void *p); | 
|  | static irqreturn_t e1000_intr(int irq, void *data); | 
|  | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring); | 
|  | static int e1000_clean(struct napi_struct *napi, int budget); | 
|  | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int *work_done, int work_to_do); | 
|  | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int *work_done, int work_to_do); | 
|  | static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int cleaned_count) | 
|  | { | 
|  | } | 
|  | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int cleaned_count); | 
|  | static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int cleaned_count); | 
|  | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); | 
|  | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
|  | int cmd); | 
|  | static void e1000_enter_82542_rst(struct e1000_adapter *adapter); | 
|  | static void e1000_leave_82542_rst(struct e1000_adapter *adapter); | 
|  | static void e1000_tx_timeout(struct net_device *dev); | 
|  | static void e1000_reset_task(struct work_struct *work); | 
|  | static void e1000_smartspeed(struct e1000_adapter *adapter); | 
|  | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | 
|  | struct sk_buff *skb); | 
|  |  | 
|  | static bool e1000_vlan_used(struct e1000_adapter *adapter); | 
|  | static void e1000_vlan_mode(struct net_device *netdev, | 
|  | netdev_features_t features); | 
|  | static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, | 
|  | bool filter_on); | 
|  | static int e1000_vlan_rx_add_vid(struct net_device *netdev, | 
|  | __be16 proto, u16 vid); | 
|  | static int e1000_vlan_rx_kill_vid(struct net_device *netdev, | 
|  | __be16 proto, u16 vid); | 
|  | static void e1000_restore_vlan(struct e1000_adapter *adapter); | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state); | 
|  | static int e1000_resume(struct pci_dev *pdev); | 
|  | #endif | 
|  | static void e1000_shutdown(struct pci_dev *pdev); | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* for netdump / net console */ | 
|  | static void e1000_netpoll (struct net_device *netdev); | 
|  | #endif | 
|  |  | 
|  | #define COPYBREAK_DEFAULT 256 | 
|  | static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT; | 
|  | module_param(copybreak, uint, 0644); | 
|  | MODULE_PARM_DESC(copybreak, | 
|  | "Maximum size of packet that is copied to a new buffer on receive"); | 
|  |  | 
|  | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
|  | pci_channel_state_t state); | 
|  | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev); | 
|  | static void e1000_io_resume(struct pci_dev *pdev); | 
|  |  | 
|  | static const struct pci_error_handlers e1000_err_handler = { | 
|  | .error_detected = e1000_io_error_detected, | 
|  | .slot_reset = e1000_io_slot_reset, | 
|  | .resume = e1000_io_resume, | 
|  | }; | 
|  |  | 
|  | static struct pci_driver e1000_driver = { | 
|  | .name     = e1000_driver_name, | 
|  | .id_table = e1000_pci_tbl, | 
|  | .probe    = e1000_probe, | 
|  | .remove   = e1000_remove, | 
|  | #ifdef CONFIG_PM | 
|  | /* Power Management Hooks */ | 
|  | .suspend  = e1000_suspend, | 
|  | .resume   = e1000_resume, | 
|  | #endif | 
|  | .shutdown = e1000_shutdown, | 
|  | .err_handler = &e1000_err_handler | 
|  | }; | 
|  |  | 
|  | MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); | 
|  | MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  |  | 
|  | #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) | 
|  | static int debug = -1; | 
|  | module_param(debug, int, 0); | 
|  | MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); | 
|  |  | 
|  | /** | 
|  | * e1000_get_hw_dev - return device | 
|  | * used by hardware layer to print debugging information | 
|  | * | 
|  | **/ | 
|  | struct net_device *e1000_get_hw_dev(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  | return adapter->netdev; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_init_module - Driver Registration Routine | 
|  | * | 
|  | * e1000_init_module is the first routine called when the driver is | 
|  | * loaded. All it does is register with the PCI subsystem. | 
|  | **/ | 
|  | static int __init e1000_init_module(void) | 
|  | { | 
|  | int ret; | 
|  | pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version); | 
|  |  | 
|  | pr_info("%s\n", e1000_copyright); | 
|  |  | 
|  | ret = pci_register_driver(&e1000_driver); | 
|  | if (copybreak != COPYBREAK_DEFAULT) { | 
|  | if (copybreak == 0) | 
|  | pr_info("copybreak disabled\n"); | 
|  | else | 
|  | pr_info("copybreak enabled for " | 
|  | "packets <= %u bytes\n", copybreak); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | module_init(e1000_init_module); | 
|  |  | 
|  | /** | 
|  | * e1000_exit_module - Driver Exit Cleanup Routine | 
|  | * | 
|  | * e1000_exit_module is called just before the driver is removed | 
|  | * from memory. | 
|  | **/ | 
|  | static void __exit e1000_exit_module(void) | 
|  | { | 
|  | pci_unregister_driver(&e1000_driver); | 
|  | } | 
|  |  | 
|  | module_exit(e1000_exit_module); | 
|  |  | 
|  | static int e1000_request_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | irq_handler_t handler = e1000_intr; | 
|  | int irq_flags = IRQF_SHARED; | 
|  | int err; | 
|  |  | 
|  | err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name, | 
|  | netdev); | 
|  | if (err) { | 
|  | e_err(probe, "Unable to allocate interrupt Error: %d\n", err); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void e1000_free_irq(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  |  | 
|  | free_irq(adapter->pdev->irq, netdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_irq_disable - Mask off interrupt generation on the NIC | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000_irq_disable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | ew32(IMC, ~0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | synchronize_irq(adapter->pdev->irq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_irq_enable - Enable default interrupt generation settings | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000_irq_enable(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | ew32(IMS, IMS_ENABLE_MASK); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | static void e1000_update_mng_vlan(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u16 vid = hw->mng_cookie.vlan_id; | 
|  | u16 old_vid = adapter->mng_vlan_id; | 
|  |  | 
|  | if (!e1000_vlan_used(adapter)) | 
|  | return; | 
|  |  | 
|  | if (!test_bit(vid, adapter->active_vlans)) { | 
|  | if (hw->mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { | 
|  | e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); | 
|  | adapter->mng_vlan_id = vid; | 
|  | } else { | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | } | 
|  | if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && | 
|  | (vid != old_vid) && | 
|  | !test_bit(old_vid, adapter->active_vlans)) | 
|  | e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), | 
|  | old_vid); | 
|  | } else { | 
|  | adapter->mng_vlan_id = vid; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_init_manageability(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (adapter->en_mng_pt) { | 
|  | u32 manc = er32(MANC); | 
|  |  | 
|  | /* disable hardware interception of ARP */ | 
|  | manc &= ~(E1000_MANC_ARP_EN); | 
|  |  | 
|  | ew32(MANC, manc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_release_manageability(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (adapter->en_mng_pt) { | 
|  | u32 manc = er32(MANC); | 
|  |  | 
|  | /* re-enable hardware interception of ARP */ | 
|  | manc |= E1000_MANC_ARP_EN; | 
|  |  | 
|  | ew32(MANC, manc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure - configure the hardware for RX and TX | 
|  | * @adapter = private board structure | 
|  | **/ | 
|  | static void e1000_configure(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | int i; | 
|  |  | 
|  | e1000_set_rx_mode(netdev); | 
|  |  | 
|  | e1000_restore_vlan(adapter); | 
|  | e1000_init_manageability(adapter); | 
|  |  | 
|  | e1000_configure_tx(adapter); | 
|  | e1000_setup_rctl(adapter); | 
|  | e1000_configure_rx(adapter); | 
|  | /* call E1000_DESC_UNUSED which always leaves | 
|  | * at least 1 descriptor unused to make sure | 
|  | * next_to_use != next_to_clean | 
|  | */ | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | struct e1000_rx_ring *ring = &adapter->rx_ring[i]; | 
|  | adapter->alloc_rx_buf(adapter, ring, | 
|  | E1000_DESC_UNUSED(ring)); | 
|  | } | 
|  | } | 
|  |  | 
|  | int e1000_up(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* hardware has been reset, we need to reload some things */ | 
|  | e1000_configure(adapter); | 
|  |  | 
|  | clear_bit(__E1000_DOWN, &adapter->flags); | 
|  |  | 
|  | napi_enable(&adapter->napi); | 
|  |  | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | netif_wake_queue(adapter->netdev); | 
|  |  | 
|  | /* fire a link change interrupt to start the watchdog */ | 
|  | ew32(ICS, E1000_ICS_LSC); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_power_up_phy - restore link in case the phy was powered down | 
|  | * @adapter: address of board private structure | 
|  | * | 
|  | * The phy may be powered down to save power and turn off link when the | 
|  | * driver is unloaded and wake on lan is not enabled (among others) | 
|  | * *** this routine MUST be followed by a call to e1000_reset *** | 
|  | **/ | 
|  | void e1000_power_up_phy(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 mii_reg = 0; | 
|  |  | 
|  | /* Just clear the power down bit to wake the phy back up */ | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | /* according to the manual, the phy will retain its | 
|  | * settings across a power-down/up cycle | 
|  | */ | 
|  | e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); | 
|  | mii_reg &= ~MII_CR_POWER_DOWN; | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void e1000_power_down_phy(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* Power down the PHY so no link is implied when interface is down * | 
|  | * The PHY cannot be powered down if any of the following is true * | 
|  | * (a) WoL is enabled | 
|  | * (b) AMT is active | 
|  | * (c) SoL/IDER session is active | 
|  | */ | 
|  | if (!adapter->wol && hw->mac_type >= e1000_82540 && | 
|  | hw->media_type == e1000_media_type_copper) { | 
|  | u16 mii_reg = 0; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_ce4100: | 
|  | case e1000_82546_rev_3: | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | if (er32(MANC) & E1000_MANC_SMBUS_EN) | 
|  | goto out; | 
|  | break; | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  | e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg); | 
|  | mii_reg |= MII_CR_POWER_DOWN; | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, mii_reg); | 
|  | msleep(1); | 
|  | } | 
|  | out: | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void e1000_down_and_stop(struct e1000_adapter *adapter) | 
|  | { | 
|  | set_bit(__E1000_DOWN, &adapter->flags); | 
|  |  | 
|  | cancel_delayed_work_sync(&adapter->watchdog_task); | 
|  |  | 
|  | /* | 
|  | * Since the watchdog task can reschedule other tasks, we should cancel | 
|  | * it first, otherwise we can run into the situation when a work is | 
|  | * still running after the adapter has been turned down. | 
|  | */ | 
|  |  | 
|  | cancel_delayed_work_sync(&adapter->phy_info_task); | 
|  | cancel_delayed_work_sync(&adapter->fifo_stall_task); | 
|  |  | 
|  | /* Only kill reset task if adapter is not resetting */ | 
|  | if (!test_bit(__E1000_RESETTING, &adapter->flags)) | 
|  | cancel_work_sync(&adapter->reset_task); | 
|  | } | 
|  |  | 
|  | void e1000_down(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u32 rctl, tctl; | 
|  |  | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | /* disable receives in the hardware */ | 
|  | rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  | /* flush and sleep below */ | 
|  |  | 
|  | netif_tx_disable(netdev); | 
|  |  | 
|  | /* disable transmits in the hardware */ | 
|  | tctl = er32(TCTL); | 
|  | tctl &= ~E1000_TCTL_EN; | 
|  | ew32(TCTL, tctl); | 
|  | /* flush both disables and wait for them to finish */ | 
|  | E1000_WRITE_FLUSH(); | 
|  | msleep(10); | 
|  |  | 
|  | napi_disable(&adapter->napi); | 
|  |  | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | /* Setting DOWN must be after irq_disable to prevent | 
|  | * a screaming interrupt.  Setting DOWN also prevents | 
|  | * tasks from rescheduling. | 
|  | */ | 
|  | e1000_down_and_stop(adapter); | 
|  |  | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | e1000_clean_all_tx_rings(adapter); | 
|  | e1000_clean_all_rx_rings(adapter); | 
|  | } | 
|  |  | 
|  | void e1000_reinit_locked(struct e1000_adapter *adapter) | 
|  | { | 
|  | WARN_ON(in_interrupt()); | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | 
|  | msleep(1); | 
|  | e1000_down(adapter); | 
|  | e1000_up(adapter); | 
|  | clear_bit(__E1000_RESETTING, &adapter->flags); | 
|  | } | 
|  |  | 
|  | void e1000_reset(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 pba = 0, tx_space, min_tx_space, min_rx_space; | 
|  | bool legacy_pba_adjust = false; | 
|  | u16 hwm; | 
|  |  | 
|  | /* Repartition Pba for greater than 9k mtu | 
|  | * To take effect CTRL.RST is required. | 
|  | */ | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | case e1000_82540: | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | legacy_pba_adjust = true; | 
|  | pba = E1000_PBA_48K; | 
|  | break; | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_ce4100: | 
|  | case e1000_82546_rev_3: | 
|  | pba = E1000_PBA_48K; | 
|  | break; | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | legacy_pba_adjust = true; | 
|  | pba = E1000_PBA_30K; | 
|  | break; | 
|  | case e1000_undefined: | 
|  | case e1000_num_macs: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (legacy_pba_adjust) { | 
|  | if (hw->max_frame_size > E1000_RXBUFFER_8192) | 
|  | pba -= 8; /* allocate more FIFO for Tx */ | 
|  |  | 
|  | if (hw->mac_type == e1000_82547) { | 
|  | adapter->tx_fifo_head = 0; | 
|  | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; | 
|  | adapter->tx_fifo_size = | 
|  | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; | 
|  | atomic_set(&adapter->tx_fifo_stall, 0); | 
|  | } | 
|  | } else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) { | 
|  | /* adjust PBA for jumbo frames */ | 
|  | ew32(PBA, pba); | 
|  |  | 
|  | /* To maintain wire speed transmits, the Tx FIFO should be | 
|  | * large enough to accommodate two full transmit packets, | 
|  | * rounded up to the next 1KB and expressed in KB.  Likewise, | 
|  | * the Rx FIFO should be large enough to accommodate at least | 
|  | * one full receive packet and is similarly rounded up and | 
|  | * expressed in KB. | 
|  | */ | 
|  | pba = er32(PBA); | 
|  | /* upper 16 bits has Tx packet buffer allocation size in KB */ | 
|  | tx_space = pba >> 16; | 
|  | /* lower 16 bits has Rx packet buffer allocation size in KB */ | 
|  | pba &= 0xffff; | 
|  | /* the Tx fifo also stores 16 bytes of information about the Tx | 
|  | * but don't include ethernet FCS because hardware appends it | 
|  | */ | 
|  | min_tx_space = (hw->max_frame_size + | 
|  | sizeof(struct e1000_tx_desc) - | 
|  | ETH_FCS_LEN) * 2; | 
|  | min_tx_space = ALIGN(min_tx_space, 1024); | 
|  | min_tx_space >>= 10; | 
|  | /* software strips receive CRC, so leave room for it */ | 
|  | min_rx_space = hw->max_frame_size; | 
|  | min_rx_space = ALIGN(min_rx_space, 1024); | 
|  | min_rx_space >>= 10; | 
|  |  | 
|  | /* If current Tx allocation is less than the min Tx FIFO size, | 
|  | * and the min Tx FIFO size is less than the current Rx FIFO | 
|  | * allocation, take space away from current Rx allocation | 
|  | */ | 
|  | if (tx_space < min_tx_space && | 
|  | ((min_tx_space - tx_space) < pba)) { | 
|  | pba = pba - (min_tx_space - tx_space); | 
|  |  | 
|  | /* PCI/PCIx hardware has PBA alignment constraints */ | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545 ... e1000_82546_rev_3: | 
|  | pba &= ~(E1000_PBA_8K - 1); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* if short on Rx space, Rx wins and must trump Tx | 
|  | * adjustment or use Early Receive if available | 
|  | */ | 
|  | if (pba < min_rx_space) | 
|  | pba = min_rx_space; | 
|  | } | 
|  | } | 
|  |  | 
|  | ew32(PBA, pba); | 
|  |  | 
|  | /* flow control settings: | 
|  | * The high water mark must be low enough to fit one full frame | 
|  | * (or the size used for early receive) above it in the Rx FIFO. | 
|  | * Set it to the lower of: | 
|  | * - 90% of the Rx FIFO size, and | 
|  | * - the full Rx FIFO size minus the early receive size (for parts | 
|  | *   with ERT support assuming ERT set to E1000_ERT_2048), or | 
|  | * - the full Rx FIFO size minus one full frame | 
|  | */ | 
|  | hwm = min(((pba << 10) * 9 / 10), | 
|  | ((pba << 10) - hw->max_frame_size)); | 
|  |  | 
|  | hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */ | 
|  | hw->fc_low_water = hw->fc_high_water - 8; | 
|  | hw->fc_pause_time = E1000_FC_PAUSE_TIME; | 
|  | hw->fc_send_xon = 1; | 
|  | hw->fc = hw->original_fc; | 
|  |  | 
|  | /* Allow time for pending master requests to run */ | 
|  | e1000_reset_hw(hw); | 
|  | if (hw->mac_type >= e1000_82544) | 
|  | ew32(WUC, 0); | 
|  |  | 
|  | if (e1000_init_hw(hw)) | 
|  | e_dev_err("Hardware Error\n"); | 
|  | e1000_update_mng_vlan(adapter); | 
|  |  | 
|  | /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */ | 
|  | if (hw->mac_type >= e1000_82544 && | 
|  | hw->autoneg == 1 && | 
|  | hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 
|  | u32 ctrl = er32(CTRL); | 
|  | /* clear phy power management bit if we are in gig only mode, | 
|  | * which if enabled will attempt negotiation to 100Mb, which | 
|  | * can cause a loss of link at power off or driver unload | 
|  | */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN3; | 
|  | ew32(CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 
|  | ew32(VET, ETHERNET_IEEE_VLAN_TYPE); | 
|  |  | 
|  | e1000_reset_adaptive(hw); | 
|  | e1000_phy_get_info(hw, &adapter->phy_info); | 
|  |  | 
|  | e1000_release_manageability(adapter); | 
|  | } | 
|  |  | 
|  | /* Dump the eeprom for users having checksum issues */ | 
|  | static void e1000_dump_eeprom(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct ethtool_eeprom eeprom; | 
|  | const struct ethtool_ops *ops = netdev->ethtool_ops; | 
|  | u8 *data; | 
|  | int i; | 
|  | u16 csum_old, csum_new = 0; | 
|  |  | 
|  | eeprom.len = ops->get_eeprom_len(netdev); | 
|  | eeprom.offset = 0; | 
|  |  | 
|  | data = kmalloc(eeprom.len, GFP_KERNEL); | 
|  | if (!data) | 
|  | return; | 
|  |  | 
|  | ops->get_eeprom(netdev, &eeprom, data); | 
|  |  | 
|  | csum_old = (data[EEPROM_CHECKSUM_REG * 2]) + | 
|  | (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8); | 
|  | for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2) | 
|  | csum_new += data[i] + (data[i + 1] << 8); | 
|  | csum_new = EEPROM_SUM - csum_new; | 
|  |  | 
|  | pr_err("/*********************/\n"); | 
|  | pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old); | 
|  | pr_err("Calculated              : 0x%04x\n", csum_new); | 
|  |  | 
|  | pr_err("Offset    Values\n"); | 
|  | pr_err("========  ======\n"); | 
|  | print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0); | 
|  |  | 
|  | pr_err("Include this output when contacting your support provider.\n"); | 
|  | pr_err("This is not a software error! Something bad happened to\n"); | 
|  | pr_err("your hardware or EEPROM image. Ignoring this problem could\n"); | 
|  | pr_err("result in further problems, possibly loss of data,\n"); | 
|  | pr_err("corruption or system hangs!\n"); | 
|  | pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n"); | 
|  | pr_err("which is invalid and requires you to set the proper MAC\n"); | 
|  | pr_err("address manually before continuing to enable this network\n"); | 
|  | pr_err("device. Please inspect the EEPROM dump and report the\n"); | 
|  | pr_err("issue to your hardware vendor or Intel Customer Support.\n"); | 
|  | pr_err("/*********************/\n"); | 
|  |  | 
|  | kfree(data); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_is_need_ioport - determine if an adapter needs ioport resources or not | 
|  | * @pdev: PCI device information struct | 
|  | * | 
|  | * Return true if an adapter needs ioport resources | 
|  | **/ | 
|  | static int e1000_is_need_ioport(struct pci_dev *pdev) | 
|  | { | 
|  | switch (pdev->device) { | 
|  | case E1000_DEV_ID_82540EM: | 
|  | case E1000_DEV_ID_82540EM_LOM: | 
|  | case E1000_DEV_ID_82540EP: | 
|  | case E1000_DEV_ID_82540EP_LOM: | 
|  | case E1000_DEV_ID_82540EP_LP: | 
|  | case E1000_DEV_ID_82541EI: | 
|  | case E1000_DEV_ID_82541EI_MOBILE: | 
|  | case E1000_DEV_ID_82541ER: | 
|  | case E1000_DEV_ID_82541ER_LOM: | 
|  | case E1000_DEV_ID_82541GI: | 
|  | case E1000_DEV_ID_82541GI_LF: | 
|  | case E1000_DEV_ID_82541GI_MOBILE: | 
|  | case E1000_DEV_ID_82544EI_COPPER: | 
|  | case E1000_DEV_ID_82544EI_FIBER: | 
|  | case E1000_DEV_ID_82544GC_COPPER: | 
|  | case E1000_DEV_ID_82544GC_LOM: | 
|  | case E1000_DEV_ID_82545EM_COPPER: | 
|  | case E1000_DEV_ID_82545EM_FIBER: | 
|  | case E1000_DEV_ID_82546EB_COPPER: | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static netdev_features_t e1000_fix_features(struct net_device *netdev, | 
|  | netdev_features_t features) | 
|  | { | 
|  | /* Since there is no support for separate Rx/Tx vlan accel | 
|  | * enable/disable make sure Tx flag is always in same state as Rx. | 
|  | */ | 
|  | if (features & NETIF_F_HW_VLAN_CTAG_RX) | 
|  | features |= NETIF_F_HW_VLAN_CTAG_TX; | 
|  | else | 
|  | features &= ~NETIF_F_HW_VLAN_CTAG_TX; | 
|  |  | 
|  | return features; | 
|  | } | 
|  |  | 
|  | static int e1000_set_features(struct net_device *netdev, | 
|  | netdev_features_t features) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | netdev_features_t changed = features ^ netdev->features; | 
|  |  | 
|  | if (changed & NETIF_F_HW_VLAN_CTAG_RX) | 
|  | e1000_vlan_mode(netdev, features); | 
|  |  | 
|  | if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL))) | 
|  | return 0; | 
|  |  | 
|  | netdev->features = features; | 
|  | adapter->rx_csum = !!(features & NETIF_F_RXCSUM); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_reinit_locked(adapter); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops e1000_netdev_ops = { | 
|  | .ndo_open		= e1000_open, | 
|  | .ndo_stop		= e1000_close, | 
|  | .ndo_start_xmit		= e1000_xmit_frame, | 
|  | .ndo_set_rx_mode	= e1000_set_rx_mode, | 
|  | .ndo_set_mac_address	= e1000_set_mac, | 
|  | .ndo_tx_timeout		= e1000_tx_timeout, | 
|  | .ndo_change_mtu		= e1000_change_mtu, | 
|  | .ndo_do_ioctl		= e1000_ioctl, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  | .ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid, | 
|  | .ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid, | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | .ndo_poll_controller	= e1000_netpoll, | 
|  | #endif | 
|  | .ndo_fix_features	= e1000_fix_features, | 
|  | .ndo_set_features	= e1000_set_features, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * e1000_init_hw_struct - initialize members of hw struct | 
|  | * @adapter: board private struct | 
|  | * @hw: structure used by e1000_hw.c | 
|  | * | 
|  | * Factors out initialization of the e1000_hw struct to its own function | 
|  | * that can be called very early at init (just after struct allocation). | 
|  | * Fields are initialized based on PCI device information and | 
|  | * OS network device settings (MTU size). | 
|  | * Returns negative error codes if MAC type setup fails. | 
|  | */ | 
|  | static int e1000_init_hw_struct(struct e1000_adapter *adapter, | 
|  | struct e1000_hw *hw) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | /* PCI config space info */ | 
|  | hw->vendor_id = pdev->vendor; | 
|  | hw->device_id = pdev->device; | 
|  | hw->subsystem_vendor_id = pdev->subsystem_vendor; | 
|  | hw->subsystem_id = pdev->subsystem_device; | 
|  | hw->revision_id = pdev->revision; | 
|  |  | 
|  | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | 
|  |  | 
|  | hw->max_frame_size = adapter->netdev->mtu + | 
|  | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 
|  | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; | 
|  |  | 
|  | /* identify the MAC */ | 
|  | if (e1000_set_mac_type(hw)) { | 
|  | e_err(probe, "Unknown MAC Type\n"); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | default: | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | hw->phy_init_script = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | e1000_set_media_type(hw); | 
|  | e1000_get_bus_info(hw); | 
|  |  | 
|  | hw->wait_autoneg_complete = false; | 
|  | hw->tbi_compatibility_en = true; | 
|  | hw->adaptive_ifs = true; | 
|  |  | 
|  | /* Copper options */ | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | hw->mdix = AUTO_ALL_MODES; | 
|  | hw->disable_polarity_correction = false; | 
|  | hw->master_slave = E1000_MASTER_SLAVE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_probe - Device Initialization Routine | 
|  | * @pdev: PCI device information struct | 
|  | * @ent: entry in e1000_pci_tbl | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | * | 
|  | * e1000_probe initializes an adapter identified by a pci_dev structure. | 
|  | * The OS initialization, configuring of the adapter private structure, | 
|  | * and a hardware reset occur. | 
|  | **/ | 
|  | static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) | 
|  | { | 
|  | struct net_device *netdev; | 
|  | struct e1000_adapter *adapter; | 
|  | struct e1000_hw *hw; | 
|  |  | 
|  | static int cards_found; | 
|  | static int global_quad_port_a; /* global ksp3 port a indication */ | 
|  | int i, err, pci_using_dac; | 
|  | u16 eeprom_data = 0; | 
|  | u16 tmp = 0; | 
|  | u16 eeprom_apme_mask = E1000_EEPROM_APME; | 
|  | int bars, need_ioport; | 
|  |  | 
|  | /* do not allocate ioport bars when not needed */ | 
|  | need_ioport = e1000_is_need_ioport(pdev); | 
|  | if (need_ioport) { | 
|  | bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO); | 
|  | err = pci_enable_device(pdev); | 
|  | } else { | 
|  | bars = pci_select_bars(pdev, IORESOURCE_MEM); | 
|  | err = pci_enable_device_mem(pdev); | 
|  | } | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | err = pci_request_selected_regions(pdev, bars, e1000_driver_name); | 
|  | if (err) | 
|  | goto err_pci_reg; | 
|  |  | 
|  | pci_set_master(pdev); | 
|  | err = pci_save_state(pdev); | 
|  | if (err) | 
|  | goto err_alloc_etherdev; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | netdev = alloc_etherdev(sizeof(struct e1000_adapter)); | 
|  | if (!netdev) | 
|  | goto err_alloc_etherdev; | 
|  |  | 
|  | SET_NETDEV_DEV(netdev, &pdev->dev); | 
|  |  | 
|  | pci_set_drvdata(pdev, netdev); | 
|  | adapter = netdev_priv(netdev); | 
|  | adapter->netdev = netdev; | 
|  | adapter->pdev = pdev; | 
|  | adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); | 
|  | adapter->bars = bars; | 
|  | adapter->need_ioport = need_ioport; | 
|  |  | 
|  | hw = &adapter->hw; | 
|  | hw->back = adapter; | 
|  |  | 
|  | err = -EIO; | 
|  | hw->hw_addr = pci_ioremap_bar(pdev, BAR_0); | 
|  | if (!hw->hw_addr) | 
|  | goto err_ioremap; | 
|  |  | 
|  | if (adapter->need_ioport) { | 
|  | for (i = BAR_1; i <= BAR_5; i++) { | 
|  | if (pci_resource_len(pdev, i) == 0) | 
|  | continue; | 
|  | if (pci_resource_flags(pdev, i) & IORESOURCE_IO) { | 
|  | hw->io_base = pci_resource_start(pdev, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* make ready for any if (hw->...) below */ | 
|  | err = e1000_init_hw_struct(adapter, hw); | 
|  | if (err) | 
|  | goto err_sw_init; | 
|  |  | 
|  | /* there is a workaround being applied below that limits | 
|  | * 64-bit DMA addresses to 64-bit hardware.  There are some | 
|  | * 32-bit adapters that Tx hang when given 64-bit DMA addresses | 
|  | */ | 
|  | pci_using_dac = 0; | 
|  | if ((hw->bus_type == e1000_bus_type_pcix) && | 
|  | !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) { | 
|  | pci_using_dac = 1; | 
|  | } else { | 
|  | err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); | 
|  | if (err) { | 
|  | pr_err("No usable DMA config, aborting\n"); | 
|  | goto err_dma; | 
|  | } | 
|  | } | 
|  |  | 
|  | netdev->netdev_ops = &e1000_netdev_ops; | 
|  | e1000_set_ethtool_ops(netdev); | 
|  | netdev->watchdog_timeo = 5 * HZ; | 
|  | netif_napi_add(netdev, &adapter->napi, e1000_clean, 64); | 
|  |  | 
|  | strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1); | 
|  |  | 
|  | adapter->bd_number = cards_found; | 
|  |  | 
|  | /* setup the private structure */ | 
|  |  | 
|  | err = e1000_sw_init(adapter); | 
|  | if (err) | 
|  | goto err_sw_init; | 
|  |  | 
|  | err = -EIO; | 
|  | if (hw->mac_type == e1000_ce4100) { | 
|  | hw->ce4100_gbe_mdio_base_virt = | 
|  | ioremap(pci_resource_start(pdev, BAR_1), | 
|  | pci_resource_len(pdev, BAR_1)); | 
|  |  | 
|  | if (!hw->ce4100_gbe_mdio_base_virt) | 
|  | goto err_mdio_ioremap; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | netdev->hw_features = NETIF_F_SG | | 
|  | NETIF_F_HW_CSUM | | 
|  | NETIF_F_HW_VLAN_CTAG_RX; | 
|  | netdev->features = NETIF_F_HW_VLAN_CTAG_TX | | 
|  | NETIF_F_HW_VLAN_CTAG_FILTER; | 
|  | } | 
|  |  | 
|  | if ((hw->mac_type >= e1000_82544) && | 
|  | (hw->mac_type != e1000_82547)) | 
|  | netdev->hw_features |= NETIF_F_TSO; | 
|  |  | 
|  | netdev->priv_flags |= IFF_SUPP_NOFCS; | 
|  |  | 
|  | netdev->features |= netdev->hw_features; | 
|  | netdev->hw_features |= (NETIF_F_RXCSUM | | 
|  | NETIF_F_RXALL | | 
|  | NETIF_F_RXFCS); | 
|  |  | 
|  | if (pci_using_dac) { | 
|  | netdev->features |= NETIF_F_HIGHDMA; | 
|  | netdev->vlan_features |= NETIF_F_HIGHDMA; | 
|  | } | 
|  |  | 
|  | netdev->vlan_features |= (NETIF_F_TSO | | 
|  | NETIF_F_HW_CSUM | | 
|  | NETIF_F_SG); | 
|  |  | 
|  | /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */ | 
|  | if (hw->device_id != E1000_DEV_ID_82545EM_COPPER || | 
|  | hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE) | 
|  | netdev->priv_flags |= IFF_UNICAST_FLT; | 
|  |  | 
|  | /* MTU range: 46 - 16110 */ | 
|  | netdev->min_mtu = ETH_ZLEN - ETH_HLEN; | 
|  | netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN); | 
|  |  | 
|  | adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw); | 
|  |  | 
|  | /* initialize eeprom parameters */ | 
|  | if (e1000_init_eeprom_params(hw)) { | 
|  | e_err(probe, "EEPROM initialization failed\n"); | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | /* before reading the EEPROM, reset the controller to | 
|  | * put the device in a known good starting state | 
|  | */ | 
|  |  | 
|  | e1000_reset_hw(hw); | 
|  |  | 
|  | /* make sure the EEPROM is good */ | 
|  | if (e1000_validate_eeprom_checksum(hw) < 0) { | 
|  | e_err(probe, "The EEPROM Checksum Is Not Valid\n"); | 
|  | e1000_dump_eeprom(adapter); | 
|  | /* set MAC address to all zeroes to invalidate and temporary | 
|  | * disable this device for the user. This blocks regular | 
|  | * traffic while still permitting ethtool ioctls from reaching | 
|  | * the hardware as well as allowing the user to run the | 
|  | * interface after manually setting a hw addr using | 
|  | * `ip set address` | 
|  | */ | 
|  | memset(hw->mac_addr, 0, netdev->addr_len); | 
|  | } else { | 
|  | /* copy the MAC address out of the EEPROM */ | 
|  | if (e1000_read_mac_addr(hw)) | 
|  | e_err(probe, "EEPROM Read Error\n"); | 
|  | } | 
|  | /* don't block initialization here due to bad MAC address */ | 
|  | memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len); | 
|  |  | 
|  | if (!is_valid_ether_addr(netdev->dev_addr)) | 
|  | e_err(probe, "Invalid MAC Address\n"); | 
|  |  | 
|  |  | 
|  | INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog); | 
|  | INIT_DELAYED_WORK(&adapter->fifo_stall_task, | 
|  | e1000_82547_tx_fifo_stall_task); | 
|  | INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task); | 
|  | INIT_WORK(&adapter->reset_task, e1000_reset_task); | 
|  |  | 
|  | e1000_check_options(adapter); | 
|  |  | 
|  | /* Initial Wake on LAN setting | 
|  | * If APM wake is enabled in the EEPROM, | 
|  | * enable the ACPI Magic Packet filter | 
|  | */ | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | break; | 
|  | case e1000_82544: | 
|  | e1000_read_eeprom(hw, | 
|  | EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data); | 
|  | eeprom_apme_mask = E1000_EEPROM_82544_APM; | 
|  | break; | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | if (er32(STATUS) & E1000_STATUS_FUNC_1) { | 
|  | e1000_read_eeprom(hw, | 
|  | EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data); | 
|  | break; | 
|  | } | 
|  | /* Fall Through */ | 
|  | default: | 
|  | e1000_read_eeprom(hw, | 
|  | EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data); | 
|  | break; | 
|  | } | 
|  | if (eeprom_data & eeprom_apme_mask) | 
|  | adapter->eeprom_wol |= E1000_WUFC_MAG; | 
|  |  | 
|  | /* now that we have the eeprom settings, apply the special cases | 
|  | * where the eeprom may be wrong or the board simply won't support | 
|  | * wake on lan on a particular port | 
|  | */ | 
|  | switch (pdev->device) { | 
|  | case E1000_DEV_ID_82546GB_PCIE: | 
|  | adapter->eeprom_wol = 0; | 
|  | break; | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | case E1000_DEV_ID_82546GB_FIBER: | 
|  | /* Wake events only supported on port A for dual fiber | 
|  | * regardless of eeprom setting | 
|  | */ | 
|  | if (er32(STATUS) & E1000_STATUS_FUNC_1) | 
|  | adapter->eeprom_wol = 0; | 
|  | break; | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
|  | /* if quad port adapter, disable WoL on all but port A */ | 
|  | if (global_quad_port_a != 0) | 
|  | adapter->eeprom_wol = 0; | 
|  | else | 
|  | adapter->quad_port_a = true; | 
|  | /* Reset for multiple quad port adapters */ | 
|  | if (++global_quad_port_a == 4) | 
|  | global_quad_port_a = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* initialize the wol settings based on the eeprom settings */ | 
|  | adapter->wol = adapter->eeprom_wol; | 
|  | device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol); | 
|  |  | 
|  | /* Auto detect PHY address */ | 
|  | if (hw->mac_type == e1000_ce4100) { | 
|  | for (i = 0; i < 32; i++) { | 
|  | hw->phy_addr = i; | 
|  | e1000_read_phy_reg(hw, PHY_ID2, &tmp); | 
|  |  | 
|  | if (tmp != 0 && tmp != 0xFF) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i >= 32) | 
|  | goto err_eeprom; | 
|  | } | 
|  |  | 
|  | /* reset the hardware with the new settings */ | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | strcpy(netdev->name, "eth%d"); | 
|  | err = register_netdev(netdev); | 
|  | if (err) | 
|  | goto err_register; | 
|  |  | 
|  | e1000_vlan_filter_on_off(adapter, false); | 
|  |  | 
|  | /* print bus type/speed/width info */ | 
|  | e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n", | 
|  | ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""), | 
|  | ((hw->bus_speed == e1000_bus_speed_133) ? 133 : | 
|  | (hw->bus_speed == e1000_bus_speed_120) ? 120 : | 
|  | (hw->bus_speed == e1000_bus_speed_100) ? 100 : | 
|  | (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33), | 
|  | ((hw->bus_width == e1000_bus_width_64) ? 64 : 32), | 
|  | netdev->dev_addr); | 
|  |  | 
|  | /* carrier off reporting is important to ethtool even BEFORE open */ | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | e_info(probe, "Intel(R) PRO/1000 Network Connection\n"); | 
|  |  | 
|  | cards_found++; | 
|  | return 0; | 
|  |  | 
|  | err_register: | 
|  | err_eeprom: | 
|  | e1000_phy_hw_reset(hw); | 
|  |  | 
|  | if (hw->flash_address) | 
|  | iounmap(hw->flash_address); | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  | err_dma: | 
|  | err_sw_init: | 
|  | err_mdio_ioremap: | 
|  | iounmap(hw->ce4100_gbe_mdio_base_virt); | 
|  | iounmap(hw->hw_addr); | 
|  | err_ioremap: | 
|  | free_netdev(netdev); | 
|  | err_alloc_etherdev: | 
|  | pci_release_selected_regions(pdev, bars); | 
|  | err_pci_reg: | 
|  | pci_disable_device(pdev); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_remove - Device Removal Routine | 
|  | * @pdev: PCI device information struct | 
|  | * | 
|  | * e1000_remove is called by the PCI subsystem to alert the driver | 
|  | * that it should release a PCI device. That could be caused by a | 
|  | * Hot-Plug event, or because the driver is going to be removed from | 
|  | * memory. | 
|  | **/ | 
|  | static void e1000_remove(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | e1000_down_and_stop(adapter); | 
|  | e1000_release_manageability(adapter); | 
|  |  | 
|  | unregister_netdev(netdev); | 
|  |  | 
|  | e1000_phy_hw_reset(hw); | 
|  |  | 
|  | kfree(adapter->tx_ring); | 
|  | kfree(adapter->rx_ring); | 
|  |  | 
|  | if (hw->mac_type == e1000_ce4100) | 
|  | iounmap(hw->ce4100_gbe_mdio_base_virt); | 
|  | iounmap(hw->hw_addr); | 
|  | if (hw->flash_address) | 
|  | iounmap(hw->flash_address); | 
|  | pci_release_selected_regions(pdev, adapter->bars); | 
|  |  | 
|  | free_netdev(netdev); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * e1000_sw_init initializes the Adapter private data structure. | 
|  | * e1000_init_hw_struct MUST be called before this function | 
|  | **/ | 
|  | static int e1000_sw_init(struct e1000_adapter *adapter) | 
|  | { | 
|  | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | 
|  |  | 
|  | adapter->num_tx_queues = 1; | 
|  | adapter->num_rx_queues = 1; | 
|  |  | 
|  | if (e1000_alloc_queues(adapter)) { | 
|  | e_err(probe, "Unable to allocate memory for queues\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Explicitly disable IRQ since the NIC can be in any state. */ | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | spin_lock_init(&adapter->stats_lock); | 
|  |  | 
|  | set_bit(__E1000_DOWN, &adapter->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_queues - Allocate memory for all rings | 
|  | * @adapter: board private structure to initialize | 
|  | * | 
|  | * We allocate one ring per queue at run-time since we don't know the | 
|  | * number of queues at compile-time. | 
|  | **/ | 
|  | static int e1000_alloc_queues(struct e1000_adapter *adapter) | 
|  | { | 
|  | adapter->tx_ring = kcalloc(adapter->num_tx_queues, | 
|  | sizeof(struct e1000_tx_ring), GFP_KERNEL); | 
|  | if (!adapter->tx_ring) | 
|  | return -ENOMEM; | 
|  |  | 
|  | adapter->rx_ring = kcalloc(adapter->num_rx_queues, | 
|  | sizeof(struct e1000_rx_ring), GFP_KERNEL); | 
|  | if (!adapter->rx_ring) { | 
|  | kfree(adapter->tx_ring); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_open - Called when a network interface is made active | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0 on success, negative value on failure | 
|  | * | 
|  | * The open entry point is called when a network interface is made | 
|  | * active by the system (IFF_UP).  At this point all resources needed | 
|  | * for transmit and receive operations are allocated, the interrupt | 
|  | * handler is registered with the OS, the watchdog task is started, | 
|  | * and the stack is notified that the interface is ready. | 
|  | **/ | 
|  | int e1000_open(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int err; | 
|  |  | 
|  | /* disallow open during test */ | 
|  | if (test_bit(__E1000_TESTING, &adapter->flags)) | 
|  | return -EBUSY; | 
|  |  | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | /* allocate transmit descriptors */ | 
|  | err = e1000_setup_all_tx_resources(adapter); | 
|  | if (err) | 
|  | goto err_setup_tx; | 
|  |  | 
|  | /* allocate receive descriptors */ | 
|  | err = e1000_setup_all_rx_resources(adapter); | 
|  | if (err) | 
|  | goto err_setup_rx; | 
|  |  | 
|  | e1000_power_up_phy(adapter); | 
|  |  | 
|  | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | 
|  | if ((hw->mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | 
|  | e1000_update_mng_vlan(adapter); | 
|  | } | 
|  |  | 
|  | /* before we allocate an interrupt, we must be ready to handle it. | 
|  | * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt | 
|  | * as soon as we call pci_request_irq, so we have to setup our | 
|  | * clean_rx handler before we do so. | 
|  | */ | 
|  | e1000_configure(adapter); | 
|  |  | 
|  | err = e1000_request_irq(adapter); | 
|  | if (err) | 
|  | goto err_req_irq; | 
|  |  | 
|  | /* From here on the code is the same as e1000_up() */ | 
|  | clear_bit(__E1000_DOWN, &adapter->flags); | 
|  |  | 
|  | napi_enable(&adapter->napi); | 
|  |  | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | netif_start_queue(netdev); | 
|  |  | 
|  | /* fire a link status change interrupt to start the watchdog */ | 
|  | ew32(ICS, E1000_ICS_LSC); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | err_req_irq: | 
|  | e1000_power_down_phy(adapter); | 
|  | e1000_free_all_rx_resources(adapter); | 
|  | err_setup_rx: | 
|  | e1000_free_all_tx_resources(adapter); | 
|  | err_setup_tx: | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_close - Disables a network interface | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * Returns 0, this is not allowed to fail | 
|  | * | 
|  | * The close entry point is called when an interface is de-activated | 
|  | * by the OS.  The hardware is still under the drivers control, but | 
|  | * needs to be disabled.  A global MAC reset is issued to stop the | 
|  | * hardware, and all transmit and receive resources are freed. | 
|  | **/ | 
|  | int e1000_close(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int count = E1000_CHECK_RESET_COUNT; | 
|  |  | 
|  | while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) | 
|  | usleep_range(10000, 20000); | 
|  |  | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | 
|  | e1000_down(adapter); | 
|  | e1000_power_down_phy(adapter); | 
|  | e1000_free_irq(adapter); | 
|  |  | 
|  | e1000_free_all_tx_resources(adapter); | 
|  | e1000_free_all_rx_resources(adapter); | 
|  |  | 
|  | /* kill manageability vlan ID if supported, but not if a vlan with | 
|  | * the same ID is registered on the host OS (let 8021q kill it) | 
|  | */ | 
|  | if ((hw->mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | 
|  | !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) { | 
|  | e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), | 
|  | adapter->mng_vlan_id); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary | 
|  | * @adapter: address of board private structure | 
|  | * @start: address of beginning of memory | 
|  | * @len: length of memory | 
|  | **/ | 
|  | static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start, | 
|  | unsigned long len) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | unsigned long begin = (unsigned long)start; | 
|  | unsigned long end = begin + len; | 
|  |  | 
|  | /* First rev 82545 and 82546 need to not allow any memory | 
|  | * write location to cross 64k boundary due to errata 23 | 
|  | */ | 
|  | if (hw->mac_type == e1000_82545 || | 
|  | hw->mac_type == e1000_ce4100 || | 
|  | hw->mac_type == e1000_82546) { | 
|  | return ((begin ^ (end - 1)) >> 16) != 0 ? false : true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_tx_resources - allocate Tx resources (Descriptors) | 
|  | * @adapter: board private structure | 
|  | * @txdr:    tx descriptor ring (for a specific queue) to setup | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  | static int e1000_setup_tx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *txdr) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int size; | 
|  |  | 
|  | size = sizeof(struct e1000_tx_buffer) * txdr->count; | 
|  | txdr->buffer_info = vzalloc(size); | 
|  | if (!txdr->buffer_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* round up to nearest 4K */ | 
|  |  | 
|  | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | 
|  | txdr->size = ALIGN(txdr->size, 4096); | 
|  |  | 
|  | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma, | 
|  | GFP_KERNEL); | 
|  | if (!txdr->desc) { | 
|  | setup_tx_desc_die: | 
|  | vfree(txdr->buffer_info); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Fix for errata 23, can't cross 64kB boundary */ | 
|  | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | 
|  | void *olddesc = txdr->desc; | 
|  | dma_addr_t olddma = txdr->dma; | 
|  | e_err(tx_err, "txdr align check failed: %u bytes at %p\n", | 
|  | txdr->size, txdr->desc); | 
|  | /* Try again, without freeing the previous */ | 
|  | txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, | 
|  | &txdr->dma, GFP_KERNEL); | 
|  | /* Failed allocation, critical failure */ | 
|  | if (!txdr->desc) { | 
|  | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | 
|  | olddma); | 
|  | goto setup_tx_desc_die; | 
|  | } | 
|  |  | 
|  | if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) { | 
|  | /* give up */ | 
|  | dma_free_coherent(&pdev->dev, txdr->size, txdr->desc, | 
|  | txdr->dma); | 
|  | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | 
|  | olddma); | 
|  | e_err(probe, "Unable to allocate aligned memory " | 
|  | "for the transmit descriptor ring\n"); | 
|  | vfree(txdr->buffer_info); | 
|  | return -ENOMEM; | 
|  | } else { | 
|  | /* Free old allocation, new allocation was successful */ | 
|  | dma_free_coherent(&pdev->dev, txdr->size, olddesc, | 
|  | olddma); | 
|  | } | 
|  | } | 
|  | memset(txdr->desc, 0, txdr->size); | 
|  |  | 
|  | txdr->next_to_use = 0; | 
|  | txdr->next_to_clean = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_all_tx_resources - wrapper to allocate Tx resources | 
|  | * 				  (Descriptors) for all queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  | int e1000_setup_all_tx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i, err = 0; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) { | 
|  | err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]); | 
|  | if (err) { | 
|  | e_err(probe, "Allocation for Tx Queue %u failed\n", i); | 
|  | for (i-- ; i >= 0; i--) | 
|  | e1000_free_tx_resources(adapter, | 
|  | &adapter->tx_ring[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Tx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void e1000_configure_tx(struct e1000_adapter *adapter) | 
|  | { | 
|  | u64 tdba; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 tdlen, tctl, tipg; | 
|  | u32 ipgr1, ipgr2; | 
|  |  | 
|  | /* Setup the HW Tx Head and Tail descriptor pointers */ | 
|  |  | 
|  | switch (adapter->num_tx_queues) { | 
|  | case 1: | 
|  | default: | 
|  | tdba = adapter->tx_ring[0].dma; | 
|  | tdlen = adapter->tx_ring[0].count * | 
|  | sizeof(struct e1000_tx_desc); | 
|  | ew32(TDLEN, tdlen); | 
|  | ew32(TDBAH, (tdba >> 32)); | 
|  | ew32(TDBAL, (tdba & 0x00000000ffffffffULL)); | 
|  | ew32(TDT, 0); | 
|  | ew32(TDH, 0); | 
|  | adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? | 
|  | E1000_TDH : E1000_82542_TDH); | 
|  | adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? | 
|  | E1000_TDT : E1000_82542_TDT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set the default values for the Tx Inter Packet Gap timer */ | 
|  | if ((hw->media_type == e1000_media_type_fiber || | 
|  | hw->media_type == e1000_media_type_internal_serdes)) | 
|  | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; | 
|  | else | 
|  | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | tipg = DEFAULT_82542_TIPG_IPGT; | 
|  | ipgr1 = DEFAULT_82542_TIPG_IPGR1; | 
|  | ipgr2 = DEFAULT_82542_TIPG_IPGR2; | 
|  | break; | 
|  | default: | 
|  | ipgr1 = DEFAULT_82543_TIPG_IPGR1; | 
|  | ipgr2 = DEFAULT_82543_TIPG_IPGR2; | 
|  | break; | 
|  | } | 
|  | tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT; | 
|  | tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT; | 
|  | ew32(TIPG, tipg); | 
|  |  | 
|  | /* Set the Tx Interrupt Delay register */ | 
|  |  | 
|  | ew32(TIDV, adapter->tx_int_delay); | 
|  | if (hw->mac_type >= e1000_82540) | 
|  | ew32(TADV, adapter->tx_abs_int_delay); | 
|  |  | 
|  | /* Program the Transmit Control Register */ | 
|  |  | 
|  | tctl = er32(TCTL); | 
|  | tctl &= ~E1000_TCTL_CT; | 
|  | tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | | 
|  | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Setup Transmit Descriptor Settings for eop descriptor */ | 
|  | adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; | 
|  |  | 
|  | /* only set IDE if we are delaying interrupts using the timers */ | 
|  | if (adapter->tx_int_delay) | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_IDE; | 
|  |  | 
|  | if (hw->mac_type < e1000_82543) | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_RPS; | 
|  | else | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_RS; | 
|  |  | 
|  | /* Cache if we're 82544 running in PCI-X because we'll | 
|  | * need this to apply a workaround later in the send path. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82544 && | 
|  | hw->bus_type == e1000_bus_type_pcix) | 
|  | adapter->pcix_82544 = true; | 
|  |  | 
|  | ew32(TCTL, tctl); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_rx_resources - allocate Rx resources (Descriptors) | 
|  | * @adapter: board private structure | 
|  | * @rxdr:    rx descriptor ring (for a specific queue) to setup | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int e1000_setup_rx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rxdr) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int size, desc_len; | 
|  |  | 
|  | size = sizeof(struct e1000_rx_buffer) * rxdr->count; | 
|  | rxdr->buffer_info = vzalloc(size); | 
|  | if (!rxdr->buffer_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | desc_len = sizeof(struct e1000_rx_desc); | 
|  |  | 
|  | /* Round up to nearest 4K */ | 
|  |  | 
|  | rxdr->size = rxdr->count * desc_len; | 
|  | rxdr->size = ALIGN(rxdr->size, 4096); | 
|  |  | 
|  | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma, | 
|  | GFP_KERNEL); | 
|  | if (!rxdr->desc) { | 
|  | setup_rx_desc_die: | 
|  | vfree(rxdr->buffer_info); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Fix for errata 23, can't cross 64kB boundary */ | 
|  | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | 
|  | void *olddesc = rxdr->desc; | 
|  | dma_addr_t olddma = rxdr->dma; | 
|  | e_err(rx_err, "rxdr align check failed: %u bytes at %p\n", | 
|  | rxdr->size, rxdr->desc); | 
|  | /* Try again, without freeing the previous */ | 
|  | rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, | 
|  | &rxdr->dma, GFP_KERNEL); | 
|  | /* Failed allocation, critical failure */ | 
|  | if (!rxdr->desc) { | 
|  | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | 
|  | olddma); | 
|  | goto setup_rx_desc_die; | 
|  | } | 
|  |  | 
|  | if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) { | 
|  | /* give up */ | 
|  | dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc, | 
|  | rxdr->dma); | 
|  | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | 
|  | olddma); | 
|  | e_err(probe, "Unable to allocate aligned memory for " | 
|  | "the Rx descriptor ring\n"); | 
|  | goto setup_rx_desc_die; | 
|  | } else { | 
|  | /* Free old allocation, new allocation was successful */ | 
|  | dma_free_coherent(&pdev->dev, rxdr->size, olddesc, | 
|  | olddma); | 
|  | } | 
|  | } | 
|  | memset(rxdr->desc, 0, rxdr->size); | 
|  |  | 
|  | rxdr->next_to_clean = 0; | 
|  | rxdr->next_to_use = 0; | 
|  | rxdr->rx_skb_top = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_all_rx_resources - wrapper to allocate Rx resources | 
|  | * 				  (Descriptors) for all queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Return 0 on success, negative on failure | 
|  | **/ | 
|  | int e1000_setup_all_rx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i, err = 0; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]); | 
|  | if (err) { | 
|  | e_err(probe, "Allocation for Rx Queue %u failed\n", i); | 
|  | for (i-- ; i >= 0; i--) | 
|  | e1000_free_rx_resources(adapter, | 
|  | &adapter->rx_ring[i]); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_rctl - configure the receive control registers | 
|  | * @adapter: Board private structure | 
|  | **/ | 
|  | static void e1000_setup_rctl(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl; | 
|  |  | 
|  | rctl = er32(RCTL); | 
|  |  | 
|  | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
|  |  | 
|  | rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO | | 
|  | E1000_RCTL_RDMTS_HALF | | 
|  | (hw->mc_filter_type << E1000_RCTL_MO_SHIFT); | 
|  |  | 
|  | if (hw->tbi_compatibility_on == 1) | 
|  | rctl |= E1000_RCTL_SBP; | 
|  | else | 
|  | rctl &= ~E1000_RCTL_SBP; | 
|  |  | 
|  | if (adapter->netdev->mtu <= ETH_DATA_LEN) | 
|  | rctl &= ~E1000_RCTL_LPE; | 
|  | else | 
|  | rctl |= E1000_RCTL_LPE; | 
|  |  | 
|  | /* Setup buffer sizes */ | 
|  | rctl &= ~E1000_RCTL_SZ_4096; | 
|  | rctl |= E1000_RCTL_BSEX; | 
|  | switch (adapter->rx_buffer_len) { | 
|  | case E1000_RXBUFFER_2048: | 
|  | default: | 
|  | rctl |= E1000_RCTL_SZ_2048; | 
|  | rctl &= ~E1000_RCTL_BSEX; | 
|  | break; | 
|  | case E1000_RXBUFFER_4096: | 
|  | rctl |= E1000_RCTL_SZ_4096; | 
|  | break; | 
|  | case E1000_RXBUFFER_8192: | 
|  | rctl |= E1000_RCTL_SZ_8192; | 
|  | break; | 
|  | case E1000_RXBUFFER_16384: | 
|  | rctl |= E1000_RCTL_SZ_16384; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* This is useful for sniffing bad packets. */ | 
|  | if (adapter->netdev->features & NETIF_F_RXALL) { | 
|  | /* UPE and MPE will be handled by normal PROMISC logic | 
|  | * in e1000e_set_rx_mode | 
|  | */ | 
|  | rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ | 
|  | E1000_RCTL_BAM | /* RX All Bcast Pkts */ | 
|  | E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ | 
|  |  | 
|  | rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ | 
|  | E1000_RCTL_DPF | /* Allow filtered pause */ | 
|  | E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ | 
|  | /* Do not mess with E1000_CTRL_VME, it affects transmit as well, | 
|  | * and that breaks VLANs. | 
|  | */ | 
|  | } | 
|  |  | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_rx - Configure 8254x Receive Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Rx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void e1000_configure_rx(struct e1000_adapter *adapter) | 
|  | { | 
|  | u64 rdba; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rdlen, rctl, rxcsum; | 
|  |  | 
|  | if (adapter->netdev->mtu > ETH_DATA_LEN) { | 
|  | rdlen = adapter->rx_ring[0].count * | 
|  | sizeof(struct e1000_rx_desc); | 
|  | adapter->clean_rx = e1000_clean_jumbo_rx_irq; | 
|  | adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; | 
|  | } else { | 
|  | rdlen = adapter->rx_ring[0].count * | 
|  | sizeof(struct e1000_rx_desc); | 
|  | adapter->clean_rx = e1000_clean_rx_irq; | 
|  | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | 
|  | } | 
|  |  | 
|  | /* disable receives while setting up the descriptors */ | 
|  | rctl = er32(RCTL); | 
|  | ew32(RCTL, rctl & ~E1000_RCTL_EN); | 
|  |  | 
|  | /* set the Receive Delay Timer Register */ | 
|  | ew32(RDTR, adapter->rx_int_delay); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82540) { | 
|  | ew32(RADV, adapter->rx_abs_int_delay); | 
|  | if (adapter->itr_setting != 0) | 
|  | ew32(ITR, 1000000000 / (adapter->itr * 256)); | 
|  | } | 
|  |  | 
|  | /* Setup the HW Rx Head and Tail Descriptor Pointers and | 
|  | * the Base and Length of the Rx Descriptor Ring | 
|  | */ | 
|  | switch (adapter->num_rx_queues) { | 
|  | case 1: | 
|  | default: | 
|  | rdba = adapter->rx_ring[0].dma; | 
|  | ew32(RDLEN, rdlen); | 
|  | ew32(RDBAH, (rdba >> 32)); | 
|  | ew32(RDBAL, (rdba & 0x00000000ffffffffULL)); | 
|  | ew32(RDT, 0); | 
|  | ew32(RDH, 0); | 
|  | adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? | 
|  | E1000_RDH : E1000_82542_RDH); | 
|  | adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? | 
|  | E1000_RDT : E1000_82542_RDT); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | rxcsum = er32(RXCSUM); | 
|  | if (adapter->rx_csum) | 
|  | rxcsum |= E1000_RXCSUM_TUOFL; | 
|  | else | 
|  | /* don't need to clear IPPCSE as it defaults to 0 */ | 
|  | rxcsum &= ~E1000_RXCSUM_TUOFL; | 
|  | ew32(RXCSUM, rxcsum); | 
|  | } | 
|  |  | 
|  | /* Enable Receives */ | 
|  | ew32(RCTL, rctl | E1000_RCTL_EN); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_free_tx_resources - Free Tx Resources per Queue | 
|  | * @adapter: board private structure | 
|  | * @tx_ring: Tx descriptor ring for a specific queue | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  | static void e1000_free_tx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | e1000_clean_tx_ring(adapter, tx_ring); | 
|  |  | 
|  | vfree(tx_ring->buffer_info); | 
|  | tx_ring->buffer_info = NULL; | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, | 
|  | tx_ring->dma); | 
|  |  | 
|  | tx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_free_all_tx_resources - Free Tx Resources for All Queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Free all transmit software resources | 
|  | **/ | 
|  | void e1000_free_all_tx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | e1000_free_tx_resources(adapter, &adapter->tx_ring[i]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_buffer *buffer_info) | 
|  | { | 
|  | if (buffer_info->dma) { | 
|  | if (buffer_info->mapped_as_page) | 
|  | dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, | 
|  | buffer_info->length, DMA_TO_DEVICE); | 
|  | else | 
|  | dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, | 
|  | buffer_info->length, | 
|  | DMA_TO_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  | } | 
|  | if (buffer_info->skb) { | 
|  | dev_kfree_skb_any(buffer_info->skb); | 
|  | buffer_info->skb = NULL; | 
|  | } | 
|  | buffer_info->time_stamp = 0; | 
|  | /* buffer_info must be completely set up in the transmit path */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_tx_ring - Free Tx Buffers | 
|  | * @adapter: board private structure | 
|  | * @tx_ring: ring to be cleaned | 
|  | **/ | 
|  | static void e1000_clean_tx_ring(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_tx_buffer *buffer_info; | 
|  | unsigned long size; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Free all the Tx ring sk_buffs */ | 
|  |  | 
|  | for (i = 0; i < tx_ring->count; i++) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | 
|  | } | 
|  |  | 
|  | netdev_reset_queue(adapter->netdev); | 
|  | size = sizeof(struct e1000_tx_buffer) * tx_ring->count; | 
|  | memset(tx_ring->buffer_info, 0, size); | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  |  | 
|  | memset(tx_ring->desc, 0, tx_ring->size); | 
|  |  | 
|  | tx_ring->next_to_use = 0; | 
|  | tx_ring->next_to_clean = 0; | 
|  | tx_ring->last_tx_tso = false; | 
|  |  | 
|  | writel(0, hw->hw_addr + tx_ring->tdh); | 
|  | writel(0, hw->hw_addr + tx_ring->tdt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_all_tx_rings - Free Tx Buffers for all queues | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_free_rx_resources - Free Rx Resources | 
|  | * @adapter: board private structure | 
|  | * @rx_ring: ring to clean the resources from | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  | static void e1000_free_rx_resources(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  |  | 
|  | e1000_clean_rx_ring(adapter, rx_ring); | 
|  |  | 
|  | vfree(rx_ring->buffer_info); | 
|  | rx_ring->buffer_info = NULL; | 
|  |  | 
|  | dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, | 
|  | rx_ring->dma); | 
|  |  | 
|  | rx_ring->desc = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_free_all_rx_resources - Free Rx Resources for All Queues | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Free all receive software resources | 
|  | **/ | 
|  | void e1000_free_all_rx_resources(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | e1000_free_rx_resources(adapter, &adapter->rx_ring[i]); | 
|  | } | 
|  |  | 
|  | #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) | 
|  | static unsigned int e1000_frag_len(const struct e1000_adapter *a) | 
|  | { | 
|  | return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) + | 
|  | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
|  | } | 
|  |  | 
|  | static void *e1000_alloc_frag(const struct e1000_adapter *a) | 
|  | { | 
|  | unsigned int len = e1000_frag_len(a); | 
|  | u8 *data = netdev_alloc_frag(len); | 
|  |  | 
|  | if (likely(data)) | 
|  | data += E1000_HEADROOM; | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_ring - Free Rx Buffers per Queue | 
|  | * @adapter: board private structure | 
|  | * @rx_ring: ring to free buffers from | 
|  | **/ | 
|  | static void e1000_clean_rx_ring(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_rx_buffer *buffer_info; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | unsigned long size; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Free all the Rx netfrags */ | 
|  | for (i = 0; i < rx_ring->count; i++) { | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | if (adapter->clean_rx == e1000_clean_rx_irq) { | 
|  | if (buffer_info->dma) | 
|  | dma_unmap_single(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (buffer_info->rxbuf.data) { | 
|  | skb_free_frag(buffer_info->rxbuf.data); | 
|  | buffer_info->rxbuf.data = NULL; | 
|  | } | 
|  | } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) { | 
|  | if (buffer_info->dma) | 
|  | dma_unmap_page(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (buffer_info->rxbuf.page) { | 
|  | put_page(buffer_info->rxbuf.page); | 
|  | buffer_info->rxbuf.page = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | buffer_info->dma = 0; | 
|  | } | 
|  |  | 
|  | /* there also may be some cached data from a chained receive */ | 
|  | napi_free_frags(&adapter->napi); | 
|  | rx_ring->rx_skb_top = NULL; | 
|  |  | 
|  | size = sizeof(struct e1000_rx_buffer) * rx_ring->count; | 
|  | memset(rx_ring->buffer_info, 0, size); | 
|  |  | 
|  | /* Zero out the descriptor ring */ | 
|  | memset(rx_ring->desc, 0, rx_ring->size); | 
|  |  | 
|  | rx_ring->next_to_clean = 0; | 
|  | rx_ring->next_to_use = 0; | 
|  |  | 
|  | writel(0, hw->hw_addr + rx_ring->rdh); | 
|  | writel(0, hw->hw_addr + rx_ring->rdt); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_all_rx_rings - Free Rx Buffers for all queues | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]); | 
|  | } | 
|  |  | 
|  | /* The 82542 2.0 (revision 2) needs to have the receive unit in reset | 
|  | * and memory write and invalidate disabled for certain operations | 
|  | */ | 
|  | static void e1000_enter_82542_rst(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u32 rctl; | 
|  |  | 
|  | e1000_pci_clear_mwi(hw); | 
|  |  | 
|  | rctl = er32(RCTL); | 
|  | rctl |= E1000_RCTL_RST; | 
|  | ew32(RCTL, rctl); | 
|  | E1000_WRITE_FLUSH(); | 
|  | mdelay(5); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_clean_all_rx_rings(adapter); | 
|  | } | 
|  |  | 
|  | static void e1000_leave_82542_rst(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u32 rctl; | 
|  |  | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~E1000_RCTL_RST; | 
|  | ew32(RCTL, rctl); | 
|  | E1000_WRITE_FLUSH(); | 
|  | mdelay(5); | 
|  |  | 
|  | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
|  | e1000_pci_set_mwi(hw); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | /* No need to loop, because 82542 supports only 1 queue */ | 
|  | struct e1000_rx_ring *ring = &adapter->rx_ring[0]; | 
|  | e1000_configure_rx(adapter); | 
|  | adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_mac - Change the Ethernet Address of the NIC | 
|  | * @netdev: network interface device structure | 
|  | * @p: pointer to an address structure | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int e1000_set_mac(struct net_device *netdev, void *p) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct sockaddr *addr = p; | 
|  |  | 
|  | if (!is_valid_ether_addr(addr->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | /* 82542 2.0 needs to be in reset to write receive address registers */ | 
|  |  | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | e1000_enter_82542_rst(adapter); | 
|  |  | 
|  | memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); | 
|  | memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len); | 
|  |  | 
|  | e1000_rar_set(hw, hw->mac_addr, 0); | 
|  |  | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | e1000_leave_82542_rst(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set | 
|  | * @netdev: network interface device structure | 
|  | * | 
|  | * The set_rx_mode entry point is called whenever the unicast or multicast | 
|  | * address lists or the network interface flags are updated. This routine is | 
|  | * responsible for configuring the hardware for proper unicast, multicast, | 
|  | * promiscuous mode, and all-multi behavior. | 
|  | **/ | 
|  | static void e1000_set_rx_mode(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct netdev_hw_addr *ha; | 
|  | bool use_uc = false; | 
|  | u32 rctl; | 
|  | u32 hash_value; | 
|  | int i, rar_entries = E1000_RAR_ENTRIES; | 
|  | int mta_reg_count = E1000_NUM_MTA_REGISTERS; | 
|  | u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC); | 
|  |  | 
|  | if (!mcarray) | 
|  | return; | 
|  |  | 
|  | /* Check for Promiscuous and All Multicast modes */ | 
|  |  | 
|  | rctl = er32(RCTL); | 
|  |  | 
|  | if (netdev->flags & IFF_PROMISC) { | 
|  | rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); | 
|  | rctl &= ~E1000_RCTL_VFE; | 
|  | } else { | 
|  | if (netdev->flags & IFF_ALLMULTI) | 
|  | rctl |= E1000_RCTL_MPE; | 
|  | else | 
|  | rctl &= ~E1000_RCTL_MPE; | 
|  | /* Enable VLAN filter if there is a VLAN */ | 
|  | if (e1000_vlan_used(adapter)) | 
|  | rctl |= E1000_RCTL_VFE; | 
|  | } | 
|  |  | 
|  | if (netdev_uc_count(netdev) > rar_entries - 1) { | 
|  | rctl |= E1000_RCTL_UPE; | 
|  | } else if (!(netdev->flags & IFF_PROMISC)) { | 
|  | rctl &= ~E1000_RCTL_UPE; | 
|  | use_uc = true; | 
|  | } | 
|  |  | 
|  | ew32(RCTL, rctl); | 
|  |  | 
|  | /* 82542 2.0 needs to be in reset to write receive address registers */ | 
|  |  | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | e1000_enter_82542_rst(adapter); | 
|  |  | 
|  | /* load the first 14 addresses into the exact filters 1-14. Unicast | 
|  | * addresses take precedence to avoid disabling unicast filtering | 
|  | * when possible. | 
|  | * | 
|  | * RAR 0 is used for the station MAC address | 
|  | * if there are not 14 addresses, go ahead and clear the filters | 
|  | */ | 
|  | i = 1; | 
|  | if (use_uc) | 
|  | netdev_for_each_uc_addr(ha, netdev) { | 
|  | if (i == rar_entries) | 
|  | break; | 
|  | e1000_rar_set(hw, ha->addr, i++); | 
|  | } | 
|  |  | 
|  | netdev_for_each_mc_addr(ha, netdev) { | 
|  | if (i == rar_entries) { | 
|  | /* load any remaining addresses into the hash table */ | 
|  | u32 hash_reg, hash_bit, mta; | 
|  | hash_value = e1000_hash_mc_addr(hw, ha->addr); | 
|  | hash_reg = (hash_value >> 5) & 0x7F; | 
|  | hash_bit = hash_value & 0x1F; | 
|  | mta = (1 << hash_bit); | 
|  | mcarray[hash_reg] |= mta; | 
|  | } else { | 
|  | e1000_rar_set(hw, ha->addr, i++); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (; i < rar_entries; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | /* write the hash table completely, write from bottom to avoid | 
|  | * both stupid write combining chipsets, and flushing each write | 
|  | */ | 
|  | for (i = mta_reg_count - 1; i >= 0 ; i--) { | 
|  | /* If we are on an 82544 has an errata where writing odd | 
|  | * offsets overwrites the previous even offset, but writing | 
|  | * backwards over the range solves the issue by always | 
|  | * writing the odd offset first | 
|  | */ | 
|  | E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]); | 
|  | } | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | e1000_leave_82542_rst(adapter); | 
|  |  | 
|  | kfree(mcarray); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_update_phy_info_task - get phy info | 
|  | * @work: work struct contained inside adapter struct | 
|  | * | 
|  | * Need to wait a few seconds after link up to get diagnostic information from | 
|  | * the phy | 
|  | */ | 
|  | static void e1000_update_phy_info_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, | 
|  | phy_info_task.work); | 
|  |  | 
|  | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_82547_tx_fifo_stall_task - task to complete work | 
|  | * @work: work struct contained inside adapter struct | 
|  | **/ | 
|  | static void e1000_82547_tx_fifo_stall_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, | 
|  | fifo_stall_task.work); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | u32 tctl; | 
|  |  | 
|  | if (atomic_read(&adapter->tx_fifo_stall)) { | 
|  | if ((er32(TDT) == er32(TDH)) && | 
|  | (er32(TDFT) == er32(TDFH)) && | 
|  | (er32(TDFTS) == er32(TDFHS))) { | 
|  | tctl = er32(TCTL); | 
|  | ew32(TCTL, tctl & ~E1000_TCTL_EN); | 
|  | ew32(TDFT, adapter->tx_head_addr); | 
|  | ew32(TDFH, adapter->tx_head_addr); | 
|  | ew32(TDFTS, adapter->tx_head_addr); | 
|  | ew32(TDFHS, adapter->tx_head_addr); | 
|  | ew32(TCTL, tctl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | adapter->tx_fifo_head = 0; | 
|  | atomic_set(&adapter->tx_fifo_stall, 0); | 
|  | netif_wake_queue(netdev); | 
|  | } else if (!test_bit(__E1000_DOWN, &adapter->flags)) { | 
|  | schedule_delayed_work(&adapter->fifo_stall_task, 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool e1000_has_link(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | bool link_active = false; | 
|  |  | 
|  | /* get_link_status is set on LSC (link status) interrupt or rx | 
|  | * sequence error interrupt (except on intel ce4100). | 
|  | * get_link_status will stay false until the | 
|  | * e1000_check_for_link establishes link for copper adapters | 
|  | * ONLY | 
|  | */ | 
|  | switch (hw->media_type) { | 
|  | case e1000_media_type_copper: | 
|  | if (hw->mac_type == e1000_ce4100) | 
|  | hw->get_link_status = 1; | 
|  | if (hw->get_link_status) { | 
|  | e1000_check_for_link(hw); | 
|  | link_active = !hw->get_link_status; | 
|  | } else { | 
|  | link_active = true; | 
|  | } | 
|  | break; | 
|  | case e1000_media_type_fiber: | 
|  | e1000_check_for_link(hw); | 
|  | link_active = !!(er32(STATUS) & E1000_STATUS_LU); | 
|  | break; | 
|  | case e1000_media_type_internal_serdes: | 
|  | e1000_check_for_link(hw); | 
|  | link_active = hw->serdes_has_link; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return link_active; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_watchdog - work function | 
|  | * @work: work struct contained inside adapter struct | 
|  | **/ | 
|  | static void e1000_watchdog(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(work, | 
|  | struct e1000_adapter, | 
|  | watchdog_task.work); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_tx_ring *txdr = adapter->tx_ring; | 
|  | u32 link, tctl; | 
|  |  | 
|  | link = e1000_has_link(adapter); | 
|  | if ((netif_carrier_ok(netdev)) && link) | 
|  | goto link_up; | 
|  |  | 
|  | if (link) { | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | u32 ctrl; | 
|  | bool txb2b = true; | 
|  | /* update snapshot of PHY registers on LSC */ | 
|  | e1000_get_speed_and_duplex(hw, | 
|  | &adapter->link_speed, | 
|  | &adapter->link_duplex); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | pr_info("%s NIC Link is Up %d Mbps %s, " | 
|  | "Flow Control: %s\n", | 
|  | netdev->name, | 
|  | adapter->link_speed, | 
|  | adapter->link_duplex == FULL_DUPLEX ? | 
|  | "Full Duplex" : "Half Duplex", | 
|  | ((ctrl & E1000_CTRL_TFCE) && (ctrl & | 
|  | E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl & | 
|  | E1000_CTRL_RFCE) ? "RX" : ((ctrl & | 
|  | E1000_CTRL_TFCE) ? "TX" : "None"))); | 
|  |  | 
|  | /* adjust timeout factor according to speed/duplex */ | 
|  | adapter->tx_timeout_factor = 1; | 
|  | switch (adapter->link_speed) { | 
|  | case SPEED_10: | 
|  | txb2b = false; | 
|  | adapter->tx_timeout_factor = 16; | 
|  | break; | 
|  | case SPEED_100: | 
|  | txb2b = false; | 
|  | /* maybe add some timeout factor ? */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* enable transmits in the hardware */ | 
|  | tctl = er32(TCTL); | 
|  | tctl |= E1000_TCTL_EN; | 
|  | ew32(TCTL, tctl); | 
|  |  | 
|  | netif_carrier_on(netdev); | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | schedule_delayed_work(&adapter->phy_info_task, | 
|  | 2 * HZ); | 
|  | adapter->smartspeed = 0; | 
|  | } | 
|  | } else { | 
|  | if (netif_carrier_ok(netdev)) { | 
|  | adapter->link_speed = 0; | 
|  | adapter->link_duplex = 0; | 
|  | pr_info("%s NIC Link is Down\n", | 
|  | netdev->name); | 
|  | netif_carrier_off(netdev); | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | schedule_delayed_work(&adapter->phy_info_task, | 
|  | 2 * HZ); | 
|  | } | 
|  |  | 
|  | e1000_smartspeed(adapter); | 
|  | } | 
|  |  | 
|  | link_up: | 
|  | e1000_update_stats(adapter); | 
|  |  | 
|  | hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; | 
|  | adapter->tpt_old = adapter->stats.tpt; | 
|  | hw->collision_delta = adapter->stats.colc - adapter->colc_old; | 
|  | adapter->colc_old = adapter->stats.colc; | 
|  |  | 
|  | adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old; | 
|  | adapter->gorcl_old = adapter->stats.gorcl; | 
|  | adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old; | 
|  | adapter->gotcl_old = adapter->stats.gotcl; | 
|  |  | 
|  | e1000_update_adaptive(hw); | 
|  |  | 
|  | if (!netif_carrier_ok(netdev)) { | 
|  | if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) { | 
|  | /* We've lost link, so the controller stops DMA, | 
|  | * but we've got queued Tx work that's never going | 
|  | * to get done, so reset controller to flush Tx. | 
|  | * (Do the reset outside of interrupt context). | 
|  | */ | 
|  | adapter->tx_timeout_count++; | 
|  | schedule_work(&adapter->reset_task); | 
|  | /* exit immediately since reset is imminent */ | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Simple mode for Interrupt Throttle Rate (ITR) */ | 
|  | if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) { | 
|  | /* Symmetric Tx/Rx gets a reduced ITR=2000; | 
|  | * Total asymmetrical Tx or Rx gets ITR=8000; | 
|  | * everyone else is between 2000-8000. | 
|  | */ | 
|  | u32 goc = (adapter->gotcl + adapter->gorcl) / 10000; | 
|  | u32 dif = (adapter->gotcl > adapter->gorcl ? | 
|  | adapter->gotcl - adapter->gorcl : | 
|  | adapter->gorcl - adapter->gotcl) / 10000; | 
|  | u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; | 
|  |  | 
|  | ew32(ITR, 1000000000 / (itr * 256)); | 
|  | } | 
|  |  | 
|  | /* Cause software interrupt to ensure rx ring is cleaned */ | 
|  | ew32(ICS, E1000_ICS_RXDMT0); | 
|  |  | 
|  | /* Force detection of hung controller every watchdog period */ | 
|  | adapter->detect_tx_hung = true; | 
|  |  | 
|  | /* Reschedule the task */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | schedule_delayed_work(&adapter->watchdog_task, 2 * HZ); | 
|  | } | 
|  |  | 
|  | enum latency_range { | 
|  | lowest_latency = 0, | 
|  | low_latency = 1, | 
|  | bulk_latency = 2, | 
|  | latency_invalid = 255 | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * e1000_update_itr - update the dynamic ITR value based on statistics | 
|  | * @adapter: pointer to adapter | 
|  | * @itr_setting: current adapter->itr | 
|  | * @packets: the number of packets during this measurement interval | 
|  | * @bytes: the number of bytes during this measurement interval | 
|  | * | 
|  | *      Stores a new ITR value based on packets and byte | 
|  | *      counts during the last interrupt.  The advantage of per interrupt | 
|  | *      computation is faster updates and more accurate ITR for the current | 
|  | *      traffic pattern.  Constants in this function were computed | 
|  | *      based on theoretical maximum wire speed and thresholds were set based | 
|  | *      on testing data as well as attempting to minimize response time | 
|  | *      while increasing bulk throughput. | 
|  | *      this functionality is controlled by the InterruptThrottleRate module | 
|  | *      parameter (see e1000_param.c) | 
|  | **/ | 
|  | static unsigned int e1000_update_itr(struct e1000_adapter *adapter, | 
|  | u16 itr_setting, int packets, int bytes) | 
|  | { | 
|  | unsigned int retval = itr_setting; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (unlikely(hw->mac_type < e1000_82540)) | 
|  | goto update_itr_done; | 
|  |  | 
|  | if (packets == 0) | 
|  | goto update_itr_done; | 
|  |  | 
|  | switch (itr_setting) { | 
|  | case lowest_latency: | 
|  | /* jumbo frames get bulk treatment*/ | 
|  | if (bytes/packets > 8000) | 
|  | retval = bulk_latency; | 
|  | else if ((packets < 5) && (bytes > 512)) | 
|  | retval = low_latency; | 
|  | break; | 
|  | case low_latency:  /* 50 usec aka 20000 ints/s */ | 
|  | if (bytes > 10000) { | 
|  | /* jumbo frames need bulk latency setting */ | 
|  | if (bytes/packets > 8000) | 
|  | retval = bulk_latency; | 
|  | else if ((packets < 10) || ((bytes/packets) > 1200)) | 
|  | retval = bulk_latency; | 
|  | else if ((packets > 35)) | 
|  | retval = lowest_latency; | 
|  | } else if (bytes/packets > 2000) | 
|  | retval = bulk_latency; | 
|  | else if (packets <= 2 && bytes < 512) | 
|  | retval = lowest_latency; | 
|  | break; | 
|  | case bulk_latency: /* 250 usec aka 4000 ints/s */ | 
|  | if (bytes > 25000) { | 
|  | if (packets > 35) | 
|  | retval = low_latency; | 
|  | } else if (bytes < 6000) { | 
|  | retval = low_latency; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | update_itr_done: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void e1000_set_itr(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 current_itr; | 
|  | u32 new_itr = adapter->itr; | 
|  |  | 
|  | if (unlikely(hw->mac_type < e1000_82540)) | 
|  | return; | 
|  |  | 
|  | /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ | 
|  | if (unlikely(adapter->link_speed != SPEED_1000)) { | 
|  | current_itr = 0; | 
|  | new_itr = 4000; | 
|  | goto set_itr_now; | 
|  | } | 
|  |  | 
|  | adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr, | 
|  | adapter->total_tx_packets, | 
|  | adapter->total_tx_bytes); | 
|  | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) | 
|  | adapter->tx_itr = low_latency; | 
|  |  | 
|  | adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr, | 
|  | adapter->total_rx_packets, | 
|  | adapter->total_rx_bytes); | 
|  | /* conservative mode (itr 3) eliminates the lowest_latency setting */ | 
|  | if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) | 
|  | adapter->rx_itr = low_latency; | 
|  |  | 
|  | current_itr = max(adapter->rx_itr, adapter->tx_itr); | 
|  |  | 
|  | switch (current_itr) { | 
|  | /* counts and packets in update_itr are dependent on these numbers */ | 
|  | case lowest_latency: | 
|  | new_itr = 70000; | 
|  | break; | 
|  | case low_latency: | 
|  | new_itr = 20000; /* aka hwitr = ~200 */ | 
|  | break; | 
|  | case bulk_latency: | 
|  | new_itr = 4000; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | set_itr_now: | 
|  | if (new_itr != adapter->itr) { | 
|  | /* this attempts to bias the interrupt rate towards Bulk | 
|  | * by adding intermediate steps when interrupt rate is | 
|  | * increasing | 
|  | */ | 
|  | new_itr = new_itr > adapter->itr ? | 
|  | min(adapter->itr + (new_itr >> 2), new_itr) : | 
|  | new_itr; | 
|  | adapter->itr = new_itr; | 
|  | ew32(ITR, 1000000000 / (new_itr * 256)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define E1000_TX_FLAGS_CSUM		0x00000001 | 
|  | #define E1000_TX_FLAGS_VLAN		0x00000002 | 
|  | #define E1000_TX_FLAGS_TSO		0x00000004 | 
|  | #define E1000_TX_FLAGS_IPV4		0x00000008 | 
|  | #define E1000_TX_FLAGS_NO_FCS		0x00000010 | 
|  | #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000 | 
|  | #define E1000_TX_FLAGS_VLAN_SHIFT	16 | 
|  |  | 
|  | static int e1000_tso(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring, struct sk_buff *skb, | 
|  | __be16 protocol) | 
|  | { | 
|  | struct e1000_context_desc *context_desc; | 
|  | struct e1000_tx_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | u32 cmd_length = 0; | 
|  | u16 ipcse = 0, tucse, mss; | 
|  | u8 ipcss, ipcso, tucss, tucso, hdr_len; | 
|  |  | 
|  | if (skb_is_gso(skb)) { | 
|  | int err; | 
|  |  | 
|  | err = skb_cow_head(skb, 0); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | if (protocol == htons(ETH_P_IP)) { | 
|  | struct iphdr *iph = ip_hdr(skb); | 
|  | iph->tot_len = 0; | 
|  | iph->check = 0; | 
|  | tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, | 
|  | iph->daddr, 0, | 
|  | IPPROTO_TCP, | 
|  | 0); | 
|  | cmd_length = E1000_TXD_CMD_IP; | 
|  | ipcse = skb_transport_offset(skb) - 1; | 
|  | } else if (skb_is_gso_v6(skb)) { | 
|  | ipv6_hdr(skb)->payload_len = 0; | 
|  | tcp_hdr(skb)->check = | 
|  | ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | 
|  | &ipv6_hdr(skb)->daddr, | 
|  | 0, IPPROTO_TCP, 0); | 
|  | ipcse = 0; | 
|  | } | 
|  | ipcss = skb_network_offset(skb); | 
|  | ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; | 
|  | tucss = skb_transport_offset(skb); | 
|  | tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; | 
|  | tucse = 0; | 
|  |  | 
|  | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 
|  | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  |  | 
|  | context_desc->lower_setup.ip_fields.ipcss  = ipcss; | 
|  | context_desc->lower_setup.ip_fields.ipcso  = ipcso; | 
|  | context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse); | 
|  | context_desc->upper_setup.tcp_fields.tucss = tucss; | 
|  | context_desc->upper_setup.tcp_fields.tucso = tucso; | 
|  | context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse); | 
|  | context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss); | 
|  | context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; | 
|  | context_desc->cmd_and_length = cpu_to_le32(cmd_length); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | if (++i == tx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool e1000_tx_csum(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring, struct sk_buff *skb, | 
|  | __be16 protocol) | 
|  | { | 
|  | struct e1000_context_desc *context_desc; | 
|  | struct e1000_tx_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | u8 css; | 
|  | u32 cmd_len = E1000_TXD_CMD_DEXT; | 
|  |  | 
|  | if (skb->ip_summed != CHECKSUM_PARTIAL) | 
|  | return false; | 
|  |  | 
|  | switch (protocol) { | 
|  | case cpu_to_be16(ETH_P_IP): | 
|  | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | 
|  | cmd_len |= E1000_TXD_CMD_TCP; | 
|  | break; | 
|  | case cpu_to_be16(ETH_P_IPV6): | 
|  | /* XXX not handling all IPV6 headers */ | 
|  | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | 
|  | cmd_len |= E1000_TXD_CMD_TCP; | 
|  | break; | 
|  | default: | 
|  | if (unlikely(net_ratelimit())) | 
|  | e_warn(drv, "checksum_partial proto=%x!\n", | 
|  | skb->protocol); | 
|  | break; | 
|  | } | 
|  |  | 
|  | css = skb_checksum_start_offset(skb); | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | context_desc = E1000_CONTEXT_DESC(*tx_ring, i); | 
|  |  | 
|  | context_desc->lower_setup.ip_config = 0; | 
|  | context_desc->upper_setup.tcp_fields.tucss = css; | 
|  | context_desc->upper_setup.tcp_fields.tucso = | 
|  | css + skb->csum_offset; | 
|  | context_desc->upper_setup.tcp_fields.tucse = 0; | 
|  | context_desc->tcp_seg_setup.data = 0; | 
|  | context_desc->cmd_and_length = cpu_to_le32(cmd_len); | 
|  |  | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | if (unlikely(++i == tx_ring->count)) | 
|  | i = 0; | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define E1000_MAX_TXD_PWR	12 | 
|  | #define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR) | 
|  |  | 
|  | static int e1000_tx_map(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring, | 
|  | struct sk_buff *skb, unsigned int first, | 
|  | unsigned int max_per_txd, unsigned int nr_frags, | 
|  | unsigned int mss) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_tx_buffer *buffer_info; | 
|  | unsigned int len = skb_headlen(skb); | 
|  | unsigned int offset = 0, size, count = 0, i; | 
|  | unsigned int f, bytecount, segs; | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | while (len) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | size = min(len, max_per_txd); | 
|  | /* Workaround for Controller erratum -- | 
|  | * descriptor for non-tso packet in a linear SKB that follows a | 
|  | * tso gets written back prematurely before the data is fully | 
|  | * DMA'd to the controller | 
|  | */ | 
|  | if (!skb->data_len && tx_ring->last_tx_tso && | 
|  | !skb_is_gso(skb)) { | 
|  | tx_ring->last_tx_tso = false; | 
|  | size -= 4; | 
|  | } | 
|  |  | 
|  | /* Workaround for premature desc write-backs | 
|  | * in TSO mode.  Append 4-byte sentinel desc | 
|  | */ | 
|  | if (unlikely(mss && !nr_frags && size == len && size > 8)) | 
|  | size -= 4; | 
|  | /* work-around for errata 10 and it applies | 
|  | * to all controllers in PCI-X mode | 
|  | * The fix is to make sure that the first descriptor of a | 
|  | * packet is smaller than 2048 - 16 - 16 (or 2016) bytes | 
|  | */ | 
|  | if (unlikely((hw->bus_type == e1000_bus_type_pcix) && | 
|  | (size > 2015) && count == 0)) | 
|  | size = 2015; | 
|  |  | 
|  | /* Workaround for potential 82544 hang in PCI-X.  Avoid | 
|  | * terminating buffers within evenly-aligned dwords. | 
|  | */ | 
|  | if (unlikely(adapter->pcix_82544 && | 
|  | !((unsigned long)(skb->data + offset + size - 1) & 4) && | 
|  | size > 4)) | 
|  | size -= 4; | 
|  |  | 
|  | buffer_info->length = size; | 
|  | /* set time_stamp *before* dma to help avoid a possible race */ | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->mapped_as_page = false; | 
|  | buffer_info->dma = dma_map_single(&pdev->dev, | 
|  | skb->data + offset, | 
|  | size, DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | 
|  | goto dma_error; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | len -= size; | 
|  | offset += size; | 
|  | count++; | 
|  | if (len) { | 
|  | i++; | 
|  | if (unlikely(i == tx_ring->count)) | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (f = 0; f < nr_frags; f++) { | 
|  | const struct skb_frag_struct *frag; | 
|  |  | 
|  | frag = &skb_shinfo(skb)->frags[f]; | 
|  | len = skb_frag_size(frag); | 
|  | offset = 0; | 
|  |  | 
|  | while (len) { | 
|  | unsigned long bufend; | 
|  | i++; | 
|  | if (unlikely(i == tx_ring->count)) | 
|  | i = 0; | 
|  |  | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | size = min(len, max_per_txd); | 
|  | /* Workaround for premature desc write-backs | 
|  | * in TSO mode.  Append 4-byte sentinel desc | 
|  | */ | 
|  | if (unlikely(mss && f == (nr_frags-1) && | 
|  | size == len && size > 8)) | 
|  | size -= 4; | 
|  | /* Workaround for potential 82544 hang in PCI-X. | 
|  | * Avoid terminating buffers within evenly-aligned | 
|  | * dwords. | 
|  | */ | 
|  | bufend = (unsigned long) | 
|  | page_to_phys(skb_frag_page(frag)); | 
|  | bufend += offset + size - 1; | 
|  | if (unlikely(adapter->pcix_82544 && | 
|  | !(bufend & 4) && | 
|  | size > 4)) | 
|  | size -= 4; | 
|  |  | 
|  | buffer_info->length = size; | 
|  | buffer_info->time_stamp = jiffies; | 
|  | buffer_info->mapped_as_page = true; | 
|  | buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, | 
|  | offset, size, DMA_TO_DEVICE); | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) | 
|  | goto dma_error; | 
|  | buffer_info->next_to_watch = i; | 
|  |  | 
|  | len -= size; | 
|  | offset += size; | 
|  | count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | segs = skb_shinfo(skb)->gso_segs ?: 1; | 
|  | /* multiply data chunks by size of headers */ | 
|  | bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; | 
|  |  | 
|  | tx_ring->buffer_info[i].skb = skb; | 
|  | tx_ring->buffer_info[i].segs = segs; | 
|  | tx_ring->buffer_info[i].bytecount = bytecount; | 
|  | tx_ring->buffer_info[first].next_to_watch = i; | 
|  |  | 
|  | return count; | 
|  |  | 
|  | dma_error: | 
|  | dev_err(&pdev->dev, "TX DMA map failed\n"); | 
|  | buffer_info->dma = 0; | 
|  | if (count) | 
|  | count--; | 
|  |  | 
|  | while (count--) { | 
|  | if (i == 0) | 
|  | i += tx_ring->count; | 
|  | i--; | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000_tx_queue(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring, int tx_flags, | 
|  | int count) | 
|  | { | 
|  | struct e1000_tx_desc *tx_desc = NULL; | 
|  | struct e1000_tx_buffer *buffer_info; | 
|  | u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; | 
|  | unsigned int i; | 
|  |  | 
|  | if (likely(tx_flags & E1000_TX_FLAGS_TSO)) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 
|  | E1000_TXD_CMD_TSE; | 
|  | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  |  | 
|  | if (likely(tx_flags & E1000_TX_FLAGS_IPV4)) | 
|  | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | 
|  | } | 
|  |  | 
|  | if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) { | 
|  | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; | 
|  | txd_upper |= E1000_TXD_POPTS_TXSM << 8; | 
|  | } | 
|  |  | 
|  | if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) { | 
|  | txd_lower |= E1000_TXD_CMD_VLE; | 
|  | txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); | 
|  | } | 
|  |  | 
|  | if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) | 
|  | txd_lower &= ~(E1000_TXD_CMD_IFCS); | 
|  |  | 
|  | i = tx_ring->next_to_use; | 
|  |  | 
|  | while (count--) { | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  | tx_desc->lower.data = | 
|  | cpu_to_le32(txd_lower | buffer_info->length); | 
|  | tx_desc->upper.data = cpu_to_le32(txd_upper); | 
|  | if (unlikely(++i == tx_ring->count)) | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); | 
|  |  | 
|  | /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ | 
|  | if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) | 
|  | tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  |  | 
|  | tx_ring->next_to_use = i; | 
|  | } | 
|  |  | 
|  | /* 82547 workaround to avoid controller hang in half-duplex environment. | 
|  | * The workaround is to avoid queuing a large packet that would span | 
|  | * the internal Tx FIFO ring boundary by notifying the stack to resend | 
|  | * the packet at a later time.  This gives the Tx FIFO an opportunity to | 
|  | * flush all packets.  When that occurs, we reset the Tx FIFO pointers | 
|  | * to the beginning of the Tx FIFO. | 
|  | */ | 
|  |  | 
|  | #define E1000_FIFO_HDR			0x10 | 
|  | #define E1000_82547_PAD_LEN		0x3E0 | 
|  |  | 
|  | static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head; | 
|  | u32 skb_fifo_len = skb->len + E1000_FIFO_HDR; | 
|  |  | 
|  | skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR); | 
|  |  | 
|  | if (adapter->link_duplex != HALF_DUPLEX) | 
|  | goto no_fifo_stall_required; | 
|  |  | 
|  | if (atomic_read(&adapter->tx_fifo_stall)) | 
|  | return 1; | 
|  |  | 
|  | if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) { | 
|  | atomic_set(&adapter->tx_fifo_stall, 1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | no_fifo_stall_required: | 
|  | adapter->tx_fifo_head += skb_fifo_len; | 
|  | if (adapter->tx_fifo_head >= adapter->tx_fifo_size) | 
|  | adapter->tx_fifo_head -= adapter->tx_fifo_size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __e1000_maybe_stop_tx(struct net_device *netdev, int size) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_tx_ring *tx_ring = adapter->tx_ring; | 
|  |  | 
|  | netif_stop_queue(netdev); | 
|  | /* Herbert's original patch had: | 
|  | *  smp_mb__after_netif_stop_queue(); | 
|  | * but since that doesn't exist yet, just open code it. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | /* We need to check again in a case another CPU has just | 
|  | * made room available. | 
|  | */ | 
|  | if (likely(E1000_DESC_UNUSED(tx_ring) < size)) | 
|  | return -EBUSY; | 
|  |  | 
|  | /* A reprieve! */ | 
|  | netif_start_queue(netdev); | 
|  | ++adapter->restart_queue; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_maybe_stop_tx(struct net_device *netdev, | 
|  | struct e1000_tx_ring *tx_ring, int size) | 
|  | { | 
|  | if (likely(E1000_DESC_UNUSED(tx_ring) >= size)) | 
|  | return 0; | 
|  | return __e1000_maybe_stop_tx(netdev, size); | 
|  | } | 
|  |  | 
|  | #define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X)) | 
|  | static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, | 
|  | struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_tx_ring *tx_ring; | 
|  | unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD; | 
|  | unsigned int max_txd_pwr = E1000_MAX_TXD_PWR; | 
|  | unsigned int tx_flags = 0; | 
|  | unsigned int len = skb_headlen(skb); | 
|  | unsigned int nr_frags; | 
|  | unsigned int mss; | 
|  | int count = 0; | 
|  | int tso; | 
|  | unsigned int f; | 
|  | __be16 protocol = vlan_get_protocol(skb); | 
|  |  | 
|  | /* This goes back to the question of how to logically map a Tx queue | 
|  | * to a flow.  Right now, performance is impacted slightly negatively | 
|  | * if using multiple Tx queues.  If the stack breaks away from a | 
|  | * single qdisc implementation, we can look at this again. | 
|  | */ | 
|  | tx_ring = adapter->tx_ring; | 
|  |  | 
|  | /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN, | 
|  | * packets may get corrupted during padding by HW. | 
|  | * To WA this issue, pad all small packets manually. | 
|  | */ | 
|  | if (eth_skb_pad(skb)) | 
|  | return NETDEV_TX_OK; | 
|  |  | 
|  | mss = skb_shinfo(skb)->gso_size; | 
|  | /* The controller does a simple calculation to | 
|  | * make sure there is enough room in the FIFO before | 
|  | * initiating the DMA for each buffer.  The calc is: | 
|  | * 4 = ceil(buffer len/mss).  To make sure we don't | 
|  | * overrun the FIFO, adjust the max buffer len if mss | 
|  | * drops. | 
|  | */ | 
|  | if (mss) { | 
|  | u8 hdr_len; | 
|  | max_per_txd = min(mss << 2, max_per_txd); | 
|  | max_txd_pwr = fls(max_per_txd) - 1; | 
|  |  | 
|  | hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); | 
|  | if (skb->data_len && hdr_len == len) { | 
|  | switch (hw->mac_type) { | 
|  | unsigned int pull_size; | 
|  | case e1000_82544: | 
|  | /* Make sure we have room to chop off 4 bytes, | 
|  | * and that the end alignment will work out to | 
|  | * this hardware's requirements | 
|  | * NOTE: this is a TSO only workaround | 
|  | * if end byte alignment not correct move us | 
|  | * into the next dword | 
|  | */ | 
|  | if ((unsigned long)(skb_tail_pointer(skb) - 1) | 
|  | & 4) | 
|  | break; | 
|  | /* fall through */ | 
|  | pull_size = min((unsigned int)4, skb->data_len); | 
|  | if (!__pskb_pull_tail(skb, pull_size)) { | 
|  | e_err(drv, "__pskb_pull_tail " | 
|  | "failed.\n"); | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  | len = skb_headlen(skb); | 
|  | break; | 
|  | default: | 
|  | /* do nothing */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* reserve a descriptor for the offload context */ | 
|  | if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) | 
|  | count++; | 
|  | count++; | 
|  |  | 
|  | /* Controller Erratum workaround */ | 
|  | if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb)) | 
|  | count++; | 
|  |  | 
|  | count += TXD_USE_COUNT(len, max_txd_pwr); | 
|  |  | 
|  | if (adapter->pcix_82544) | 
|  | count++; | 
|  |  | 
|  | /* work-around for errata 10 and it applies to all controllers | 
|  | * in PCI-X mode, so add one more descriptor to the count | 
|  | */ | 
|  | if (unlikely((hw->bus_type == e1000_bus_type_pcix) && | 
|  | (len > 2015))) | 
|  | count++; | 
|  |  | 
|  | nr_frags = skb_shinfo(skb)->nr_frags; | 
|  | for (f = 0; f < nr_frags; f++) | 
|  | count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]), | 
|  | max_txd_pwr); | 
|  | if (adapter->pcix_82544) | 
|  | count += nr_frags; | 
|  |  | 
|  | /* need: count + 2 desc gap to keep tail from touching | 
|  | * head, otherwise try next time | 
|  | */ | 
|  | if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) | 
|  | return NETDEV_TX_BUSY; | 
|  |  | 
|  | if (unlikely((hw->mac_type == e1000_82547) && | 
|  | (e1000_82547_fifo_workaround(adapter, skb)))) { | 
|  | netif_stop_queue(netdev); | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | schedule_delayed_work(&adapter->fifo_stall_task, 1); | 
|  | return NETDEV_TX_BUSY; | 
|  | } | 
|  |  | 
|  | if (skb_vlan_tag_present(skb)) { | 
|  | tx_flags |= E1000_TX_FLAGS_VLAN; | 
|  | tx_flags |= (skb_vlan_tag_get(skb) << | 
|  | E1000_TX_FLAGS_VLAN_SHIFT); | 
|  | } | 
|  |  | 
|  | first = tx_ring->next_to_use; | 
|  |  | 
|  | tso = e1000_tso(adapter, tx_ring, skb, protocol); | 
|  | if (tso < 0) { | 
|  | dev_kfree_skb_any(skb); | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | if (likely(tso)) { | 
|  | if (likely(hw->mac_type != e1000_82544)) | 
|  | tx_ring->last_tx_tso = true; | 
|  | tx_flags |= E1000_TX_FLAGS_TSO; | 
|  | } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol))) | 
|  | tx_flags |= E1000_TX_FLAGS_CSUM; | 
|  |  | 
|  | if (protocol == htons(ETH_P_IP)) | 
|  | tx_flags |= E1000_TX_FLAGS_IPV4; | 
|  |  | 
|  | if (unlikely(skb->no_fcs)) | 
|  | tx_flags |= E1000_TX_FLAGS_NO_FCS; | 
|  |  | 
|  | count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd, | 
|  | nr_frags, mss); | 
|  |  | 
|  | if (count) { | 
|  | /* The descriptors needed is higher than other Intel drivers | 
|  | * due to a number of workarounds.  The breakdown is below: | 
|  | * Data descriptors: MAX_SKB_FRAGS + 1 | 
|  | * Context Descriptor: 1 | 
|  | * Keep head from touching tail: 2 | 
|  | * Workarounds: 3 | 
|  | */ | 
|  | int desc_needed = MAX_SKB_FRAGS + 7; | 
|  |  | 
|  | netdev_sent_queue(netdev, skb->len); | 
|  | skb_tx_timestamp(skb); | 
|  |  | 
|  | e1000_tx_queue(adapter, tx_ring, tx_flags, count); | 
|  |  | 
|  | /* 82544 potentially requires twice as many data descriptors | 
|  | * in order to guarantee buffers don't end on evenly-aligned | 
|  | * dwords | 
|  | */ | 
|  | if (adapter->pcix_82544) | 
|  | desc_needed += MAX_SKB_FRAGS + 1; | 
|  |  | 
|  | /* Make sure there is space in the ring for the next send. */ | 
|  | e1000_maybe_stop_tx(netdev, tx_ring, desc_needed); | 
|  |  | 
|  | if (!skb->xmit_more || | 
|  | netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { | 
|  | writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt); | 
|  | /* we need this if more than one processor can write to | 
|  | * our tail at a time, it synchronizes IO on IA64/Altix | 
|  | * systems | 
|  | */ | 
|  | mmiowb(); | 
|  | } | 
|  | } else { | 
|  | dev_kfree_skb_any(skb); | 
|  | tx_ring->buffer_info[first].time_stamp = 0; | 
|  | tx_ring->next_to_use = first; | 
|  | } | 
|  |  | 
|  | return NETDEV_TX_OK; | 
|  | } | 
|  |  | 
|  | #define NUM_REGS 38 /* 1 based count */ | 
|  | static void e1000_regdump(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 regs[NUM_REGS]; | 
|  | u32 *regs_buff = regs; | 
|  | int i = 0; | 
|  |  | 
|  | static const char * const reg_name[] = { | 
|  | "CTRL",  "STATUS", | 
|  | "RCTL", "RDLEN", "RDH", "RDT", "RDTR", | 
|  | "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT", | 
|  | "TIDV", "TXDCTL", "TADV", "TARC0", | 
|  | "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1", | 
|  | "TXDCTL1", "TARC1", | 
|  | "CTRL_EXT", "ERT", "RDBAL", "RDBAH", | 
|  | "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC", | 
|  | "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC" | 
|  | }; | 
|  |  | 
|  | regs_buff[0]  = er32(CTRL); | 
|  | regs_buff[1]  = er32(STATUS); | 
|  |  | 
|  | regs_buff[2]  = er32(RCTL); | 
|  | regs_buff[3]  = er32(RDLEN); | 
|  | regs_buff[4]  = er32(RDH); | 
|  | regs_buff[5]  = er32(RDT); | 
|  | regs_buff[6]  = er32(RDTR); | 
|  |  | 
|  | regs_buff[7]  = er32(TCTL); | 
|  | regs_buff[8]  = er32(TDBAL); | 
|  | regs_buff[9]  = er32(TDBAH); | 
|  | regs_buff[10] = er32(TDLEN); | 
|  | regs_buff[11] = er32(TDH); | 
|  | regs_buff[12] = er32(TDT); | 
|  | regs_buff[13] = er32(TIDV); | 
|  | regs_buff[14] = er32(TXDCTL); | 
|  | regs_buff[15] = er32(TADV); | 
|  | regs_buff[16] = er32(TARC0); | 
|  |  | 
|  | regs_buff[17] = er32(TDBAL1); | 
|  | regs_buff[18] = er32(TDBAH1); | 
|  | regs_buff[19] = er32(TDLEN1); | 
|  | regs_buff[20] = er32(TDH1); | 
|  | regs_buff[21] = er32(TDT1); | 
|  | regs_buff[22] = er32(TXDCTL1); | 
|  | regs_buff[23] = er32(TARC1); | 
|  | regs_buff[24] = er32(CTRL_EXT); | 
|  | regs_buff[25] = er32(ERT); | 
|  | regs_buff[26] = er32(RDBAL0); | 
|  | regs_buff[27] = er32(RDBAH0); | 
|  | regs_buff[28] = er32(TDFH); | 
|  | regs_buff[29] = er32(TDFT); | 
|  | regs_buff[30] = er32(TDFHS); | 
|  | regs_buff[31] = er32(TDFTS); | 
|  | regs_buff[32] = er32(TDFPC); | 
|  | regs_buff[33] = er32(RDFH); | 
|  | regs_buff[34] = er32(RDFT); | 
|  | regs_buff[35] = er32(RDFHS); | 
|  | regs_buff[36] = er32(RDFTS); | 
|  | regs_buff[37] = er32(RDFPC); | 
|  |  | 
|  | pr_info("Register dump\n"); | 
|  | for (i = 0; i < NUM_REGS; i++) | 
|  | pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * e1000_dump: Print registers, tx ring and rx ring | 
|  | */ | 
|  | static void e1000_dump(struct e1000_adapter *adapter) | 
|  | { | 
|  | /* this code doesn't handle multiple rings */ | 
|  | struct e1000_tx_ring *tx_ring = adapter->tx_ring; | 
|  | struct e1000_rx_ring *rx_ring = adapter->rx_ring; | 
|  | int i; | 
|  |  | 
|  | if (!netif_msg_hw(adapter)) | 
|  | return; | 
|  |  | 
|  | /* Print Registers */ | 
|  | e1000_regdump(adapter); | 
|  |  | 
|  | /* transmit dump */ | 
|  | pr_info("TX Desc ring0 dump\n"); | 
|  |  | 
|  | /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) | 
|  | * | 
|  | * Legacy Transmit Descriptor | 
|  | *   +--------------------------------------------------------------+ | 
|  | * 0 |         Buffer Address [63:0] (Reserved on Write Back)       | | 
|  | *   +--------------------------------------------------------------+ | 
|  | * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  | | 
|  | *   +--------------------------------------------------------------+ | 
|  | *   63       48 47        36 35    32 31     24 23    16 15        0 | 
|  | * | 
|  | * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload | 
|  | *   63      48 47    40 39       32 31             16 15    8 7      0 | 
|  | *   +----------------------------------------------------------------+ | 
|  | * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS | | 
|  | *   +----------------------------------------------------------------+ | 
|  | * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      | | 
|  | *   +----------------------------------------------------------------+ | 
|  | *   63      48 47    40 39 36 35 32 31   24 23  20 19                0 | 
|  | * | 
|  | * Extended Data Descriptor (DTYP=0x1) | 
|  | *   +----------------------------------------------------------------+ | 
|  | * 0 |                     Buffer Address [63:0]                      | | 
|  | *   +----------------------------------------------------------------+ | 
|  | * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  | | 
|  | *   +----------------------------------------------------------------+ | 
|  | *   63       48 47     40 39  36 35    32 31     24 23  20 19        0 | 
|  | */ | 
|  | pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n"); | 
|  | pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n"); | 
|  |  | 
|  | if (!netif_msg_tx_done(adapter)) | 
|  | goto rx_ring_summary; | 
|  |  | 
|  | for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { | 
|  | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i]; | 
|  | struct my_u { __le64 a; __le64 b; }; | 
|  | struct my_u *u = (struct my_u *)tx_desc; | 
|  | const char *type; | 
|  |  | 
|  | if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) | 
|  | type = "NTC/U"; | 
|  | else if (i == tx_ring->next_to_use) | 
|  | type = "NTU"; | 
|  | else if (i == tx_ring->next_to_clean) | 
|  | type = "NTC"; | 
|  | else | 
|  | type = ""; | 
|  |  | 
|  | pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n", | 
|  | ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i, | 
|  | le64_to_cpu(u->a), le64_to_cpu(u->b), | 
|  | (u64)buffer_info->dma, buffer_info->length, | 
|  | buffer_info->next_to_watch, | 
|  | (u64)buffer_info->time_stamp, buffer_info->skb, type); | 
|  | } | 
|  |  | 
|  | rx_ring_summary: | 
|  | /* receive dump */ | 
|  | pr_info("\nRX Desc ring dump\n"); | 
|  |  | 
|  | /* Legacy Receive Descriptor Format | 
|  | * | 
|  | * +-----------------------------------------------------+ | 
|  | * |                Buffer Address [63:0]                | | 
|  | * +-----------------------------------------------------+ | 
|  | * | VLAN Tag | Errors | Status 0 | Packet csum | Length | | 
|  | * +-----------------------------------------------------+ | 
|  | * 63       48 47    40 39      32 31         16 15      0 | 
|  | */ | 
|  | pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n"); | 
|  |  | 
|  | if (!netif_msg_rx_status(adapter)) | 
|  | goto exit; | 
|  |  | 
|  | for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) { | 
|  | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i]; | 
|  | struct my_u { __le64 a; __le64 b; }; | 
|  | struct my_u *u = (struct my_u *)rx_desc; | 
|  | const char *type; | 
|  |  | 
|  | if (i == rx_ring->next_to_use) | 
|  | type = "NTU"; | 
|  | else if (i == rx_ring->next_to_clean) | 
|  | type = "NTC"; | 
|  | else | 
|  | type = ""; | 
|  |  | 
|  | pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n", | 
|  | i, le64_to_cpu(u->a), le64_to_cpu(u->b), | 
|  | (u64)buffer_info->dma, buffer_info->rxbuf.data, type); | 
|  | } /* for */ | 
|  |  | 
|  | /* dump the descriptor caches */ | 
|  | /* rx */ | 
|  | pr_info("Rx descriptor cache in 64bit format\n"); | 
|  | for (i = 0x6000; i <= 0x63FF ; i += 0x10) { | 
|  | pr_info("R%04X: %08X|%08X %08X|%08X\n", | 
|  | i, | 
|  | readl(adapter->hw.hw_addr + i+4), | 
|  | readl(adapter->hw.hw_addr + i), | 
|  | readl(adapter->hw.hw_addr + i+12), | 
|  | readl(adapter->hw.hw_addr + i+8)); | 
|  | } | 
|  | /* tx */ | 
|  | pr_info("Tx descriptor cache in 64bit format\n"); | 
|  | for (i = 0x7000; i <= 0x73FF ; i += 0x10) { | 
|  | pr_info("T%04X: %08X|%08X %08X|%08X\n", | 
|  | i, | 
|  | readl(adapter->hw.hw_addr + i+4), | 
|  | readl(adapter->hw.hw_addr + i), | 
|  | readl(adapter->hw.hw_addr + i+12), | 
|  | readl(adapter->hw.hw_addr + i+8)); | 
|  | } | 
|  | exit: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_tx_timeout - Respond to a Tx Hang | 
|  | * @netdev: network interface device structure | 
|  | **/ | 
|  | static void e1000_tx_timeout(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | /* Do the reset outside of interrupt context */ | 
|  | adapter->tx_timeout_count++; | 
|  | schedule_work(&adapter->reset_task); | 
|  | } | 
|  |  | 
|  | static void e1000_reset_task(struct work_struct *work) | 
|  | { | 
|  | struct e1000_adapter *adapter = | 
|  | container_of(work, struct e1000_adapter, reset_task); | 
|  |  | 
|  | e_err(drv, "Reset adapter\n"); | 
|  | e1000_reinit_locked(adapter); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_change_mtu - Change the Maximum Transfer Unit | 
|  | * @netdev: network interface device structure | 
|  | * @new_mtu: new value for maximum frame size | 
|  | * | 
|  | * Returns 0 on success, negative on failure | 
|  | **/ | 
|  | static int e1000_change_mtu(struct net_device *netdev, int new_mtu) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN; | 
|  |  | 
|  | /* Adapter-specific max frame size limits. */ | 
|  | switch (hw->mac_type) { | 
|  | case e1000_undefined ... e1000_82542_rev2_1: | 
|  | if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) { | 
|  | e_err(probe, "Jumbo Frames not supported.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (test_and_set_bit(__E1000_RESETTING, &adapter->flags)) | 
|  | msleep(1); | 
|  | /* e1000_down has a dependency on max_frame_size */ | 
|  | hw->max_frame_size = max_frame; | 
|  | if (netif_running(netdev)) { | 
|  | /* prevent buffers from being reallocated */ | 
|  | adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers; | 
|  | e1000_down(adapter); | 
|  | } | 
|  |  | 
|  | /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN | 
|  | * means we reserve 2 more, this pushes us to allocate from the next | 
|  | * larger slab size. | 
|  | * i.e. RXBUFFER_2048 --> size-4096 slab | 
|  | * however with the new *_jumbo_rx* routines, jumbo receives will use | 
|  | * fragmented skbs | 
|  | */ | 
|  |  | 
|  | if (max_frame <= E1000_RXBUFFER_2048) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | 
|  | else | 
|  | #if (PAGE_SIZE >= E1000_RXBUFFER_16384) | 
|  | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | 
|  | #elif (PAGE_SIZE >= E1000_RXBUFFER_4096) | 
|  | adapter->rx_buffer_len = PAGE_SIZE; | 
|  | #endif | 
|  |  | 
|  | /* adjust allocation if LPE protects us, and we aren't using SBP */ | 
|  | if (!hw->tbi_compatibility_on && | 
|  | ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) || | 
|  | (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE))) | 
|  | adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE; | 
|  |  | 
|  | pr_info("%s changing MTU from %d to %d\n", | 
|  | netdev->name, netdev->mtu, new_mtu); | 
|  | netdev->mtu = new_mtu; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_up(adapter); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | clear_bit(__E1000_RESETTING, &adapter->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_update_stats - Update the board statistics counters | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | void e1000_update_stats(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | unsigned long flags; | 
|  | u16 phy_tmp; | 
|  |  | 
|  | #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF | 
|  |  | 
|  | /* Prevent stats update while adapter is being reset, or if the pci | 
|  | * connection is down. | 
|  | */ | 
|  | if (adapter->link_speed == 0) | 
|  | return; | 
|  | if (pci_channel_offline(pdev)) | 
|  | return; | 
|  |  | 
|  | spin_lock_irqsave(&adapter->stats_lock, flags); | 
|  |  | 
|  | /* these counters are modified from e1000_tbi_adjust_stats, | 
|  | * called from the interrupt context, so they must only | 
|  | * be written while holding adapter->stats_lock | 
|  | */ | 
|  |  | 
|  | adapter->stats.crcerrs += er32(CRCERRS); | 
|  | adapter->stats.gprc += er32(GPRC); | 
|  | adapter->stats.gorcl += er32(GORCL); | 
|  | adapter->stats.gorch += er32(GORCH); | 
|  | adapter->stats.bprc += er32(BPRC); | 
|  | adapter->stats.mprc += er32(MPRC); | 
|  | adapter->stats.roc += er32(ROC); | 
|  |  | 
|  | adapter->stats.prc64 += er32(PRC64); | 
|  | adapter->stats.prc127 += er32(PRC127); | 
|  | adapter->stats.prc255 += er32(PRC255); | 
|  | adapter->stats.prc511 += er32(PRC511); | 
|  | adapter->stats.prc1023 += er32(PRC1023); | 
|  | adapter->stats.prc1522 += er32(PRC1522); | 
|  |  | 
|  | adapter->stats.symerrs += er32(SYMERRS); | 
|  | adapter->stats.mpc += er32(MPC); | 
|  | adapter->stats.scc += er32(SCC); | 
|  | adapter->stats.ecol += er32(ECOL); | 
|  | adapter->stats.mcc += er32(MCC); | 
|  | adapter->stats.latecol += er32(LATECOL); | 
|  | adapter->stats.dc += er32(DC); | 
|  | adapter->stats.sec += er32(SEC); | 
|  | adapter->stats.rlec += er32(RLEC); | 
|  | adapter->stats.xonrxc += er32(XONRXC); | 
|  | adapter->stats.xontxc += er32(XONTXC); | 
|  | adapter->stats.xoffrxc += er32(XOFFRXC); | 
|  | adapter->stats.xofftxc += er32(XOFFTXC); | 
|  | adapter->stats.fcruc += er32(FCRUC); | 
|  | adapter->stats.gptc += er32(GPTC); | 
|  | adapter->stats.gotcl += er32(GOTCL); | 
|  | adapter->stats.gotch += er32(GOTCH); | 
|  | adapter->stats.rnbc += er32(RNBC); | 
|  | adapter->stats.ruc += er32(RUC); | 
|  | adapter->stats.rfc += er32(RFC); | 
|  | adapter->stats.rjc += er32(RJC); | 
|  | adapter->stats.torl += er32(TORL); | 
|  | adapter->stats.torh += er32(TORH); | 
|  | adapter->stats.totl += er32(TOTL); | 
|  | adapter->stats.toth += er32(TOTH); | 
|  | adapter->stats.tpr += er32(TPR); | 
|  |  | 
|  | adapter->stats.ptc64 += er32(PTC64); | 
|  | adapter->stats.ptc127 += er32(PTC127); | 
|  | adapter->stats.ptc255 += er32(PTC255); | 
|  | adapter->stats.ptc511 += er32(PTC511); | 
|  | adapter->stats.ptc1023 += er32(PTC1023); | 
|  | adapter->stats.ptc1522 += er32(PTC1522); | 
|  |  | 
|  | adapter->stats.mptc += er32(MPTC); | 
|  | adapter->stats.bptc += er32(BPTC); | 
|  |  | 
|  | /* used for adaptive IFS */ | 
|  |  | 
|  | hw->tx_packet_delta = er32(TPT); | 
|  | adapter->stats.tpt += hw->tx_packet_delta; | 
|  | hw->collision_delta = er32(COLC); | 
|  | adapter->stats.colc += hw->collision_delta; | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | adapter->stats.algnerrc += er32(ALGNERRC); | 
|  | adapter->stats.rxerrc += er32(RXERRC); | 
|  | adapter->stats.tncrs += er32(TNCRS); | 
|  | adapter->stats.cexterr += er32(CEXTERR); | 
|  | adapter->stats.tsctc += er32(TSCTC); | 
|  | adapter->stats.tsctfc += er32(TSCTFC); | 
|  | } | 
|  |  | 
|  | /* Fill out the OS statistics structure */ | 
|  | netdev->stats.multicast = adapter->stats.mprc; | 
|  | netdev->stats.collisions = adapter->stats.colc; | 
|  |  | 
|  | /* Rx Errors */ | 
|  |  | 
|  | /* RLEC on some newer hardware can be incorrect so build | 
|  | * our own version based on RUC and ROC | 
|  | */ | 
|  | netdev->stats.rx_errors = adapter->stats.rxerrc + | 
|  | adapter->stats.crcerrs + adapter->stats.algnerrc + | 
|  | adapter->stats.ruc + adapter->stats.roc + | 
|  | adapter->stats.cexterr; | 
|  | adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc; | 
|  | netdev->stats.rx_length_errors = adapter->stats.rlerrc; | 
|  | netdev->stats.rx_crc_errors = adapter->stats.crcerrs; | 
|  | netdev->stats.rx_frame_errors = adapter->stats.algnerrc; | 
|  | netdev->stats.rx_missed_errors = adapter->stats.mpc; | 
|  |  | 
|  | /* Tx Errors */ | 
|  | adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol; | 
|  | netdev->stats.tx_errors = adapter->stats.txerrc; | 
|  | netdev->stats.tx_aborted_errors = adapter->stats.ecol; | 
|  | netdev->stats.tx_window_errors = adapter->stats.latecol; | 
|  | netdev->stats.tx_carrier_errors = adapter->stats.tncrs; | 
|  | if (hw->bad_tx_carr_stats_fd && | 
|  | adapter->link_duplex == FULL_DUPLEX) { | 
|  | netdev->stats.tx_carrier_errors = 0; | 
|  | adapter->stats.tncrs = 0; | 
|  | } | 
|  |  | 
|  | /* Tx Dropped needs to be maintained elsewhere */ | 
|  |  | 
|  | /* Phy Stats */ | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | if ((adapter->link_speed == SPEED_1000) && | 
|  | (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) { | 
|  | phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK; | 
|  | adapter->phy_stats.idle_errors += phy_tmp; | 
|  | } | 
|  |  | 
|  | if ((hw->mac_type <= e1000_82546) && | 
|  | (hw->phy_type == e1000_phy_m88) && | 
|  | !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp)) | 
|  | adapter->phy_stats.receive_errors += phy_tmp; | 
|  | } | 
|  |  | 
|  | /* Management Stats */ | 
|  | if (hw->has_smbus) { | 
|  | adapter->stats.mgptc += er32(MGTPTC); | 
|  | adapter->stats.mgprc += er32(MGTPRC); | 
|  | adapter->stats.mgpdc += er32(MGTPDC); | 
|  | } | 
|  |  | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_intr - Interrupt Handler | 
|  | * @irq: interrupt number | 
|  | * @data: pointer to a network interface device structure | 
|  | **/ | 
|  | static irqreturn_t e1000_intr(int irq, void *data) | 
|  | { | 
|  | struct net_device *netdev = data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 icr = er32(ICR); | 
|  |  | 
|  | if (unlikely((!icr))) | 
|  | return IRQ_NONE;  /* Not our interrupt */ | 
|  |  | 
|  | /* we might have caused the interrupt, but the above | 
|  | * read cleared it, and just in case the driver is | 
|  | * down there is nothing to do so return handled | 
|  | */ | 
|  | if (unlikely(test_bit(__E1000_DOWN, &adapter->flags))) | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) { | 
|  | hw->get_link_status = 1; | 
|  | /* guard against interrupt when we're going down */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | schedule_delayed_work(&adapter->watchdog_task, 1); | 
|  | } | 
|  |  | 
|  | /* disable interrupts, without the synchronize_irq bit */ | 
|  | ew32(IMC, ~0); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | if (likely(napi_schedule_prep(&adapter->napi))) { | 
|  | adapter->total_tx_bytes = 0; | 
|  | adapter->total_tx_packets = 0; | 
|  | adapter->total_rx_bytes = 0; | 
|  | adapter->total_rx_packets = 0; | 
|  | __napi_schedule(&adapter->napi); | 
|  | } else { | 
|  | /* this really should not happen! if it does it is basically a | 
|  | * bug, but not a hard error, so enable ints and continue | 
|  | */ | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | e1000_irq_enable(adapter); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean - NAPI Rx polling callback | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static int e1000_clean(struct napi_struct *napi, int budget) | 
|  | { | 
|  | struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, | 
|  | napi); | 
|  | int tx_clean_complete = 0, work_done = 0; | 
|  |  | 
|  | tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]); | 
|  |  | 
|  | adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget); | 
|  |  | 
|  | if (!tx_clean_complete) | 
|  | work_done = budget; | 
|  |  | 
|  | /* If budget not fully consumed, exit the polling mode */ | 
|  | if (work_done < budget) { | 
|  | if (likely(adapter->itr_setting & 3)) | 
|  | e1000_set_itr(adapter); | 
|  | napi_complete_done(napi, work_done); | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | e1000_irq_enable(adapter); | 
|  | } | 
|  |  | 
|  | return work_done; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_tx_irq - Reclaim resources after transmit completes | 
|  | * @adapter: board private structure | 
|  | **/ | 
|  | static bool e1000_clean_tx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_tx_ring *tx_ring) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct e1000_tx_desc *tx_desc, *eop_desc; | 
|  | struct e1000_tx_buffer *buffer_info; | 
|  | unsigned int i, eop; | 
|  | unsigned int count = 0; | 
|  | unsigned int total_tx_bytes = 0, total_tx_packets = 0; | 
|  | unsigned int bytes_compl = 0, pkts_compl = 0; | 
|  |  | 
|  | i = tx_ring->next_to_clean; | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  |  | 
|  | while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && | 
|  | (count < tx_ring->count)) { | 
|  | bool cleaned = false; | 
|  | dma_rmb();	/* read buffer_info after eop_desc */ | 
|  | for ( ; !cleaned; count++) { | 
|  | tx_desc = E1000_TX_DESC(*tx_ring, i); | 
|  | buffer_info = &tx_ring->buffer_info[i]; | 
|  | cleaned = (i == eop); | 
|  |  | 
|  | if (cleaned) { | 
|  | total_tx_packets += buffer_info->segs; | 
|  | total_tx_bytes += buffer_info->bytecount; | 
|  | if (buffer_info->skb) { | 
|  | bytes_compl += buffer_info->skb->len; | 
|  | pkts_compl++; | 
|  | } | 
|  |  | 
|  | } | 
|  | e1000_unmap_and_free_tx_resource(adapter, buffer_info); | 
|  | tx_desc->upper.data = 0; | 
|  |  | 
|  | if (unlikely(++i == tx_ring->count)) | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | eop = tx_ring->buffer_info[i].next_to_watch; | 
|  | eop_desc = E1000_TX_DESC(*tx_ring, eop); | 
|  | } | 
|  |  | 
|  | /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame, | 
|  | * which will reuse the cleaned buffers. | 
|  | */ | 
|  | smp_store_release(&tx_ring->next_to_clean, i); | 
|  |  | 
|  | netdev_completed_queue(netdev, pkts_compl, bytes_compl); | 
|  |  | 
|  | #define TX_WAKE_THRESHOLD 32 | 
|  | if (unlikely(count && netif_carrier_ok(netdev) && | 
|  | E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) { | 
|  | /* Make sure that anybody stopping the queue after this | 
|  | * sees the new next_to_clean. | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | if (netif_queue_stopped(netdev) && | 
|  | !(test_bit(__E1000_DOWN, &adapter->flags))) { | 
|  | netif_wake_queue(netdev); | 
|  | ++adapter->restart_queue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (adapter->detect_tx_hung) { | 
|  | /* Detect a transmit hang in hardware, this serializes the | 
|  | * check with the clearing of time_stamp and movement of i | 
|  | */ | 
|  | adapter->detect_tx_hung = false; | 
|  | if (tx_ring->buffer_info[eop].time_stamp && | 
|  | time_after(jiffies, tx_ring->buffer_info[eop].time_stamp + | 
|  | (adapter->tx_timeout_factor * HZ)) && | 
|  | !(er32(STATUS) & E1000_STATUS_TXOFF)) { | 
|  |  | 
|  | /* detected Tx unit hang */ | 
|  | e_err(drv, "Detected Tx Unit Hang\n" | 
|  | "  Tx Queue             <%lu>\n" | 
|  | "  TDH                  <%x>\n" | 
|  | "  TDT                  <%x>\n" | 
|  | "  next_to_use          <%x>\n" | 
|  | "  next_to_clean        <%x>\n" | 
|  | "buffer_info[next_to_clean]\n" | 
|  | "  time_stamp           <%lx>\n" | 
|  | "  next_to_watch        <%x>\n" | 
|  | "  jiffies              <%lx>\n" | 
|  | "  next_to_watch.status <%x>\n", | 
|  | (unsigned long)(tx_ring - adapter->tx_ring), | 
|  | readl(hw->hw_addr + tx_ring->tdh), | 
|  | readl(hw->hw_addr + tx_ring->tdt), | 
|  | tx_ring->next_to_use, | 
|  | tx_ring->next_to_clean, | 
|  | tx_ring->buffer_info[eop].time_stamp, | 
|  | eop, | 
|  | jiffies, | 
|  | eop_desc->upper.fields.status); | 
|  | e1000_dump(adapter); | 
|  | netif_stop_queue(netdev); | 
|  | } | 
|  | } | 
|  | adapter->total_tx_bytes += total_tx_bytes; | 
|  | adapter->total_tx_packets += total_tx_packets; | 
|  | netdev->stats.tx_bytes += total_tx_bytes; | 
|  | netdev->stats.tx_packets += total_tx_packets; | 
|  | return count < tx_ring->count; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_rx_checksum - Receive Checksum Offload for 82543 | 
|  | * @adapter:     board private structure | 
|  | * @status_err:  receive descriptor status and error fields | 
|  | * @csum:        receive descriptor csum field | 
|  | * @sk_buff:     socket buffer with received data | 
|  | **/ | 
|  | static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, | 
|  | u32 csum, struct sk_buff *skb) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 status = (u16)status_err; | 
|  | u8 errors = (u8)(status_err >> 24); | 
|  |  | 
|  | skb_checksum_none_assert(skb); | 
|  |  | 
|  | /* 82543 or newer only */ | 
|  | if (unlikely(hw->mac_type < e1000_82543)) | 
|  | return; | 
|  | /* Ignore Checksum bit is set */ | 
|  | if (unlikely(status & E1000_RXD_STAT_IXSM)) | 
|  | return; | 
|  | /* TCP/UDP checksum error bit is set */ | 
|  | if (unlikely(errors & E1000_RXD_ERR_TCPE)) { | 
|  | /* let the stack verify checksum errors */ | 
|  | adapter->hw_csum_err++; | 
|  | return; | 
|  | } | 
|  | /* TCP/UDP Checksum has not been calculated */ | 
|  | if (!(status & E1000_RXD_STAT_TCPCS)) | 
|  | return; | 
|  |  | 
|  | /* It must be a TCP or UDP packet with a valid checksum */ | 
|  | if (likely(status & E1000_RXD_STAT_TCPCS)) { | 
|  | /* TCP checksum is good */ | 
|  | skb->ip_summed = CHECKSUM_UNNECESSARY; | 
|  | } | 
|  | adapter->hw_csum_good++; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_consume_page - helper function for jumbo Rx path | 
|  | **/ | 
|  | static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb, | 
|  | u16 length) | 
|  | { | 
|  | bi->rxbuf.page = NULL; | 
|  | skb->len += length; | 
|  | skb->data_len += length; | 
|  | skb->truesize += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_receive_skb - helper function to handle rx indications | 
|  | * @adapter: board private structure | 
|  | * @status: descriptor status field as written by hardware | 
|  | * @vlan: descriptor vlan field as written by hardware (no le/be conversion) | 
|  | * @skb: pointer to sk_buff to be indicated to stack | 
|  | */ | 
|  | static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status, | 
|  | __le16 vlan, struct sk_buff *skb) | 
|  | { | 
|  | skb->protocol = eth_type_trans(skb, adapter->netdev); | 
|  |  | 
|  | if (status & E1000_RXD_STAT_VP) { | 
|  | u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; | 
|  |  | 
|  | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); | 
|  | } | 
|  | napi_gro_receive(&adapter->napi, skb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_tbi_adjust_stats | 
|  | * @hw: Struct containing variables accessed by shared code | 
|  | * @frame_len: The length of the frame in question | 
|  | * @mac_addr: The Ethernet destination address of the frame in question | 
|  | * | 
|  | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | 
|  | */ | 
|  | static void e1000_tbi_adjust_stats(struct e1000_hw *hw, | 
|  | struct e1000_hw_stats *stats, | 
|  | u32 frame_len, const u8 *mac_addr) | 
|  | { | 
|  | u64 carry_bit; | 
|  |  | 
|  | /* First adjust the frame length. */ | 
|  | frame_len--; | 
|  | /* We need to adjust the statistics counters, since the hardware | 
|  | * counters overcount this packet as a CRC error and undercount | 
|  | * the packet as a good packet | 
|  | */ | 
|  | /* This packet should not be counted as a CRC error. */ | 
|  | stats->crcerrs--; | 
|  | /* This packet does count as a Good Packet Received. */ | 
|  | stats->gprc++; | 
|  |  | 
|  | /* Adjust the Good Octets received counters */ | 
|  | carry_bit = 0x80000000 & stats->gorcl; | 
|  | stats->gorcl += frame_len; | 
|  | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | 
|  | * Received Count) was one before the addition, | 
|  | * AND it is zero after, then we lost the carry out, | 
|  | * need to add one to Gorch (Good Octets Received Count High). | 
|  | * This could be simplified if all environments supported | 
|  | * 64-bit integers. | 
|  | */ | 
|  | if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) | 
|  | stats->gorch++; | 
|  | /* Is this a broadcast or multicast?  Check broadcast first, | 
|  | * since the test for a multicast frame will test positive on | 
|  | * a broadcast frame. | 
|  | */ | 
|  | if (is_broadcast_ether_addr(mac_addr)) | 
|  | stats->bprc++; | 
|  | else if (is_multicast_ether_addr(mac_addr)) | 
|  | stats->mprc++; | 
|  |  | 
|  | if (frame_len == hw->max_frame_size) { | 
|  | /* In this case, the hardware has overcounted the number of | 
|  | * oversize frames. | 
|  | */ | 
|  | if (stats->roc > 0) | 
|  | stats->roc--; | 
|  | } | 
|  |  | 
|  | /* Adjust the bin counters when the extra byte put the frame in the | 
|  | * wrong bin. Remember that the frame_len was adjusted above. | 
|  | */ | 
|  | if (frame_len == 64) { | 
|  | stats->prc64++; | 
|  | stats->prc127--; | 
|  | } else if (frame_len == 127) { | 
|  | stats->prc127++; | 
|  | stats->prc255--; | 
|  | } else if (frame_len == 255) { | 
|  | stats->prc255++; | 
|  | stats->prc511--; | 
|  | } else if (frame_len == 511) { | 
|  | stats->prc511++; | 
|  | stats->prc1023--; | 
|  | } else if (frame_len == 1023) { | 
|  | stats->prc1023++; | 
|  | stats->prc1522--; | 
|  | } else if (frame_len == 1522) { | 
|  | stats->prc1522++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool e1000_tbi_should_accept(struct e1000_adapter *adapter, | 
|  | u8 status, u8 errors, | 
|  | u32 length, const u8 *data) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u8 last_byte = *(data + length - 1); | 
|  |  | 
|  | if (TBI_ACCEPT(hw, status, errors, length, last_byte)) { | 
|  | unsigned long irq_flags; | 
|  |  | 
|  | spin_lock_irqsave(&adapter->stats_lock, irq_flags); | 
|  | e1000_tbi_adjust_stats(hw, &adapter->stats, length, data); | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, irq_flags); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter, | 
|  | unsigned int bufsz) | 
|  | { | 
|  | struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz); | 
|  |  | 
|  | if (unlikely(!skb)) | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy | 
|  | * @adapter: board private structure | 
|  | * @rx_ring: ring to clean | 
|  | * @work_done: amount of napi work completed this call | 
|  | * @work_to_do: max amount of work allowed for this call to do | 
|  | * | 
|  | * the return value indicates whether actual cleaning was done, there | 
|  | * is no guarantee that everything was cleaned | 
|  | */ | 
|  | static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int *work_done, int work_to_do) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_rx_desc *rx_desc, *next_rxd; | 
|  | struct e1000_rx_buffer *buffer_info, *next_buffer; | 
|  | u32 length; | 
|  | unsigned int i; | 
|  | int cleaned_count = 0; | 
|  | bool cleaned = false; | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (rx_desc->status & E1000_RXD_STAT_DD) { | 
|  | struct sk_buff *skb; | 
|  | u8 status; | 
|  |  | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  | dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ | 
|  |  | 
|  | status = rx_desc->status; | 
|  |  | 
|  | if (++i == rx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | next_rxd = E1000_RX_DESC(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = true; | 
|  | cleaned_count++; | 
|  | dma_unmap_page(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, DMA_FROM_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | length = le16_to_cpu(rx_desc->length); | 
|  |  | 
|  | /* errors is only valid for DD + EOP descriptors */ | 
|  | if (unlikely((status & E1000_RXD_STAT_EOP) && | 
|  | (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) { | 
|  | u8 *mapped = page_address(buffer_info->rxbuf.page); | 
|  |  | 
|  | if (e1000_tbi_should_accept(adapter, status, | 
|  | rx_desc->errors, | 
|  | length, mapped)) { | 
|  | length--; | 
|  | } else if (netdev->features & NETIF_F_RXALL) { | 
|  | goto process_skb; | 
|  | } else { | 
|  | /* an error means any chain goes out the window | 
|  | * too | 
|  | */ | 
|  | if (rx_ring->rx_skb_top) | 
|  | dev_kfree_skb(rx_ring->rx_skb_top); | 
|  | rx_ring->rx_skb_top = NULL; | 
|  | goto next_desc; | 
|  | } | 
|  | } | 
|  |  | 
|  | #define rxtop rx_ring->rx_skb_top | 
|  | process_skb: | 
|  | if (!(status & E1000_RXD_STAT_EOP)) { | 
|  | /* this descriptor is only the beginning (or middle) */ | 
|  | if (!rxtop) { | 
|  | /* this is the beginning of a chain */ | 
|  | rxtop = napi_get_frags(&adapter->napi); | 
|  | if (!rxtop) | 
|  | break; | 
|  |  | 
|  | skb_fill_page_desc(rxtop, 0, | 
|  | buffer_info->rxbuf.page, | 
|  | 0, length); | 
|  | } else { | 
|  | /* this is the middle of a chain */ | 
|  | skb_fill_page_desc(rxtop, | 
|  | skb_shinfo(rxtop)->nr_frags, | 
|  | buffer_info->rxbuf.page, 0, length); | 
|  | } | 
|  | e1000_consume_page(buffer_info, rxtop, length); | 
|  | goto next_desc; | 
|  | } else { | 
|  | if (rxtop) { | 
|  | /* end of the chain */ | 
|  | skb_fill_page_desc(rxtop, | 
|  | skb_shinfo(rxtop)->nr_frags, | 
|  | buffer_info->rxbuf.page, 0, length); | 
|  | skb = rxtop; | 
|  | rxtop = NULL; | 
|  | e1000_consume_page(buffer_info, skb, length); | 
|  | } else { | 
|  | struct page *p; | 
|  | /* no chain, got EOP, this buf is the packet | 
|  | * copybreak to save the put_page/alloc_page | 
|  | */ | 
|  | p = buffer_info->rxbuf.page; | 
|  | if (length <= copybreak) { | 
|  | u8 *vaddr; | 
|  |  | 
|  | if (likely(!(netdev->features & NETIF_F_RXFCS))) | 
|  | length -= 4; | 
|  | skb = e1000_alloc_rx_skb(adapter, | 
|  | length); | 
|  | if (!skb) | 
|  | break; | 
|  |  | 
|  | vaddr = kmap_atomic(p); | 
|  | memcpy(skb_tail_pointer(skb), vaddr, | 
|  | length); | 
|  | kunmap_atomic(vaddr); | 
|  | /* re-use the page, so don't erase | 
|  | * buffer_info->rxbuf.page | 
|  | */ | 
|  | skb_put(skb, length); | 
|  | e1000_rx_checksum(adapter, | 
|  | status | rx_desc->errors << 24, | 
|  | le16_to_cpu(rx_desc->csum), skb); | 
|  |  | 
|  | total_rx_bytes += skb->len; | 
|  | total_rx_packets++; | 
|  |  | 
|  | e1000_receive_skb(adapter, status, | 
|  | rx_desc->special, skb); | 
|  | goto next_desc; | 
|  | } else { | 
|  | skb = napi_get_frags(&adapter->napi); | 
|  | if (!skb) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  | skb_fill_page_desc(skb, 0, p, 0, | 
|  | length); | 
|  | e1000_consume_page(buffer_info, skb, | 
|  | length); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Receive Checksum Offload XXX recompute due to CRC strip? */ | 
|  | e1000_rx_checksum(adapter, | 
|  | (u32)(status) | | 
|  | ((u32)(rx_desc->errors) << 24), | 
|  | le16_to_cpu(rx_desc->csum), skb); | 
|  |  | 
|  | total_rx_bytes += (skb->len - 4); /* don't count FCS */ | 
|  | if (likely(!(netdev->features & NETIF_F_RXFCS))) | 
|  | pskb_trim(skb, skb->len - 4); | 
|  | total_rx_packets++; | 
|  |  | 
|  | if (status & E1000_RXD_STAT_VP) { | 
|  | __le16 vlan = rx_desc->special; | 
|  | u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK; | 
|  |  | 
|  | __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid); | 
|  | } | 
|  |  | 
|  | napi_gro_frags(&adapter->napi); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->status = 0; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | 
|  | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = E1000_DESC_UNUSED(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
|  |  | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | netdev->stats.rx_bytes += total_rx_bytes; | 
|  | netdev->stats.rx_packets += total_rx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /* this should improve performance for small packets with large amounts | 
|  | * of reassembly being done in the stack | 
|  | */ | 
|  | static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_buffer *buffer_info, | 
|  | u32 length, const void *data) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (length > copybreak) | 
|  | return NULL; | 
|  |  | 
|  | skb = e1000_alloc_rx_skb(adapter, length); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma, | 
|  | length, DMA_FROM_DEVICE); | 
|  |  | 
|  | skb_put_data(skb, data, length); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_clean_rx_irq - Send received data up the network stack; legacy | 
|  | * @adapter: board private structure | 
|  | * @rx_ring: ring to clean | 
|  | * @work_done: amount of napi work completed this call | 
|  | * @work_to_do: max amount of work allowed for this call to do | 
|  | */ | 
|  | static bool e1000_clean_rx_irq(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int *work_done, int work_to_do) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_rx_desc *rx_desc, *next_rxd; | 
|  | struct e1000_rx_buffer *buffer_info, *next_buffer; | 
|  | u32 length; | 
|  | unsigned int i; | 
|  | int cleaned_count = 0; | 
|  | bool cleaned = false; | 
|  | unsigned int total_rx_bytes = 0, total_rx_packets = 0; | 
|  |  | 
|  | i = rx_ring->next_to_clean; | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (rx_desc->status & E1000_RXD_STAT_DD) { | 
|  | struct sk_buff *skb; | 
|  | u8 *data; | 
|  | u8 status; | 
|  |  | 
|  | if (*work_done >= work_to_do) | 
|  | break; | 
|  | (*work_done)++; | 
|  | dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ | 
|  |  | 
|  | status = rx_desc->status; | 
|  | length = le16_to_cpu(rx_desc->length); | 
|  |  | 
|  | data = buffer_info->rxbuf.data; | 
|  | prefetch(data); | 
|  | skb = e1000_copybreak(adapter, buffer_info, length, data); | 
|  | if (!skb) { | 
|  | unsigned int frag_len = e1000_frag_len(adapter); | 
|  |  | 
|  | skb = build_skb(data - E1000_HEADROOM, frag_len); | 
|  | if (!skb) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | skb_reserve(skb, E1000_HEADROOM); | 
|  | dma_unmap_single(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | buffer_info->dma = 0; | 
|  | buffer_info->rxbuf.data = NULL; | 
|  | } | 
|  |  | 
|  | if (++i == rx_ring->count) | 
|  | i = 0; | 
|  |  | 
|  | next_rxd = E1000_RX_DESC(*rx_ring, i); | 
|  | prefetch(next_rxd); | 
|  |  | 
|  | next_buffer = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | cleaned = true; | 
|  | cleaned_count++; | 
|  |  | 
|  | /* !EOP means multiple descriptors were used to store a single | 
|  | * packet, if thats the case we need to toss it.  In fact, we | 
|  | * to toss every packet with the EOP bit clear and the next | 
|  | * frame that _does_ have the EOP bit set, as it is by | 
|  | * definition only a frame fragment | 
|  | */ | 
|  | if (unlikely(!(status & E1000_RXD_STAT_EOP))) | 
|  | adapter->discarding = true; | 
|  |  | 
|  | if (adapter->discarding) { | 
|  | /* All receives must fit into a single buffer */ | 
|  | netdev_dbg(netdev, "Receive packet consumed multiple buffers\n"); | 
|  | dev_kfree_skb(skb); | 
|  | if (status & E1000_RXD_STAT_EOP) | 
|  | adapter->discarding = false; | 
|  | goto next_desc; | 
|  | } | 
|  |  | 
|  | if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) { | 
|  | if (e1000_tbi_should_accept(adapter, status, | 
|  | rx_desc->errors, | 
|  | length, data)) { | 
|  | length--; | 
|  | } else if (netdev->features & NETIF_F_RXALL) { | 
|  | goto process_skb; | 
|  | } else { | 
|  | dev_kfree_skb(skb); | 
|  | goto next_desc; | 
|  | } | 
|  | } | 
|  |  | 
|  | process_skb: | 
|  | total_rx_bytes += (length - 4); /* don't count FCS */ | 
|  | total_rx_packets++; | 
|  |  | 
|  | if (likely(!(netdev->features & NETIF_F_RXFCS))) | 
|  | /* adjust length to remove Ethernet CRC, this must be | 
|  | * done after the TBI_ACCEPT workaround above | 
|  | */ | 
|  | length -= 4; | 
|  |  | 
|  | if (buffer_info->rxbuf.data == NULL) | 
|  | skb_put(skb, length); | 
|  | else /* copybreak skb */ | 
|  | skb_trim(skb, length); | 
|  |  | 
|  | /* Receive Checksum Offload */ | 
|  | e1000_rx_checksum(adapter, | 
|  | (u32)(status) | | 
|  | ((u32)(rx_desc->errors) << 24), | 
|  | le16_to_cpu(rx_desc->csum), skb); | 
|  |  | 
|  | e1000_receive_skb(adapter, status, rx_desc->special, skb); | 
|  |  | 
|  | next_desc: | 
|  | rx_desc->status = 0; | 
|  |  | 
|  | /* return some buffers to hardware, one at a time is too slow */ | 
|  | if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { | 
|  | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
|  | cleaned_count = 0; | 
|  | } | 
|  |  | 
|  | /* use prefetched values */ | 
|  | rx_desc = next_rxd; | 
|  | buffer_info = next_buffer; | 
|  | } | 
|  | rx_ring->next_to_clean = i; | 
|  |  | 
|  | cleaned_count = E1000_DESC_UNUSED(rx_ring); | 
|  | if (cleaned_count) | 
|  | adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count); | 
|  |  | 
|  | adapter->total_rx_packets += total_rx_packets; | 
|  | adapter->total_rx_bytes += total_rx_bytes; | 
|  | netdev->stats.rx_bytes += total_rx_bytes; | 
|  | netdev->stats.rx_packets += total_rx_packets; | 
|  | return cleaned; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers | 
|  | * @adapter: address of board private structure | 
|  | * @rx_ring: pointer to receive ring structure | 
|  | * @cleaned_count: number of buffers to allocate this pass | 
|  | **/ | 
|  | static void | 
|  | e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, int cleaned_count) | 
|  | { | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_rx_desc *rx_desc; | 
|  | struct e1000_rx_buffer *buffer_info; | 
|  | unsigned int i; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | /* allocate a new page if necessary */ | 
|  | if (!buffer_info->rxbuf.page) { | 
|  | buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC); | 
|  | if (unlikely(!buffer_info->rxbuf.page)) { | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!buffer_info->dma) { | 
|  | buffer_info->dma = dma_map_page(&pdev->dev, | 
|  | buffer_info->rxbuf.page, 0, | 
|  | adapter->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | 
|  | put_page(buffer_info->rxbuf.page); | 
|  | buffer_info->rxbuf.page = NULL; | 
|  | buffer_info->dma = 0; | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | if (unlikely(++i == rx_ring->count)) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | if (likely(rx_ring->next_to_use != i)) { | 
|  | rx_ring->next_to_use = i; | 
|  | if (unlikely(i-- == 0)) | 
|  | i = (rx_ring->count - 1); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  | writel(i, adapter->hw.hw_addr + rx_ring->rdt); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended | 
|  | * @adapter: address of board private structure | 
|  | **/ | 
|  | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter, | 
|  | struct e1000_rx_ring *rx_ring, | 
|  | int cleaned_count) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | struct e1000_rx_desc *rx_desc; | 
|  | struct e1000_rx_buffer *buffer_info; | 
|  | unsigned int i; | 
|  | unsigned int bufsz = adapter->rx_buffer_len; | 
|  |  | 
|  | i = rx_ring->next_to_use; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  |  | 
|  | while (cleaned_count--) { | 
|  | void *data; | 
|  |  | 
|  | if (buffer_info->rxbuf.data) | 
|  | goto skip; | 
|  |  | 
|  | data = e1000_alloc_frag(adapter); | 
|  | if (!data) { | 
|  | /* Better luck next round */ | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Fix for errata 23, can't cross 64kB boundary */ | 
|  | if (!e1000_check_64k_bound(adapter, data, bufsz)) { | 
|  | void *olddata = data; | 
|  | e_err(rx_err, "skb align check failed: %u bytes at " | 
|  | "%p\n", bufsz, data); | 
|  | /* Try again, without freeing the previous */ | 
|  | data = e1000_alloc_frag(adapter); | 
|  | /* Failed allocation, critical failure */ | 
|  | if (!data) { | 
|  | skb_free_frag(olddata); | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!e1000_check_64k_bound(adapter, data, bufsz)) { | 
|  | /* give up */ | 
|  | skb_free_frag(data); | 
|  | skb_free_frag(olddata); | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Use new allocation */ | 
|  | skb_free_frag(olddata); | 
|  | } | 
|  | buffer_info->dma = dma_map_single(&pdev->dev, | 
|  | data, | 
|  | adapter->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  | if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { | 
|  | skb_free_frag(data); | 
|  | buffer_info->dma = 0; | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* XXX if it was allocated cleanly it will never map to a | 
|  | * boundary crossing | 
|  | */ | 
|  |  | 
|  | /* Fix for errata 23, can't cross 64kB boundary */ | 
|  | if (!e1000_check_64k_bound(adapter, | 
|  | (void *)(unsigned long)buffer_info->dma, | 
|  | adapter->rx_buffer_len)) { | 
|  | e_err(rx_err, "dma align check failed: %u bytes at " | 
|  | "%p\n", adapter->rx_buffer_len, | 
|  | (void *)(unsigned long)buffer_info->dma); | 
|  |  | 
|  | dma_unmap_single(&pdev->dev, buffer_info->dma, | 
|  | adapter->rx_buffer_len, | 
|  | DMA_FROM_DEVICE); | 
|  |  | 
|  | skb_free_frag(data); | 
|  | buffer_info->rxbuf.data = NULL; | 
|  | buffer_info->dma = 0; | 
|  |  | 
|  | adapter->alloc_rx_buff_failed++; | 
|  | break; | 
|  | } | 
|  | buffer_info->rxbuf.data = data; | 
|  | skip: | 
|  | rx_desc = E1000_RX_DESC(*rx_ring, i); | 
|  | rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); | 
|  |  | 
|  | if (unlikely(++i == rx_ring->count)) | 
|  | i = 0; | 
|  | buffer_info = &rx_ring->buffer_info[i]; | 
|  | } | 
|  |  | 
|  | if (likely(rx_ring->next_to_use != i)) { | 
|  | rx_ring->next_to_use = i; | 
|  | if (unlikely(i-- == 0)) | 
|  | i = (rx_ring->count - 1); | 
|  |  | 
|  | /* Force memory writes to complete before letting h/w | 
|  | * know there are new descriptors to fetch.  (Only | 
|  | * applicable for weak-ordered memory model archs, | 
|  | * such as IA-64). | 
|  | */ | 
|  | wmb(); | 
|  | writel(i, hw->hw_addr + rx_ring->rdt); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. | 
|  | * @adapter: | 
|  | **/ | 
|  | static void e1000_smartspeed(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u16 phy_status; | 
|  | u16 phy_ctrl; | 
|  |  | 
|  | if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg || | 
|  | !(hw->autoneg_advertised & ADVERTISE_1000_FULL)) | 
|  | return; | 
|  |  | 
|  | if (adapter->smartspeed == 0) { | 
|  | /* If Master/Slave config fault is asserted twice, | 
|  | * we assume back-to-back | 
|  | */ | 
|  | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); | 
|  | if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) | 
|  | return; | 
|  | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status); | 
|  | if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) | 
|  | return; | 
|  | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); | 
|  | if (phy_ctrl & CR_1000T_MS_ENABLE) { | 
|  | phy_ctrl &= ~CR_1000T_MS_ENABLE; | 
|  | e1000_write_phy_reg(hw, PHY_1000T_CTRL, | 
|  | phy_ctrl); | 
|  | adapter->smartspeed++; | 
|  | if (!e1000_phy_setup_autoneg(hw) && | 
|  | !e1000_read_phy_reg(hw, PHY_CTRL, | 
|  | &phy_ctrl)) { | 
|  | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | 
|  | MII_CR_RESTART_AUTO_NEG); | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, | 
|  | phy_ctrl); | 
|  | } | 
|  | } | 
|  | return; | 
|  | } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) { | 
|  | /* If still no link, perhaps using 2/3 pair cable */ | 
|  | e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl); | 
|  | phy_ctrl |= CR_1000T_MS_ENABLE; | 
|  | e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl); | 
|  | if (!e1000_phy_setup_autoneg(hw) && | 
|  | !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) { | 
|  | phy_ctrl |= (MII_CR_AUTO_NEG_EN | | 
|  | MII_CR_RESTART_AUTO_NEG); | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl); | 
|  | } | 
|  | } | 
|  | /* Restart process after E1000_SMARTSPEED_MAX iterations */ | 
|  | if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX) | 
|  | adapter->smartspeed = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_ioctl - | 
|  | * @netdev: | 
|  | * @ifreq: | 
|  | * @cmd: | 
|  | **/ | 
|  | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) | 
|  | { | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | case SIOCGMIIREG: | 
|  | case SIOCSMIIREG: | 
|  | return e1000_mii_ioctl(netdev, ifr, cmd); | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_mii_ioctl - | 
|  | * @netdev: | 
|  | * @ifreq: | 
|  | * @cmd: | 
|  | **/ | 
|  | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 
|  | int cmd) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct mii_ioctl_data *data = if_mii(ifr); | 
|  | int retval; | 
|  | u16 mii_reg; | 
|  | unsigned long flags; | 
|  |  | 
|  | if (hw->media_type != e1000_media_type_copper) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | switch (cmd) { | 
|  | case SIOCGMIIPHY: | 
|  | data->phy_id = hw->phy_addr; | 
|  | break; | 
|  | case SIOCGMIIREG: | 
|  | spin_lock_irqsave(&adapter->stats_lock, flags); | 
|  | if (e1000_read_phy_reg(hw, data->reg_num & 0x1F, | 
|  | &data->val_out)) { | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | return -EIO; | 
|  | } | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | break; | 
|  | case SIOCSMIIREG: | 
|  | if (data->reg_num & ~(0x1F)) | 
|  | return -EFAULT; | 
|  | mii_reg = data->val_in; | 
|  | spin_lock_irqsave(&adapter->stats_lock, flags); | 
|  | if (e1000_write_phy_reg(hw, data->reg_num, | 
|  | mii_reg)) { | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | return -EIO; | 
|  | } | 
|  | spin_unlock_irqrestore(&adapter->stats_lock, flags); | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | switch (data->reg_num) { | 
|  | case PHY_CTRL: | 
|  | if (mii_reg & MII_CR_POWER_DOWN) | 
|  | break; | 
|  | if (mii_reg & MII_CR_AUTO_NEG_EN) { | 
|  | hw->autoneg = 1; | 
|  | hw->autoneg_advertised = 0x2F; | 
|  | } else { | 
|  | u32 speed; | 
|  | if (mii_reg & 0x40) | 
|  | speed = SPEED_1000; | 
|  | else if (mii_reg & 0x2000) | 
|  | speed = SPEED_100; | 
|  | else | 
|  | speed = SPEED_10; | 
|  | retval = e1000_set_spd_dplx( | 
|  | adapter, speed, | 
|  | ((mii_reg & 0x100) | 
|  | ? DUPLEX_FULL : | 
|  | DUPLEX_HALF)); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  | if (netif_running(adapter->netdev)) | 
|  | e1000_reinit_locked(adapter); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  | break; | 
|  | case M88E1000_PHY_SPEC_CTRL: | 
|  | case M88E1000_EXT_PHY_SPEC_CTRL: | 
|  | if (e1000_phy_reset(hw)) | 
|  | return -EIO; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | switch (data->reg_num) { | 
|  | case PHY_CTRL: | 
|  | if (mii_reg & MII_CR_POWER_DOWN) | 
|  | break; | 
|  | if (netif_running(adapter->netdev)) | 
|  | e1000_reinit_locked(adapter); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | void e1000_pci_set_mwi(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  | int ret_val = pci_set_mwi(adapter->pdev); | 
|  |  | 
|  | if (ret_val) | 
|  | e_err(probe, "Error in setting MWI\n"); | 
|  | } | 
|  |  | 
|  | void e1000_pci_clear_mwi(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  |  | 
|  | pci_clear_mwi(adapter->pdev); | 
|  | } | 
|  |  | 
|  | int e1000_pcix_get_mmrbc(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  | return pcix_get_mmrbc(adapter->pdev); | 
|  | } | 
|  |  | 
|  | void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc) | 
|  | { | 
|  | struct e1000_adapter *adapter = hw->back; | 
|  | pcix_set_mmrbc(adapter->pdev, mmrbc); | 
|  | } | 
|  |  | 
|  | void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value) | 
|  | { | 
|  | outl(value, port); | 
|  | } | 
|  |  | 
|  | static bool e1000_vlan_used(struct e1000_adapter *adapter) | 
|  | { | 
|  | u16 vid; | 
|  |  | 
|  | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void __e1000_vlan_mode(struct e1000_adapter *adapter, | 
|  | netdev_features_t features) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | if (features & NETIF_F_HW_VLAN_CTAG_RX) { | 
|  | /* enable VLAN tag insert/strip */ | 
|  | ctrl |= E1000_CTRL_VME; | 
|  | } else { | 
|  | /* disable VLAN tag insert/strip */ | 
|  | ctrl &= ~E1000_CTRL_VME; | 
|  | } | 
|  | ew32(CTRL, ctrl); | 
|  | } | 
|  | static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter, | 
|  | bool filter_on) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 rctl; | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | __e1000_vlan_mode(adapter, adapter->netdev->features); | 
|  | if (filter_on) { | 
|  | /* enable VLAN receive filtering */ | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~E1000_RCTL_CFIEN; | 
|  | if (!(adapter->netdev->flags & IFF_PROMISC)) | 
|  | rctl |= E1000_RCTL_VFE; | 
|  | ew32(RCTL, rctl); | 
|  | e1000_update_mng_vlan(adapter); | 
|  | } else { | 
|  | /* disable VLAN receive filtering */ | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~E1000_RCTL_VFE; | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | e1000_irq_enable(adapter); | 
|  | } | 
|  |  | 
|  | static void e1000_vlan_mode(struct net_device *netdev, | 
|  | netdev_features_t features) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | e1000_irq_disable(adapter); | 
|  |  | 
|  | __e1000_vlan_mode(adapter, features); | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | e1000_irq_enable(adapter); | 
|  | } | 
|  |  | 
|  | static int e1000_vlan_rx_add_vid(struct net_device *netdev, | 
|  | __be16 proto, u16 vid) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vfta, index; | 
|  |  | 
|  | if ((hw->mng_cookie.status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | 
|  | (vid == adapter->mng_vlan_id)) | 
|  | return 0; | 
|  |  | 
|  | if (!e1000_vlan_used(adapter)) | 
|  | e1000_vlan_filter_on_off(adapter, true); | 
|  |  | 
|  | /* add VID to filter table */ | 
|  | index = (vid >> 5) & 0x7F; | 
|  | vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); | 
|  | vfta |= (1 << (vid & 0x1F)); | 
|  | e1000_write_vfta(hw, index, vfta); | 
|  |  | 
|  | set_bit(vid, adapter->active_vlans); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_vlan_rx_kill_vid(struct net_device *netdev, | 
|  | __be16 proto, u16 vid) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 vfta, index; | 
|  |  | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | e1000_irq_disable(adapter); | 
|  | if (!test_bit(__E1000_DOWN, &adapter->flags)) | 
|  | e1000_irq_enable(adapter); | 
|  |  | 
|  | /* remove VID from filter table */ | 
|  | index = (vid >> 5) & 0x7F; | 
|  | vfta = E1000_READ_REG_ARRAY(hw, VFTA, index); | 
|  | vfta &= ~(1 << (vid & 0x1F)); | 
|  | e1000_write_vfta(hw, index, vfta); | 
|  |  | 
|  | clear_bit(vid, adapter->active_vlans); | 
|  |  | 
|  | if (!e1000_vlan_used(adapter)) | 
|  | e1000_vlan_filter_on_off(adapter, false); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void e1000_restore_vlan(struct e1000_adapter *adapter) | 
|  | { | 
|  | u16 vid; | 
|  |  | 
|  | if (!e1000_vlan_used(adapter)) | 
|  | return; | 
|  |  | 
|  | e1000_vlan_filter_on_off(adapter, true); | 
|  | for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) | 
|  | e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); | 
|  | } | 
|  |  | 
|  | int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | hw->autoneg = 0; | 
|  |  | 
|  | /* Make sure dplx is at most 1 bit and lsb of speed is not set | 
|  | * for the switch() below to work | 
|  | */ | 
|  | if ((spd & 1) || (dplx & ~1)) | 
|  | goto err_inval; | 
|  |  | 
|  | /* Fiber NICs only allow 1000 gbps Full duplex */ | 
|  | if ((hw->media_type == e1000_media_type_fiber) && | 
|  | spd != SPEED_1000 && | 
|  | dplx != DUPLEX_FULL) | 
|  | goto err_inval; | 
|  |  | 
|  | switch (spd + dplx) { | 
|  | case SPEED_10 + DUPLEX_HALF: | 
|  | hw->forced_speed_duplex = e1000_10_half; | 
|  | break; | 
|  | case SPEED_10 + DUPLEX_FULL: | 
|  | hw->forced_speed_duplex = e1000_10_full; | 
|  | break; | 
|  | case SPEED_100 + DUPLEX_HALF: | 
|  | hw->forced_speed_duplex = e1000_100_half; | 
|  | break; | 
|  | case SPEED_100 + DUPLEX_FULL: | 
|  | hw->forced_speed_duplex = e1000_100_full; | 
|  | break; | 
|  | case SPEED_1000 + DUPLEX_FULL: | 
|  | hw->autoneg = 1; | 
|  | hw->autoneg_advertised = ADVERTISE_1000_FULL; | 
|  | break; | 
|  | case SPEED_1000 + DUPLEX_HALF: /* not supported */ | 
|  | default: | 
|  | goto err_inval; | 
|  | } | 
|  |  | 
|  | /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */ | 
|  | hw->mdix = AUTO_ALL_MODES; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_inval: | 
|  | e_err(probe, "Unsupported Speed/Duplex configuration\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 ctrl, ctrl_ext, rctl, status; | 
|  | u32 wufc = adapter->wol; | 
|  | #ifdef CONFIG_PM | 
|  | int retval = 0; | 
|  | #endif | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | int count = E1000_CHECK_RESET_COUNT; | 
|  |  | 
|  | while (test_bit(__E1000_RESETTING, &adapter->flags) && count--) | 
|  | usleep_range(10000, 20000); | 
|  |  | 
|  | WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags)); | 
|  | e1000_down(adapter); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | retval = pci_save_state(pdev); | 
|  | if (retval) | 
|  | return retval; | 
|  | #endif | 
|  |  | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_LU) | 
|  | wufc &= ~E1000_WUFC_LNKC; | 
|  |  | 
|  | if (wufc) { | 
|  | e1000_setup_rctl(adapter); | 
|  | e1000_set_rx_mode(netdev); | 
|  |  | 
|  | rctl = er32(RCTL); | 
|  |  | 
|  | /* turn on all-multi mode if wake on multicast is enabled */ | 
|  | if (wufc & E1000_WUFC_MC) | 
|  | rctl |= E1000_RCTL_MPE; | 
|  |  | 
|  | /* enable receives in the hardware */ | 
|  | ew32(RCTL, rctl | E1000_RCTL_EN); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82540) { | 
|  | ctrl = er32(CTRL); | 
|  | /* advertise wake from D3Cold */ | 
|  | #define E1000_CTRL_ADVD3WUC 0x00100000 | 
|  | /* phy power management enable */ | 
|  | #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000 | 
|  | ctrl |= E1000_CTRL_ADVD3WUC | | 
|  | E1000_CTRL_EN_PHY_PWR_MGMT; | 
|  | ew32(CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_fiber || | 
|  | hw->media_type == e1000_media_type_internal_serdes) { | 
|  | /* keep the laser running in D3 */ | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | ew32(WUC, E1000_WUC_PME_EN); | 
|  | ew32(WUFC, wufc); | 
|  | } else { | 
|  | ew32(WUC, 0); | 
|  | ew32(WUFC, 0); | 
|  | } | 
|  |  | 
|  | e1000_release_manageability(adapter); | 
|  |  | 
|  | *enable_wake = !!wufc; | 
|  |  | 
|  | /* make sure adapter isn't asleep if manageability is enabled */ | 
|  | if (adapter->en_mng_pt) | 
|  | *enable_wake = true; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_free_irq(adapter); | 
|  |  | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int e1000_suspend(struct pci_dev *pdev, pm_message_t state) | 
|  | { | 
|  | int retval; | 
|  | bool wake; | 
|  |  | 
|  | retval = __e1000_shutdown(pdev, &wake); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | if (wake) { | 
|  | pci_prepare_to_sleep(pdev); | 
|  | } else { | 
|  | pci_wake_from_d3(pdev, false); | 
|  | pci_set_power_state(pdev, PCI_D3hot); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int e1000_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | u32 err; | 
|  |  | 
|  | pci_set_power_state(pdev, PCI_D0); | 
|  | pci_restore_state(pdev); | 
|  | pci_save_state(pdev); | 
|  |  | 
|  | if (adapter->need_ioport) | 
|  | err = pci_enable_device(pdev); | 
|  | else | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) { | 
|  | pr_err("Cannot enable PCI device from suspend\n"); | 
|  | return err; | 
|  | } | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | err = e1000_request_irq(adapter); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | e1000_power_up_phy(adapter); | 
|  | e1000_reset(adapter); | 
|  | ew32(WUS, ~0); | 
|  |  | 
|  | e1000_init_manageability(adapter); | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_up(adapter); | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void e1000_shutdown(struct pci_dev *pdev) | 
|  | { | 
|  | bool wake; | 
|  |  | 
|  | __e1000_shutdown(pdev, &wake); | 
|  |  | 
|  | if (system_state == SYSTEM_POWER_OFF) { | 
|  | pci_wake_from_d3(pdev, wake); | 
|  | pci_set_power_state(pdev, PCI_D3hot); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NET_POLL_CONTROLLER | 
|  | /* Polling 'interrupt' - used by things like netconsole to send skbs | 
|  | * without having to re-enable interrupts. It's not called while | 
|  | * the interrupt routine is executing. | 
|  | */ | 
|  | static void e1000_netpoll(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (disable_hardirq(adapter->pdev->irq)) | 
|  | e1000_intr(adapter->pdev->irq, netdev); | 
|  | enable_irq(adapter->pdev->irq); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * e1000_io_error_detected - called when PCI error is detected | 
|  | * @pdev: Pointer to PCI device | 
|  | * @state: The current pci connection state | 
|  | * | 
|  | * This function is called after a PCI bus error affecting | 
|  | * this device has been detected. | 
|  | */ | 
|  | static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, | 
|  | pci_channel_state_t state) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | netif_device_detach(netdev); | 
|  |  | 
|  | if (state == pci_channel_io_perm_failure) | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  |  | 
|  | if (netif_running(netdev)) | 
|  | e1000_down(adapter); | 
|  | pci_disable_device(pdev); | 
|  |  | 
|  | /* Request a slot slot reset. */ | 
|  | return PCI_ERS_RESULT_NEED_RESET; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_io_slot_reset - called after the pci bus has been reset. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * Restart the card from scratch, as if from a cold-boot. Implementation | 
|  | * resembles the first-half of the e1000_resume routine. | 
|  | */ | 
|  | static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | int err; | 
|  |  | 
|  | if (adapter->need_ioport) | 
|  | err = pci_enable_device(pdev); | 
|  | else | 
|  | err = pci_enable_device_mem(pdev); | 
|  | if (err) { | 
|  | pr_err("Cannot re-enable PCI device after reset.\n"); | 
|  | return PCI_ERS_RESULT_DISCONNECT; | 
|  | } | 
|  | pci_set_master(pdev); | 
|  |  | 
|  | pci_enable_wake(pdev, PCI_D3hot, 0); | 
|  | pci_enable_wake(pdev, PCI_D3cold, 0); | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | ew32(WUS, ~0); | 
|  |  | 
|  | return PCI_ERS_RESULT_RECOVERED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_io_resume - called when traffic can start flowing again. | 
|  | * @pdev: Pointer to PCI device | 
|  | * | 
|  | * This callback is called when the error recovery driver tells us that | 
|  | * its OK to resume normal operation. Implementation resembles the | 
|  | * second-half of the e1000_resume routine. | 
|  | */ | 
|  | static void e1000_io_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct net_device *netdev = pci_get_drvdata(pdev); | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | e1000_init_manageability(adapter); | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | if (e1000_up(adapter)) { | 
|  | pr_info("can't bring device back up after reset\n"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | netif_device_attach(netdev); | 
|  | } | 
|  |  | 
|  | /* e1000_main.c */ |